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ABSTRACT: Recently it has been established that torsional Newton-Cartan (TNC) ge-
ometry is the appropriate geometrical framework to which non-relativistic field theories
couple. We show that when these geometries are made dynamical they give rise to Horava-
Lifshitz (HL) gravity. Projectable HL gravity corresponds to dynamical Newton-Cartan
(NC) geometry without torsion and non-projectable HL gravity corresponds to dynamical
NC geometry with twistless torsion (hypersurface orthogonal foliation). We build a precise
dictionary relating all fields (including the scalar khronon), their transformations and other
properties in both HL gravity and dynamical TNC geometry. We use TNC invariance to
construct the effective action for dynamical twistless torsional Newton-Cartan geometries
in 241 dimensions for dynamical exponent 1 < z < 2 and demonstrate that this exactly
agrees with the most general forms of the HL actions constructed in the literature. Further,
we identify the origin of the U(1) symmetry observed by Horava and Melby-Thompson as
coming from the Bargmann extension of the local Galilean algebra that acts on the tangent
space to TNC geometries. We argue that TNC geometry, which is manifestly diffeomor-
phism covariant, is a natural geometrical framework underlying HL gravity and discuss
some of its implications.
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1 Introduction

In the search for consistent theories of quantum gravity, Horava-Lifshitz (HL) gravity [1, 2]
has appeared as a tantalizing possibility of a non-Lorentz invariant and renormalizable UV
completion of gravity. While observational constraints and the matching to general relativ-
ity in the IR put severe limitations on the phenomenological viability of this proposal, HL
gravity is of intrinsic theoretical interest as an example of gravity with anisotropic scaling
between time and space. In particular, in the context of holography it holds the prospect
of providing an alternative way [3, 4] of constructing gravity duals for strongly coupled sys-
tems with non-relativistic scaling, including those of interest to condensed matter physics.
More generally, one might expect that HL gravity has a natural embedding in the larger
framework of string theory [5].

In parallel to this development, and with in part similar motivations, there has been
considerable effort to extend the original AdS-setup in (conventional) relativistic gravity
to space-times with non-relativistic scaling [6-9]. Such space-times typically exhibit a
dynamical exponent z that characterizes the anisotropy between time and space on the



boundary. This includes in particular holography for Lifshitz space-times, for which it was
found that the boundary geometry is described by a novel extension of Newton-Cartan (NC)
geometry! with a specific torsion tensor, called torsional Newton-Cartan (TNC) geometry.
The aim of this paper is to construct the theory of dynamical TNC geometry and show
that it exactly agrees with the most general forms of HL gravity.

TNC geometry was first observed in [17, 18] as the boundary geometry for a specific
action supporting z = 2 Lifshitz geometries, and subsequently generalized to a large class
of holographic Lifshitz models for arbitrary values of z in [19, 20]. In parallel, it was shown
in detail in [21] how TNC geometry arises by gauging the Schrédinger algebra, following
the earlier work [22] on obtaining NC geometry from gauging the Bargmann algebra. In
this paper we will show that TNC geometry can also be obtained by generalizing directly
the work of [22] to include torsion without using the Schrédinger algebra. In its broadest
sense the results of [19, 20] imply that Lifshitz holography describes a dual version of
field theories on TNC backgrounds. In [23] it was shown that the Lifshitz vacuum (in
Poincaré type coordinates) exhibits the same symmetry properties as a flat NC space-
time. In particular it was found that the conformal Killing vectors of flat NC space-time
span the Lifshitz algebra. In order to understand the properties of field theories on TNC
backgrounds some simple scale invariant scalar field models on flat NC space-time were
studied in [23, 24]. It was shown that two scenarios can occur: i). either the theory has an
internal local U(1) symmetry related to particle number or ii). it does not. In case i). there
is a mechanism that enhances the global Lifshitz symmetries to include particle number and
Galilean boosts (and possibly even special conformal transformations) whereas in the other
case no such symmetry enhancement can take place. This means that the notion of global
symmetries depends on the type of matter fields one considers on such a background. In
support of this it was demonstrated in ref. [23] that one can define probe scalars on a Lifshitz
background that have a global Schrodinger invariance. The field-theoretic perspective of
coupling Galilean invariant field theories to TNC? was independently considered in [30].

The relevant geometric fields in TNC are a time-like vielbein 7, an inverse spatial
metric A and a vector field M,, = m, — 0, x where x is a Stiickelberg scalar whose role
in TNC geometry will be elucidated in section 6. The torsion in TNC geometry is always
proportional to 9,7, — 0,7, where 7, defines the local flow of time. The amount of torsion

depends on the properties of 7, and we distinguish the three cases:>

e Newton-Cartan (NC) geometry
o twistless torsional (TTNC) geometry

e torsional Newton-Cartan (TNC) geometry

We refer to [10-16] for earlier work on Newton-Cartan geometry.

*Ref. [25] introduced NC geometry to field theory analyses of problems with strongly correlated electrons,
such as the fractional quantum Hall effect. Later torsion was added to this analysis in [26]. The type of
torsion introduced there is what we call twistless torsion. See also [27-29] for a different approach to
Newton-Cartan geometry.

3These three cases also naturally arise in Lifshitz holography [17, 18]. We note that TTNC geometry
was already observed in [16] but in that work the torsion was eliminated using a conformal rescaling.



where the first possibility has no torsion and the latter option has general torsion with the
twistless case being an important in-between situation. More specifically, in the first case
the time-like vielbein of the geometry is closed and defines an absolute time. In the second
case the time-like vielbein is hypersurface orthogonal and thereby allows for a foliation of
equal time spatial surfaces described by Riemannian (i.e. torsion free) geometry. In the
third, most general, case there is no constraint on 7.

As is clear from holographic studies of the boundary energy-momentum tensor as for
example in [17-19, 23, 31] the addition of torsion to the NC geometry is crucial in order to
be able to calculate the energy density and energy flux of the theory. This is because they
are the response to varying 7, (see also [30]). Hence in order to be able to compute these
quantities 7, better be unconstrained, i.e. one should allow for arbitrary torsion. If we work
with TTNC geometry one can only compute the energy density and the divergence of the
energy current [20] because in that case 7, = 10,7 where one has to vary ¢ and 7 with v
sourcing the energy density and 7 sourcing the divergence (after partial integration) of the
energy current. In any case the point is that, contrary to the relativistic setting, adding
torsion is a very natural thing to do in NC geometry. Moreover, as will be shown later,
the torsion is not something one can freely pick and is actually fixed by the formalism.

In all of these works the TNC geometry appears as a fixed background and is hence
not dynamical. The purpose of this paper is to consider what theory of gravity appears
when letting the TNC geometry fluctuate. We find, perhaps not entirely unexpected,* that
depending on the amount of torsion the resulting theories include HL gravity and all of its
known extensions.

Our focus in this paper will be mainly on the first two of the three cases listed above,
leaving the details of the dynamics of the most general case (TNC gravity) for future work.
In particular, we will show that:

e dynamical NC geometry = projectable HL gravity

e dynamical TTNC geometry = non-projectable HL. gravity.

The khronon field introduced by [32] (to make HL gravity generally covariant whereby
making manifest the presence of an extra scalar mode) naturally appears (see also [33]) in
our formulation. We furthermore show that the U(1) extension of [34] (see also [35-37])
emerges as well in a natural fashion. The essential identification between the covariant®
NC-type geometric structures and those appearing in the ADM parametrization that forms
the starting point of HL gravity is as follows

~

7, ~ lapse, hy, ~ spatial metric, m, ~ shift + Newtonian potential ,

where the fields fzw, and m,, are defined in section 4. We will show that the effective action
for the TTNC fields leads to two kinetic terms for the metric h,, (giving rise to the A pa-
rameter of HL gravity [1, 2]) including the potential terms computed in refs. [32, 36, 37, 39].

1A HL-type action in TNC covariant form was already observed in [18] where the anisotropic Weyl-
anomaly in a specific z = 2 holographic four-dimensional bulk Lifshitz model was obtained via null Scherk-
Schwarz reduction of the AdSs conformal anomaly of gravity coupled to an axion.

®Note that in e.g. ref. [38] there is also a type of covariantization of HL gravity (see also eq. (3.9) of [3]),
but there is still inherently a Lorentzian metric structure present. This only works up to second order in
derivatives so that it only captures the IR limit of HL gravity.



Furthermore the Stiickelberg scalar x entering in the TNC quantity M, = m, — 0,x
(see [17-19, 21, 23, 24]) will be directly related to the Newtonian prepotential introduced
in [34]. The relation to TTNC geometry will, however, provide a new perspective on the
nature of the U(1) symmetry studied in the context of HL gravity. As a further confirmation
that TNC geometry is a natural framework for HL gravity we will demonstrate in this
paper that when we include dilatation symmetry (local Schrédinger invariance) one obtains
conformal HL gravity.

As we will review in this paper, the various versions of TNC geometry defined above
arise by gauging non-relativistic symmetry algebras (Galilean, Bargmann, Schrédinger).
In particular, in this procedure the internal symmetries are made into local symmetries,
and translations are turned into diffeomorphisms. This is in the same way that Rieman-
nian geometry comes from gauging the Poincaré algebra, thereby imposing local Lorentz
symmetry and turning translations into space-time diffeomorphisms. Thus HL gravity the-
ories (and more generally TNC gravity) can be seen as the most general gravity theories
for which the Einstein equivalence principle (that locally space-time is described by flat
Minkowski space-time) is applied to local non-relativistic (Galilean) symmetries, rather
than to the local Lorentz symmetry that one has in special relativity.

We point out that in general relativity (GR) the global symmetries (Killing vectors)
of Minkowski space-time (the Poincaré algebra) form the same algebra from which upon
gauging (and replacing local space-time translations by diffeomorphisms as explained in
appendix A) we obtain the geometrical framework of GR. On the other hand the Killing
vectors of flat NC space-time only involve space and time translations and spatial rota-
tions [23] while the local tangent space group that we gauge in order to obtain the TNC
geometrical framework is the Galilean algebra (where again we also replace local time and
space translations by diffeomorphisms), which also contains Galilean boosts and is thus not
the same algebra as the algebra of Killing vectors of flat NC space-time. We bring this up
to highlight the fact that the local tangent space symmetries and the Killing vectors of flat
space-time are in general two very different concepts that are often mistakenly assumed
to be the same. Basically this happens because the M, vector allows for the construction
of a new set of vielbeins (defined in section 4) that are invariant under G transformations
and that only see diffeomorphisms and local rotations which agrees with the Killing vectors
of flat NC space-time. Nevertheless the fact that M, is one of the background fields to
which we can couple a field theory can, under special circumstances, lead to additional
symmetries such as G and N (and even special conformal symmetries) [23].

Our results on dynamical TNC geometry and its relation to HL gravity provide a new
perspective on these theories of gravity. For one thing, the vacuum of HL gravity (without
a cosmological constant) has so far been taken to be Minkowski space-time, but since the
underlying geometry appears to be TNC geometry, it seems more natural to take this as flat
NC space-time [23, 24]. Thus it would seem worthwhile to reexamine HL gravity and the
various issues® that have been raised following its introduction. As another application,
we emphasize that, independent of a possible UV completion of gravity, our results on
dynamical TNC geometry are of relevance to constructing IR effective field theories of

SThere is an extensive literature on this (e.g. instabilities and strong coupling at low energies), see e.g.
refs. [40-47].



non-relativistic systems following the recent developments of applying this to condensed
matter systems. For these kinds of applications, the question whether HL gravity flows
to a theory with local Lorentz invariance (A = 1) in the IR is of no concern. Finally,
from a broader perspective our results might be useful towards a proper description of
the non-relativistic quantum gravity corner of the “(h, Gy, 1/c)-cube”, perhaps aiding the
formulation of a well-defined perturbative 1/¢ expansion around such a theory.

Outline of the paper. The first part of the paper (sections 2 to 7) is devoted to setting
up the geometrical framework for torsional Newton-Cartan geometry, presented in such a
way that the subsequent connection to HL gravity is most clearly displayed. We thus take
a pedagogical approach that introduces the relevant ingredients in a step-by-step way. To
this end we begin in section 2 with the geometry that is obtained by gauging the Galilean
algebra, extending the original work of [22] to include torsion. We exhibit the transfor-
mation properties of the relevant geometrical fields under space-time diffeomorphisms and
the internal transformations, consisting of Galilean boosts (G) and spatial rotations (J).
We also discuss the vielbein postulates and curvatures entering the field strength of the
gauge field. We point out that the only G, J invariants are the time-like vielbein 7, and the
inverse spatial metric h*. In section 3 we then present the most general affine connection
that satisfies the property that the latter quantities are covariantly conserved.

In section 4, we go one step further and add the central element (N) to the Galilean
algebra, and consider the gauging of the resulting Bargmann algebra (as also considered
n [22] for the case with no torsion). We show that the extra gauge field m,, that enters
in this description, does not alter the transformation properties of the objects considered
in section 2, but allows for the introduction of further useful G, J, invariants, namely an
inverse time-like vielbein 9#, a spatial metric A, (or }Alw,) and a “Newtonian potential” ®.
We then return to the construction of the affine connection in section 5 and employ the
geometric quantities of section 2 and 4 to construct the most general connection that can
be built out of the invariants. We discuss two special choices of affine connections with
particular properties, one of them being especially convenient for the comparison with
HL gravity. We point out that, in the case of non-vanishing torsion, there is no choice
of affine connection that is also N-invariant, but that one can formally remedy this by
introducing a Stiickelberg scalar x (defining M, = m, — 0,x) to the setup that cancels
this non-invariance. This has the advantage that one can deal simultaneously with theories
that have a local U(1) symmetry and those that do not have this, and further it will prove
useful when comparing to HL gravity (especially [34-37]). We also show how the TNC
invariants can be used to build a non-degenerate symmetric rank 2 tensor with Lorentzian
signature, which will later be used to make contact with the ADM decomposition that
enters HL gravity.

In section 6 we discuss the specific form of the torsion tensor that emerges from gauging
the Bargmann algebra and introduce the three relevant cases for torsion (NC, TTNC and
TNC) that were already mentioned above. We also introduce a vector a, that describes
the TTNC torsion, which will turn out to be very useful in order to make contact with the
literature on non-projectable HL gravity. Further we will identify the khronon field of [32].



Then in section 7 we give some basic properties of the curvatures (extrinsic curvature and
Ricci tensor for TTNC) that will be useful when constructing HL actions.

In section 8 we relate the TNC invariants introduced in the previous sections to those
appearing in the corresponding ADM parameterization employed in HL gravity. This iden-
tification and the match of the properties and number of components and local symmetries
in the case of NC and TTNC already strongly suggest that dynamical (TT)NC is expected
to be the same as (non)-projectable HL gravity. We then proceed in section 9 by showing
that the generic action that describes dynamical TTNC geometries agrees on the nose with
the most general HL actions appearing in the literature. For simplicity we treat the case
of 2 spatial dimensions with 1 < z < 2 and organize the terms in the action according
to their dilatation weight. In particular, we construct all G, J invariant terms that are
relevant or marginal, using as building blocks the TNC invariants (including the torsion
tensor and curvature tensor) and covariant derivatives. The resulting action is written
in (9.18), (9.19) and gives the HL kinetic terms [1, 2] while the potential is exactly the
same as the 3D version of the potential given in [32, 36, 37, 39].

We then proceed in section 10 to consider the extension of the action to include invari-
ance under the central extension N, leading to HL actions with local Bargmann invariance.
This can be achieved by including couplings to ®, which did not appear yet in section 9.
Importantly, in the projectable case with the HL coupling constant A\ = 1 we reproduce
the U(1) invariant action of [34]. When we consider the non-projectable version or A # 1
we need additional terms to make the theory U(1) invariant which is precisely achieved by
adding the Stiickelberg field x that we introduced in section 5 (see also [23]). We can then
write a Bargmann invariant action that precisely reproduces the actions considered in the
literature, where in particular the y-dependent pieces agree with those in [36, 37]. This
comes about in part via coupling to the natural TNC Newton potential, (i)x, which is the
Bargmann invariant generalization of ®, and the simple covariant form of the action (10.14)
is one of our central results.

We emphasize that adding the y field to the action means that we have trivialized
the U(1) symmetry by Stiickelberging it or in other words we have removed the U(1)
transformations all together. We further expand on this fact in section 11, commenting
on statements in the literature regarding the relevance of the U(1) invariance (which is
not there unless we have zero torsion and A = 1) in relation to the elimination of a scalar
degree of freedom. In particular, we will present a different mechanism that accomplishes
this and which involves a constraint equation obtained by varying the TNC potential @X.

Finally in section 12 we consider the case where we add dilatations to the Bargmann
algebra, i.e. we consider the dynamics we get from a geometry that is locally Schrédinger
invariant. We will show that the resulting theory is conformal HL gravity, providing further
evidence for our claim that TNC geometry is the underlying geometry of HL gravity. In
particular, employing the local Schrédinger algebra we will arrive at the invariant z = d
action (12.50) for conformal HL gravity in d + 1 dimensions.

We end in section 13 with our conclusions and discuss a large variety of possible open
directions. For comparison to general relativity and as an introduction to the logic followed
in sections 2 to 7, we have included appendix A which discusses the gauging of the Poincaré
algebra leading to Riemannian geometry (possibly with torsion added).



2 Local Galilean transformations

The present section until section 7 is devoted to setting up the general geometrical frame-
work for torsional Newton-Cartan geometry. We will follow an approach that is very similar
to what in general relativity is known as the gauging of the Poincaré algebra. This provides
us in a very efficient manner with all basic geometrical objects used in the formulation of
general relativity (and higher curvature modifications thereof). For the interested reader
unfamiliar with this method we give a short summary of it in appendix A.

To obtain torsional Newton-Cartan geometry we follow the same logic as in appendix A
for the case of the Galilean algebra and its central extension known as the Bargmann
algebra. This was first considered in [22] for the case without torsion. Here we generalize
this interesting work to the case with torsion. Adding torsion to Newton-Cartan geometry
can also be done by making it locally scale invariant, i.e. gauging the Schrédinger algebra as
in [21]. However upon gauging the Schrédinger algebra the resulting geometric objects are
all dilatation covariant which is useful for the construction of conformal HL gravity as we
will study in section 12 but it is less useful for the study of general non-conformally invariant
HL actions which is why we start our analysis by adding torsion to the analysis of [22].

Consider the Galilean algebra whose generators are denoted by H, P,,Gg, s and

whose commutation relations are

[HvGa]:Paa [PCL?Gb]:Ov
[Jab ; Pc] = 5ach - 5bcPa ) [Jab ; GC] = 5ach - 5bcc;a ) (21)
[Jab s Jed] = dacTod — dadJboe — Obead + OvdJac -

Let us consider a connection A, taking values in the Galilean algebra’
1
Ay = Hry + Pael + G0, + §Jab9uab. (2.2)
This connection transforms in the adjoint as
0A, =0 A+ A, A]. (2.3)

With this transformation we can associate another transformation denoted by ¢ as follows.
Write (without loss of generality)

A=grA, + 3%, (2.4)

where

1
¥ =GaA + S X (2.5)
is chosen to only include the internal symmetries G and J. We define 5.,4# as

6A, = 0A, — & Fu = Le A+ 0,5+ [A,, 3], (2.6)

"Our notation is such that y, v = 0. ..d are spacetime indices and a,b = 1...d are spatial tangent space
indices.



where F,, is the curvature

.Fu/]/ - 8MAV - 81/.’4” + [AM 3 Ay]
1
= HR,,,(H) + P,R,,"(P) + Go R " (G) + 5JabR,wf“’(J) : (2.7)
Often in works on gauging space-time symmetry groups it is suggested that diffeomorphisms
can only be obtained once specific curvature constraints are imposed.® We emphasize that

the transformation SAM exists no matter what we choose for the curvature F,,.
If we write in components what (2.6) states we obtain the transformation properties

0Ty = LeTy s (2.8)
Sel = Leel + Ayeh, + N7, (2.9)
52,7 = LeQ,% + A% + X%, + A%, (2.10)
SQuab _ EgQ“ab + alu)\ab + 2/\[GCQM|C|b] , (2.11)

where L¢ is the Lie derivative along {# and A%, A% the parameters of the internal G, J
transformations, respectively.

We can now write down covariant derivatives that transform covariantly under these
transformations. They are

Dyt =0y — 1,70 (2.12)
Dyey, = ey, — T 65 — Q.7 — Quabelb, , (2.13)

where I',, is an affine connection transforming as
0Ir, = 0,0, 4+ 70,17, + T8 ,0,£7 +17,0,67 —T7,0,6 . (2.14)

It is in particular inert under the G and J transformations. The form of the covariant
derivatives is completely fixed by the local transformations 5,4“. However any tensor
redefinition of the connections I'j,, €,% and Quab that leaves the covariant derivatives
form-invariant leads to an allowed set of connections with the exact same transformation
properties.

We impose the vielbein postulates

D,1, =0, (2.15)
Dye, =0, (2.16)

which allows us to express F,’fw in terms of €, and Q#“b via

v

I, = =001 + e} (@Le‘j - Q.1 — Q,ﬂbeb> , (2.17)

5This is because setting to zero some of the curvatures in F,, identifies § with & in (2.6) for those fields
that are not fixed by the curvature constraints. There is no need for the § and § transformations to coincide.
As we show in appendix A this is no longer the case in GR when there is non-vanishing torsion.



where we defined inverse vielbeins v* and et via

vt = -1, v'ey, =0, ehr, =0, eheb = of (2.18)

The vielbein postulates for the inverses read
Dy’ = gy’ + T 07 — Q% =0, (2.19)
Dyl = duel + T el + Q. laeh = 0. (2.20)

Using that Q,ﬂb is antisymmetric we find that h*” = §%ek ey satisfies

V,h'P =0, (2.21)
which together with equations (2.12) and (2.15), i.e.

V,um =0, (2.22)

constrain I',,. Equations (2.21) and (2.22) are the TNC analogue of metric compatibil-
ity in GR.
The components of the field strength F,, in (2.7) are given by

Ry (H) =20,7, (2.23)
Ruya<P) = 28[,“63] - 2Q[M 7',/} QQ[M beg] y (2 24)
R (G) = 20,9,)" — 29, , (2.25)
R ™(J) = 20,9,™ — 29,,°Q,," (2.26)

The first two appear in the antisymmetric part of the covariant derivatives D, 7, and D e;,.
More precisely we have

Ry (H) =210 7, , (2.27)
R, (P) = 2FfW] eg. (2.28)

In other words they are equal to the torsion tensor, i.e.
2F’[D,uzl] = _UPRMV(H) + egRuVa(P) . (229)

The other two curvature tensors can be found by computing the Riemann tensor defined as

[V, VilXe = Ruo” X, — 27 1V, X, (2.30)
Using that
Ruvo” = —8,0, + 0,10, — FZ)\I’Z’}U +T0,T),, (2.31)

together with (2.17) tells us that

Ruo" = e, R, (G) — eoaegRWab(J) ) (2.32)



So far all components of A, are independent or what is the same 7, €j; and 'Y, (obey-
ing (2.21) and (2.22)) are all independent. The inverse vielbeins v* and e, transform as

Svt = Levt + el A\, (2.33)
et = Leek + N\ el . (2.34)

There are only two invariants, i.e. tensors invariant under G and J transformations, that
we can build out of the vielbeins. These are 7, and h*” = gabet! ey. This is not enough to
construct an affine connection that transforms as (2.14). The reason we cannot build any
other invariants is because v* and h,, = (5(117626?/ undergo shift transformations under local
Galilean boosts A* (also known as Milne boosts [30]).

3 The affine connection: part 1
The most general I'},, obeying (2.21) and (2.22) is of the form
1 1
Iy, = =007 + 5h’” (Ophve + Ovhpe — Oshy) + §hp"Y0W (3.1)

where h??Y,,, satisfies
(P71 4+ 071 ) Vo = 0. (3.2)

It follows that Y5, can be written as

Ya,uy = TUX[:},V + Tquu + ngj s (33)
where X}W and Xgu and ng, = _ng are arbitra]ry.~ We write Xgu = Ko + X(20u) SO
that K, = —K,,. Further we write Xg’w, =1, Ko) + ng, so that we can write

Ya,uu =To (Xliy + X(QMV)) + T,uKUZ/ + TuKo,u + LG’/.U/ ) (34)
where Ly, = —Ly,0 is defined as
Loy =1 X2 | —1,X2,  + X3 (3.5)
ouy v (o) o (vp) opy * :

Since Yy, is defined as h*?Y,,,, we can drop the part in (3.4) that is proportional to 7,.
We thus find the following form for the connection I'f,

1 1
I, = —vo,m + §h”” (Ouhve + Ovhpe — Oshyuw) + §h”” (TuKov + 1Koy + Lopw) . (3.6)
The variation of I',, under local Galilean boosts yields

1 log 1 a
06T, = Sh*7 7 (6 Koy + Ouhe — 05\) + 5hP7 7 (6K + Oudo = Do dy) (3.7)

1
+ ih”o (0 Low — Ao (OuTy — Ouy) + My (0uTo — OoTy) + A (OuTo — OoTy))

where A\, = )\aez. In section 5 we will choose K, and L, such that 5@Ffw =0.

,10,



4 Local Bargmann transformations

It is well known that the Galilean algebra admits a central extension with central element
N called the Bargmann algebra. This latter element appears via the commutator [P,, G| =
0 N. We denote the associated gauge connection by m,,. Following the same recipe as in
section 2 with

Ay = Hry + Poel + G0, + %JabQ““b + Nmy,, (4.1)
Y= G\ + %Jawb + No, (4.2)
Fuw = 0, A, —0,A, + A, A
= HRuw(H) + PaR(P) + GaRy(G) + LI Rn™(7) + NRw (V) (43)
we obtain
dmy, = Lemy, + 0,0 + €4 Aa (4.4)

where § is defined in the same way as in (2.6). Note that we have an extra parameter o
associated with the N transformation. Because N is central, all results of the previous
section remain unaffected.

Our primary focus in this section is local Galilean boost invariance. The new field m,,
is shifted under the \* transformation and so in combinations such as

ot = v — h"m,, , (4.5)
hyw = hyy — Tmy, — 1My,

the Galilean boost parameter \* is cancelled. However we now have two other things to
worry about. First of all the new field m,, also transforms under a local U(1) transformation
with parameter ¢ and secondly we have introduced more than is strictly necessary to have
local Galilean invariance. This is because the component

= —vhm, + Thmym, (4.7)

is G invariant (and of course also J invariant). In previous works we have introduced
another background field y, a Stiickelberg scalar, transforming as oy = L¢x + 0 so that the
combination M, = m, — 0, is invariant under the local N transformation and replaced
everywhere m,, by M,,. Here it will prove convenient, for the sake of comparison with work
on HL gravity to postpone this step until later.® Hence for now we will work with my, as
opposed to M.

We introduce a new set of Galilean invariant vielbeins: 7,, €, whose inverses are 0"

and e where ey, = €, —mf7, with m® = e/*m,,. They satisfy the relations
ot = -1, otel, =0, ehr, =0, egéz =0, (4.8)

In previous work [19, 21, 23, 24] we denoted by 4", h,, and ® the invariants with m,, replaced by M,,.
Here we temporarily work with the forms (4.5)—(4.7) for reasons that will become clear as we go on. We
return to our notation from previous works in section 12. We also point out that compared to [19, 21, 23, 24]
we denote by m, here what was referred to as m, in these papers and vice versa we denote by 7, here
what was denoted by m, in these respective works.
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We also have the completeness relation effél‘f = 65 + o*1,. The introduction of m® thus
leads to the G, J invariants o* and

huw = 0ab€lel = hyy + 27,7, ® | (4.9)

where hy,, is given in (4.6). The part of m,, that is responsible for the Galilean boost
invariance is m® that transforms as (ignoring the o transformation)
om® = Lem® + A+ X%m". (4.10)
We can write 1
my, = eZma — imam“m + &)TH, (4.11)

where the last term is an invariant.

5 The affine connection: part 2

In section 2 we realized the Galilean algebra on the fields 7, e, §2,% and Q#“b or what

@ and I}, where the affine connection obeys (2.21) and (2.22). Now

that we have introduced a new field m,, transforming as in (4.4) we will see that we can

is the same on 7, e

realize the Galilean algebra on a smaller set of fields, namely 7, e, and my,. We can also
realize the Galilean algebra on 7, €}, and m® with m® transforming as in (4.10), i.e. no
dependence on @ or realize it on 7,, €, m® and ® which is another way of writing the
dependence on 7, €j; and m,,. These different options lead to different choices for the affine
connection as we will now discuss.

The most straightforward way of constructing a I';,, that is made out of vielbeins and
either i). m,, or ii). m®, that obeys (2.21) and (2.22) and transforms as in (2.14), is to use
the invariants 7, B#,,, o#, h* and ®. The most general connection we can build out of

these invariants reads [23]
1
Iy, = —0P0,T, + §hﬂff (OuHyo + 0y Hyo — 0 Hp) (5.1)
where H,,, is given by
H,, = 1_1“,, + a7, (5.2)

where « is any constant. If we want the connection to depend linearly on my, which is
a special case of case i). above, we should take a = 0. If we wish that the connection is
independent of ® as in case ii). we should take a = 2 because of the identity (4.9) so that
H, = fLW where fLW only depends on m®. For the general case i). i.e. general dependence
on m® and <i), we can take any o. For case i). with a linear dependence on m, we denote
', by I, which is given by

_ X P _ _
Ir, = -0, + 5hﬂ (Ophve + Ovhyo — Oshy) - (5.3)

This form of T, has been used in [19, 21, 24, 30, 48]. The form of T}, corresponds to
taking in (3.6) the following choices for K, and Ly, namely

K., = 0,my, — 0,my,

Lopy = me (Ou1y — 0y7y) — My (00Te — 0Ty) — My, (OuTo — 05Ty -

— 12 —



For case ii). we denote I‘,pw by fﬁy which reads
. 1 . . .
0%, = — "0, + 5h* (Ouhvio + Oubyis = Ol ) - (5.6)
The two connections f,pw and ffw differ by a tensor as follows from
ffw = f‘ﬁy + ®hPT, (OuTo — 0p7y) + éh"’”Tu (OyTs — O5Ty) — Tlﬂyhpa@g(f . (5.7)

In this work it will prove most convenient to use the connection (5.6) as this eases com-
parison with HL gravity. We stress though that in principle one can take any of the above
choices, i.e. any value for «, and that the final form of the effective action for HL gravity
will take the same form regardless which I';,,, one chooses as all dependence on « drops out
when forming the scalar terms appearing in the action.'®

The reader familiar with the literature on NC geometry without torsion might wonder
which of these connections relates to the one of NC geometry (as written for example in [22]
and references therein). The usual NC connection is obtained by taking (5.3) with K, as
given in (5.5) and Ly, = 0 which follows from (5.5) and the fact that for NC geometry we
have 9,7, — 0,7, = 0. The possibility of modifying these connections by terms proportional
to a was never considered before probably because this breaks manifest local N invariance
of the NC connection which depends on m,, only via its curl.

In the presence of torsion the fact that Ly, is given by (5.5) tells us that we have
no manifest N invariance of the connection. Further, for no value of a can we find such
an invariance. This can be formally solved by adding a new field to the formalism, a
Stiickelberg scalar x, that cancels the non-invariance. This will be discussed in the next
section. One can also take the point of view as in [30] that we should just accept the fact
that f‘ﬁl, is not NN invariant as a mere fact and organize couplings to these geometries and
fields living on it in such a way that the action is N invariant. This is certainly a viable
point of view and agrees with our approach in all these cases where the dependence on x
can be removed from the theory by field redefinition or simply because it drops out when
one tries to make its appearance explicit.

If one includes x there is the benefit that one can also deal with theories that do not
have a local U(1) symmetry (because there is an explicit dependence on x so that the
U(1) invariance disappears in the Stiickelberg coupling between m, and x). This is what
allows us to use fixed TNC background geometries for both Lifshitz field theories (explicit
dependence on x) as well as Schrodinger field theories (no dependence on y) as discussed
in [23, 24]. The x field also allows us, as we will see in section 10, to construct two types
of HL actions: those that have a local U(1) symmetry without any dependence on x and
those that have no local U(1) because m,, always appears as M, = m, — J,x.

10This statement can be made more precise in the following way. The Horava-Lifshitz actions of section 9
such as (9.18) take exactly the same form when written in terms of f‘ﬁl, as when expressed in terms of f‘ﬁ,,.
To show this one needs to use the fact that in section 9 it is assumed that 7, is hypersurface orthogonal
which is something that we do not yet impose at this stage. This is because the difference between covariant
derivatives using either one or the other connection involves terms proportional to 7, and since the scalars
in the action are formed by using inverse spatial metrics h*” those terms drop out. The same comments
apply when using the general « of (5.1), i.e. there is no dependence on a.
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From now on we will work with (5.6) and simply denote it by I', unless specifically
stated otherwise. With this realization of Ffw the other connections Quab and 9, are fixed
by the vielbein postulates. For an invariant such as ¢ the covariant derivatives V, and
D,, are the same so we can write

V" =Dyo” = —eg Dym®, (5.8)
where we used (2.19) and (2.20) and where D,m® is given by
D,m® = 9,m" — Q,%ym’ —Q,*. (5.9)

In this section we focussed on making the affine connection G invariant (J invariance
is automatic). It so far is not N invariant. This will be fixed in the next section. We could
have made the connection N but not G invariant by taking K, as in (5.5) and Ly, = 0.
However in this case we are not achieving anything as the connection without K, is also
N invariant and so imposing N invariance does not constrain I‘Zl,. Furthermore since in
the transformation of m,, the G boost parameter \* appears without a derivative, whereas
the N transformation parameter o appears with a derivative, it is more natural to use m,,
to make various tensors GG invariant.

Using the invariants 7, h*", 0¥, iz,w we can build a non-degenerate symmetric rank
2 tensor with Lorentzian signature g, that in the case of a relativistic theory we would
refer to as a Lorentzian metric. The metric g,,, and its inverse gt are given by

Juv = —TuTy + il;w ) (5.10)
g = —oHtoY + Y (5.11)
for which we have
G =1, (5.12)
guueg = éuq - (513)

However the natural Galilean metric structures are 7, and h*”. For example, as we will
see in section 9, g, does not transform homogeneously under local scale transformations
and so it is not on the same footing as the Riemannian metric in GR.

6 Torsion and the Stiickelberg scalar

In the case of gauging the Poincaré algebra (appendix A) the torsion is the part of '},
that is not fixed by the vielbein postulates. In the case of the Bargmann algebra we see on
the other hand that it is the torsion that is fixed, namely it is given by the antisymmetric
part of (5.1), which reads

2Fﬁw} -
It follows that the curvature (2.28) obeys

— 0P (Outy — OuTy) - (6.1)

Rp,ya(P) = ma (8#7',/ — 8VT/_L) s (62)
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while Ry, (H) = 0,7, — 0,7, is left arbitrary. Using that R,,*(P) transforms as
5By (P) = LeRyu(P) + ARy (H) + X Ry (P) (6.3)

we see that the right hand side of (6.2) transforms in exactly the same way as the left hand
side (ignoring the central extension N). The right hand side of (6.2) can be matched to
transform correctly under the NV transformation by adding the Stiickelberg scalar y, i.e. by
replacing m® by M® = et*(m, — 0,x). This explains why in the presence of torsion, i.e.
when 0,7, — 0,7, # 0, we need the scalar x. In section 10 we will see that there is a similar
field in HL gravity whose couplings are precisely obtained by replacing everywhere m,, by
M, = m, — d,x. From a purely geometrical point of view x is needed whenever we have
torsion, i.e. when the right hand side of (6.2) is nonzero to ensure correct transformations
under the N generator.

This does not automatically mean that any field theory coupled to such a background
has a nontrivial y dependence. There are important cases where the x field can be removed
by a field redefinition or it simply drops out of the action once one tries to make its
appearance explicit. We refer to [23] for field theory examples of the first possibility of
removing x by field redefinition and to section 10 for a HL action that exhibits the second
property, namely that x drops out.

The x field also allows us to make the curvature R, (V) appearing in (4.3), which so
far played no role, visible. This goes via the following commutator

[Du ,Dylx = _2FﬁW]DpX - RW(N) ) (6.4)

where D,x = 0,x —m, and where R,,,(N) is given by
Ruw(N) = 0ymy, — 0ymy, — 2Q,%€,)q - (6.5)

We note that by covariance D, D, x involves the Galilean boost connection €2,%. Using the
general form of I'},, given in (3.6) as well as the vielbein postulate (2.16) to express 2,% in
terms of FZV we obtain

R,LLV(N) = 8Mm,, — 8,,mu — K;w + UULO[W,} . (66)
For the choice '}, = '}, (5.3), i.e. for K, and Ly, as in (5.5) and (5.5) we find
R(N) =1v"mg (Ou1y — 0uTy) - (6.7)

This curvature constraint is in agreement with the curvature constraint (6.2) because it
obeys the transformation rule for the curvatures under Galilean boosts which according
to (2.9) and (2.10) reads dg R, (N) = A R,q(P). Again in order that R, (N) remains
inert under N transformations in the presence of torsion we need to replace in fﬁ,, (more
precisely in Ly, as given in (5.5)) m, by M, = m, — 0,x. The field x is an essential part
of NC geometry with torsion.

The curvature constraints derived here by using the approach of section 2 agree
with [22] where the torsionless case was studied. The analysis of sections 2-6 can thus
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be viewed as adding torsion to the gauging of the Bargmann algebra (without adding di-
latations as in [21]). By employing the relation (5.7) between I'j, and f‘ﬁl, we can find
the curvature constraint for R, (V) that relates to this choice of affine connection. The
curvature constraint (6.2) is the same for all affine connections (5.1).

Following [17, 18] we distinguish three cases for the torsion (6.1):

1. No torsion: 9,7, — 0,7, = 0 which is called Newton-Cartan (NC) geometry.

2. Twistless torsion: 7,0, 7, = 0 which means that 7, is hypersurface orthogonal and is
called twistless torsional Newton-Cartan (TTNC) geometry because it is equivalent
to (6.8) which states that the twist tensor is zero.

3. No constraint on 7, which is a novel extension of Newton-Cartan (TNC) geometry.

TTNC geometry goes back to [16] but in that work a conformal rescaling was done to go
to a frame in which there is no torsion. The benefit of adding torsion to the formalism was
first considered in [17, 18] including the case with no constraint on 7,,.

We will see below that making NC and TTNC geometries dynamical corresponds to
projectable and non-projectable HL gravity. In this work we will always assume that we
are dealing with TTNC geometry which contains NC geometry as a special case.

For twistless torsional Newton-Cartan (TTNC) geometry we have by definition

WPRY? (D,75 — D57,) = 0. (6.8)

This implies that the geometry induced on the slices to which 7, is hypersurface orthogonal
is described by (torsion free) Riemannian geometry.

To make contact with the HL literature concerning non-projectable HL gravity it will
prove convenient to define a vector a, as follows

ay, = Ly, - (6.9)

In section 8 we will exhibit a coordinate parameterization of a, (see equations (8.15)
and (8.16)) that will appear more familiar in the context of HL gravity, where this becomes
the acceleration of the unit vector field orthogonal to equal time slices.

For TTNC we have the following useful identities

hH*PRY? (006 — Opap) = KPR (Vipas — Vea,) =0, (6.10)
OuTy — OuTy = auTy — yTy, . (6.11)

The first of these two identities tells us that the twist tensor (the left hand side) vanishes
which is why we refer to the geometry as twistless torsional NC geometry. The last identity
tells us that a, describes the TTNC torsion. We will thus refer to it as the torsion vector.

7 Curvatures

We start by giving some basic properties of the Riemann tensor (2.31) with connection (5.6).
Using that
I, = e e, (7.1)
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where e = det (TN , eZ), we obtain

Ry, =0. (7.2)
Note that because of torsion we have
I0, = e 0 — 07 (0,70 — Outp) - (7.3)

From the definition of the Riemann tensor and our choice of connection we can derive the
identity

3R[M,,a]p = (V,0°) (076 — 057) + (Vo0P) (Ou1y — Ou7y)
+ (V,0°) (057 — OuTs) - (7.4)

The trace of this equation gives us the antisymmetric part of the Ricci tensor R, = ;"
The covariant derivative of 0* is essentially the extrinsic curvature. Using the connec-
tion (5.6) we find the identity

Vo = —efDym® = —h*" K5 , (7.5)
where the extrinsic curvature is defined as
1 .
K;w = _iﬁf)hm/ . (76)
For TTNC geometries the antisymmetric part of the Ricci tensor is given by
2R )" = (Vp0°) (a7 — ay7y) + 07 (1, Vpa, — 7,.V0a,) , (7.7)

using (6.11) and (7.4). We can also derive a TTNC Bianchi identity that reads

3VRw" = 217

[“U}RAPOK + 21",0 R]/po—ﬁ + 2F[py)\]Rupo—I{ . (7.8)

(A
Contracting A and s and the remaining indices with 0#h"? leads to the identity
1
0=e'0, (e0"h"" Ryxo™) — §e—1au (eD"h”7 Rye™) + WPV K o Ry
1
— §h””KW,hp"Rpm” ) (7.9)

where we used (7.3) and (7.5). Since we will mostly work in 2+1 dimensions we focus on
what happens in that case. Using (2.32) we find

1
e 10, (e " Ry pp™) + 58*1@ (et"R) =0, (7.10)
where we used that in 2 spatial dimensions

1
Rapea(J) = 3 (0ac0bd — daddbe) R - (7.11)
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8 Coordinate (ADM) parametrizations

Even though we treat the NC fields 7, and fzw, as independent we can parametrize them
in such a way that g, in (5.10) is written in an ADM decomposition. Writing

ds® = g datdz” = —N?dt* + ~;; (da' + N'dt) (dz’ + N7dt), (8.1)
leads to
hit = vi; N'NT + 72 — N2 (8.2)
hy; = Yij N? + 77, (8.3)
fnj = Yij + TiTj . (8-4)

For the inverse metric (5.11) the ADM decomposition reads

gtt = _N72 ) (85)
gti — NiN—Q
g9 =~Y - N'NIN72, (8.7)
From this we conclude that
Rt = —N72 4+ ptot (8.8)
hti — NiN72 + 'f)tﬁl 7
h =% — N'NIN“2 4 4% . (8.10)

The choice (6.8) implies that 7, is hypersurface orthogonal, i.e.
Ty = YO,T . (8.11)
If we fix our choice of coordinates such that 7 = ¢ we obtain
7 =0. (8.12)

Using that 7,h*" = 0 and (8.12) we obtain At = h¥" = 0 as well as hy = ;N7 and
fzij = 7;;. Further using that h“prl,p = 0b 491, we find h"Y = +%. This in turn tells us that
0" = N*N~! so that h'* = A% = 0 leads to o' = —N~!. Since 0#7, = —1 we also obtain
7w = 1 = N so that ﬁtt = %jNiNj. Since ht* = At = 0 we also have o' = vt = —N~!
which in turn tells us that hy; = hy = 0, so that we find

N
mi = —Yij o - (8.13)

Furthermore we have h;; = ~;; and v = 0. For the time component of m,, we obtain
1 inJ 3
my = _ﬁ%jN N/ 4+ N®, (8.14)
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where we used (4.11) or alternatively (4.9) and (4.6). In general » = N = N(¢,x) so that
we are dealing with non-projectable HL gravity. Projectable HL gravity corresponds to
N = N(t) which is precisely what we get when we impose 0,7, — 0,7, = 0.

In these coordinates the torsion vector (6.9) reduces to

a; = N'a;, (8.15)
a;=N"'9;N, (8.16)

which contains no time derivatives. The determinant e in this parametrization is given by
N,/y where 7 is the determinant of 7;; so that using (7.3) we find T’ Zi = 0;log /7 making
an object such as V,(h*X,) a vy-covariant spatial divergence.

The number of components in g, in d 4 1 space-time dimensions is (d 4 1)(d + 2)/2
whereas the total number of components in 7, and hy,, is (d+1)(d+2)/2+d+1— 1 where
the extra d+1 originate from 7, and the —1 comes from the fact that ﬁu,, = 5abéﬁé2 so that
it has zero determinant. If we furthermore use the fact that 7, is hypersurface orthogonal,
i.e. 7, = 10,7, we can remove another d—1 components ending up with (d+1)(d+2)/2+1
which is one component more than we have in g,,,. If we next restrict to coordinate systems
for which 7 = t we obtain the same number of components in the ADM decomposition as
we have for our TTNC geometry without ®. Later we will see what the scalars ® and the
Stiickelberg scalar x (mentioned below (4.7)) correspond to in the context of HL gravity.

This counting exercise also shows that in general for arbitrary 7, TNC gravity is much
more general than HL gravity. We leave the study of this more general case for future
research. Here we restrict to a hypersurface orthogonal 7,,.

We thus see that the field 7, describes many properties that we are familiar with from
the HL literature. For example the TTNC form of 7, in (8.11) agrees with the Khronon
field of [32]. More precisely the Khronon field ¢ of [32] corresponds to what we call 7
and what is called u,, in [32] corresponds to what we call 7,. Further the torsion field a;
that we defined via (6.9) and that has the parametrization (8.16) agrees with the same
field appearing in [32] where it is referred to as the acceleration vector. We will now show
that the generic action describing dynamical TTNC geometries agrees on the nose with
the most general HL actions appearing in the literature.

9 Horava-Lifshitz actions

We will consider the dynamics of geometries described by 7, €]

section we will add ® and X) by ensuring manifest G and J invariance and by construct-

and m® (in the next

ing in a systematic manner (essentially a derivative expansion) an action for these fields.
Since we demand manifest G and J invariance the generic theory will be described by the
independent fields 7, and iLW and derivatives thereof.

For simplicity we will work with twistless torsion and in 2 spatial dimensions with
1 < z < 2. Tt is straightforward to consider higher dimensions. We will do this in section 12
where we treat the conformal case. A convenient way to organize the terms in the action
is according to their dilatation weight. The dilatation weights of the invariants are given
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G, J invariant Ty ﬁuy okt | R e d X

dilatation weight | —z | =2 | z | 2 | —(24+2) | 2(z—1) | 2 —2

Table 1. Dilatation weights of the GG, J invariants.

in table 1 where e is the determinant of the matrix (T#,eZ). The assignment of these
dilatation weights to the TNC fields is consistent with the fact that adding dilatations
to the Bargmann algebra leads to the Schrodinger algebra for general z [19, 21]. These
assignments agree with [2]. If we choose the foliation as in the previous section with 7; = 0
and assign the length dimensions z and 1 to the coordinates t and z’, respectively, we
obtain that [r] = [N] = L% [N'] = L'7* and v;; = L°. Note that in table 1 we do not
assign any dilatation weights to the coordinates. In the last two columns we have added the
scalars ® and y that will not be used in this section but that will appear in the following
sections. Even though the fields transform in representations of the Schrédinger algebra
this does not mean that this a local symmetry of the action. This case will be studied in
section 12 leading to conformal HL actions.

There are three ways of building derivative terms, namely by i). employing the torsion
tensor (6.1), ii). taking covariant derivatives of 7, and iLW as well as covariant derivatives
of the torsion tensor and iii). by building scalars out of the G, J (and later N) invariants
and the curvature tensor R,,,,”. Option one amounts to using the combination 0,7, — 0,7,
which because of our choice (6.8) means that the only relevant component is the one
obtained by contracting 9,7, — 9,7, with o# which equals the Lie derivative of 7,, along v*.
In other words we can employ the vector a, defined in (6.9). Option two reduces to just the
covariant derivative of iLW and a,, because of what was just said about the torsion tensor
and the fact that V7, = 0. If we contract Vpiz,“, with A A5 we obtain zero because of
the fact that Vph)‘“ = 0. This means that the only relevant part of Vpillw is obtained by
contracting it with one o# (two would give zero). Since we have @“Vpﬁ,w = —ﬁWVp@“ we
can reduce option 2 to taking covariant derivatives of v# and h*a, (note that v*a, = 0).
Because of the identity (7.5) or what is the same

hupvu@p = *K,uuv (9'1)

the extrinsic curvature can be viewed as the covariant derivative of v#. Options 1 and 2
thus amount to taking the vectors h*”a, and v* as well as products thereof and to form
scalar invariants by acting on these tensors with covariant derivatives and/or (products of)
a,. We will now first classify these terms before discussing option 3.

We will classify all terms that are at most second order in time derivatives and that
have no dilatation weights higher than z + 2 (which is the negative of the dilatation weight
of e). In other words we only consider relevant and marginal couplings. The only terms
containing time derivatives are extrinsic curvature terms which as we observed are covariant
derivatives of ©#. In the previous section we observed that a, does not contain any time
derivatives, see equations (8.15) and (8.16). We start by writing down all products of v*
and h*”a, that have dilatation weight at most z + 2, taking into consideration that we
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restrict our attention to the range 1 < z < 2. The possibilities are

oM z
h*" a,, 2
ot 2z (9.2)
othPa, z+2
h#*?a,h?? a, 4,

where the dilatation weights are indicated in the second column. Terms with weight 4 are
only relevant for the case z = 2. We now hit these terms with V, and a, in all possible
ways to form scalars. This does not change the dilatation weights because both V,, and
a,, have weight zero. Keeping in mind that v*a, = 0 the first two terms in (9.2) give rise
to the following scalars

i z
Vu(h*a,) 2 (9.3)
ha,a, 2.
Using (7.3) we have the identity
VXt =e 10, (eX") —a,X". (9.4)

It follows that the first term in (9.3) is a total derivative and the second equals minus the
third up to a total derivative. Nevertheless these quantities will be useful as they can be
multiplied with a Ricci-type curvature scalar as we will see later. We now focus on the last
three terms in (9.2). There are two free indices so we can contract them with auay, a,Vy
and V,V,. Using two a,’s only leads to one possibility which is

(W™ a,a,)® 4. (9.5)

Contracting the term ¢#9” with a,V, gives always zero because we have a,0"V, 0" = 0
and a, (V,0") 9" = 0 where the last identity follows from (7.5). Doing the same with the
term 0"h"?a, in the list (9.2) we obtain the following three allowed scalars

h*?Pa,a,V 0" z+2
h*Pa,a,V, 0" z+2 (9.6)
a, 0"V, (h"?a,) z42.

However, because of the identity

1 1
a, 0"V, (h"Pa,) = iﬁ“vu (h"Paya,) = —ihl’pa,,apvﬂf}” + tot.der. (9.7)

the last of these three terms brings nothing new. Finally the last term in the list (9.2)
when contracted with one a, and one V,, provides two more scalars, namely

h**a,a,V, (W77 aq) 4

9.8
h**a,a,V,, (W7 aq) 4. (98)
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The second term however brings nothing new because of the identity
Hp vo _ 1 pv 21 up vo
h*fa,a,V,, (K7 aqs) = D) (W aya,)” — ih a,a,Vy, ("7 aq) + tot.der. . (9.9)

Finally we can contract the last three terms in (9.2) with two Vs leading to the following
set of scalars
V01V, 07 2z
V, -V 07 2z
Vo1V, (hPay,) z+2
V,0*V (hl’pap) z+2
Vi (W0a,) V, (h0a;) 4
V. (h#*a,) V(R ag) 4.

(9.10)

There is one other set of scalar terms containing two covariant derivatives that follow by
acting with a,00 where OJ = h#7V ,V,, which is a dimension 2 operator, on the first two
terms appearing in the list (9.2). This leads to

a,o# 2+ 2z

9.11
a0 (" a,) 4. (9-11)

Both of these however give nothing new as can be shown by partial integration and upon
using the TTNC identity (6.10).

We are left with the possibility to add scalar curvature terms. To this end we first
introduce a Ricci-type scalar curvature R defined as

R = —h" Ry, (9.12)

which has dilatation weight 2. Using the scalars (9.3) we can thus build the following list

of scalar terms

R 2
RV, 0H z+2
R? 4 (9.13)

RV, (h¥a,) 4
R aya, 4.
The last term in (9.13) makes it possible to remove V,(h*?a,)V, (k" a,) from the list (9.10).
This is due to the identity

1
Vi (W*ap) Vo (W as) =V, (WPa,) V(W7 ag) — 5 (W aa,)*
3 1
— §h“pauapvl, (h"%aq) — 5Rh”"apag + tot.derv., (9.14)

where we used (2.30), (2.32), (7.3), (7.11) and partial integrations.

In d = 2 spatial dimensions there are no other curvature invariants other than R. The
reason is that all curvature invariants built out of the tensor R,,,” only involve the spatial
Riemann tensor Rw,ab(.] ). The tensor Ruped = €€l Ruved(J) has the same symmetry
properties as the Riemann tensor of a d-dimensional Riemannian geometry. Hence since
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here d = 2 the only component is the Ricci scalar R. Any other term involving the
curvature tensor contracted with o# or h*a, can be written as a combination of terms we
already classified using (2.30) and other identities.
We thus conclude that for d = 2 and 1 < z < 2 the scalar terms that can appear in
the action are
h*a,a, 2
R 2
V0tV 07 2z
V, 0rV 07 2z

h*?Pa,a,V 0" z+2
h*?Pa,a,V, 0" z+2
Vo'V, (WP Pay) z+2
V., o1V, (hPPay,) z+2 (9.15)
RV ot z+2
(h“”aua,,)2 4
h**a,a,V, (77 aq) 4
V. (h**a,) V(R agq) 4
R? 4
RV, (W ay,) 4
R a,a, 4.

Consequently, we arrive at the action

S= / de [eh a0, + R + ¢V, 0V,0" + ¢V, V0" + esh a0, 0"
+chPa,a, NV, 0" + ¢V, 0"V, (W Pa,) + gV, 01V, (W Pa,) + coRV ,0F
+0,2 [610 (hf“’a,uay)2 + cnh*fa,a,Vy, (h7aq) + 12V, (BPa,) V,, (7 agq)
+ R + RV, (Wa,) + cisRI ™ aya, | | (9.16)
The coeflicients ¢; and ¢o have mass dimension z and the coefficients ¢3 and ¢4 have mass

dimension 2 — z. All the others are dimensionless. The terms with coefficients ¢3 and ¢4
are the kinetic terms because

VUV + eV = O (WPR Ky K py = A (W K)) (9.17)

The terms with coefficients ¢y, co and c1g to ¢15 only involve spatial derivatives and belong
to the potential term V. They agree with the potential terms in [32, 36, 37, 39] taking into
consideration that we are in 2+1 dimensions. The terms with coefficients ¢5 to cg involve
mixed time and space derivatives and are in particular odd under time reversal. Hence in
order to not to break time reversal invariance we will set these coefficients equal to zero.
All other terms are time reversal and parity preserving. We thus obtain

S = / dre [C (h“’)h””KWKPU )\ (h“”KW)2> - v} , (9.18)
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where the potential V is given by
-V =2A+c1h"aya, + 2R+ 9.2 [610 (h’“’a#a,,)2 + cnh*fa,a,V, (K7 aq)
+ c19V, (h,upap) VM (hllgao') + 613R2 + 014'Rvu (h‘uya,,) + 015Rh‘“’auau , (9.19)

which also includes a cosmological constant A. The kinetic terms in (9.18) display the A
parameter of [1, 2]. The potential is exactly the same as the 3D version of the potential
given in [32, 36, 37, 39]. We will not impose that V obeys the detailed balance condition.
In the ADM parametrization of section 8 the extrinsic curvature terms in (9.17) are just

VR Ky — A (VI K)° (9.20)
where Kj;; is given by

1 1
Kij = 53 0 = £x715) = 50 (95 = VNG = VNG (9.21)
where N; = %ij and VZ('Y) is the covariant derivative that is metric compatible with

respect to ;.

10 Local Bargmann invariance of the HL action: local U(1)
vs. Stiickelberg coupling

The action (9.18) is by construction invariant under local Galilean transformations because
it depends only on the invariants 7, and iLW. So far we did not consider the possibility of
adding ®. The action (9.18) is not invariant under the central extension of the Galilean
algebra. We will now study what happens when we vary m,, in (9.18) as dm, = 9,0. We
have that the connection (5.6) transforms under the central element N of the Bargmann
algebra as

1
5NFZV = §hp)‘ ((apmy — ayTy) Oro + ax1, 0,0 + axT,0,0]
+ WP, [0 (070,0) + 2a00%0,0] . (10.1)

Using that Q,%, is given via (2.13) and (2.16) by

Q% = ej (Ouep —T%,€8) (10.2)
we obtain )
(5NQuab = iTﬂegeAa (al,a)\U — a)ﬁ,,a) . (10.3)
This implies that
SN Rapea(J) = 0. (10.4)

Further h*¥a, is gauge invariant. Using the above results it can be shown that the whole
potential V in (9.19) is gauge invariant. What is left is to transform the kinetic terms
under N. We have

O (Vy0V,0" = W, 0V,0") = =R G + 2 (W20, V0" = 70, V,0*) dro, (10.5)
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where we used (7.10). The first term can be cancelled by adding PR to the action using
that @ transforms as
NP = —"d,0 = N~* (0o — Ni@-cr) , (10.6)

where in the second equality we expressed the results in terms of the ADM parameterization
of section 8.
In [34] the following U(1) transformation was introduced

5aNZ' = Nal'()é . (10.7)
Together with two new fields A and v transforming as

6o A = 0o — N'0;a, (10.8)
OaV = —v, (10.9)

with v called the Newtonian prepotential [34]. We see that the o transformation is none
other than the Bargmann extension (the o transformation here) as follows from the iden-
tification of m; in (8.13). More precisely we have o = —o. We thus see that the A and v
fields can be identified with ® and x as follows: A = —N® and v = y. The term i dBreRP
is what in [34] is denoted by [d*z/yAR. If we work in the context of projectable HL
gravity for which a,, = 0 the action (9.18) with A = 1 can be made U(1) invariant by writing

S = / dve [C (W20 Ky Ky = (W7 K ) = 8R) = V] . (10.10)

However if we work with the non-projectable version or with A # 1 we still need to add
additional terms to make the theory U(1) invariant. To see this we use the Stiickelberg
scalar x that we already mentioned under (4.7) (see also [23]). Using the field x that
transforms as dy = o we can construct the following gauge invariant action (the invariance
is up to a total derivative) for A =1

S = /d?’xe [C (hHPRYT — WY RPT) (KWKPU — 20,0, XK po + 005XV 1,0y X
1 -
+2auap8,,xaax) —CPR — V] . (10.11)
The x dependent terms agree with the result of [36, 37] (eq. (3.8) of that paper).!! We

thus see that when there is torsion a, # 0 we need to introduce a Stiickelberg scalar x
to make the action U(1) invariant. While when there is no torsion we can use (10.10).

"'To ease comparison it is useful to note that in the notation of [36, 37] one has the identity
1 5ijk
gg [4(ViV;9) awViye +2 (Vae) ajyaVoe + 5ai (Vi) awVie] =

i 1
GIM (ViVjp)arVip + iajakViSDVZSO + tot.der. ,

where in the notation of [36, 37] the field ¢ is what we call x. We also note that the coefficients of these
terms are dimension independent.
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This nicely agrees with the comments made below (6.2). In [34] the x field is denoted
by v. This means that we have the following invariance dym, = 0,0 and dnyx = 0. As a
consequence we may simply replace everywhere m,, by M, = m, — 0, x. This is consistent
with the observations made in [35] (see in particular eq. (20) of said paper). Essentially
adding the x field to the action means that we have trivialized the U(1) symmetry by
Stiickelberging it or in other words we have removed the U(1) transformations all together
(see the next section).
Let us define K}, as (7.6) with m,, replaced by M,,. It can be shown that

1 1
h“ph”"Kl’fy — pHPpYo (Km —V,05x — §ap(%x — 2aU8px) , (10.12)

which is now by construction manifestly U(1) invariant. Similarly we can write a manifestly
U(1) invariant ® as

~ ~ 1
o =0 +0"0,x + Qh“”aﬂx&,x, (10.13)

obtained by replacing m,, by M, in ®. Instead of (10.11) we then write
vo v 2 =
S = / dBe [0 (Wh XK — (WVKX,) — <I>XR) - v} . (10.14)

It can be checked that this is up to total derivative terms the same as (10.11).
It is now straightforward to generalize this to arbitrary A and to add for example the
Q® coupling (with © being the cosmological constant) considered in [34] leading to

S = / dze [0 (h“"h”Kfnygi, A (WK, =By (R - 29)) - v] . (10.15)

If we isolate the part of the action that depends on x we find precisely the same answer as
in eq. (3.12) of [37] specialized to 2+1 dimensions.!? We note that for uniformity we have
chosen the coefficient of the ®, R term in (10.14) and (10.15) such that the action has a
U(1) symmetry in the absence of torsion, i.e. when the action is independent of x. In the
presence of y one can in fact allow for an arbitrary coefficient in front of the &DXR term.
As a final confirmation that TNC geometry is a natural framework for HL. gravity we
will show in section 12 that the conformal HL gravity theories can be obtained by adding
dilatations to the Bargmann algebra, i.e. by considering the Schrodinger algebra.

11 A constraint equation

What we have learned is that unless the y field drops out of the action, as in (10.10) for
the case of projectable HL gravity with A = 1, we no longer have a non-trivial local U(1)
invariance. This is because we can express everything in terms of M, which is inert under
the U(1). Essentially the fact that we had to introduce a Stiickelberg scalar tells us that
the U(1) was not there in the first place.

!2This simply means that we can take in the notation of [37] G* = 0.
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There are several statements in the literature expressing that one can remove a scalar
degree of freedom from the theory by employing the U(1) invariance, but since we have just
established that unless we are dealing with (10.10) there is no U(1) these statements are
not clear to us. What we will show is that there is a different mechanism that essentially
accomplishes the same effect, via a constraint equation obtained by varying (i’x in (10.15),
to the claims made in the literature.

Since (i)x is a field like any other we should, in order to be fully general, allow for
arbitrary couplings to (i)x that do not lead to terms of dimension higher than z + 2. Put
another way the most general HL action can be obtained by writing down the most general
action depending on 7, fLM,, and (i)x containing terms up to order (dilatation weight) z + 2.
The first thing to notice is that we typically cannot write down a kinetic term for &)X

N
because the dilatation weight of (@uaucpx) is 6z — 4 which is larger than z 4 2 whenever

z > 6/5. The same is true for K9#9,®, while a term like 9#9,®, or what is the same
upon partial integration K éx breaks time reversal invariance. Let us assume that we have
a z value larger than 6/5 so that we cannot write a kinetic term. This means that (i)x will
appear as a non-propagating scalar field.

Let us enumerate the possible allowed couplings to ‘i)x- Starting with the kinetic
terms we can have schematically CiDQK 2 where by K? we mean both ways of contracting
the product of two extrinsic curvatures. In order for this term to have a dimension less
than or equal to z + 2 we need that a < ( 1) It follows that for z > 4/3 we need o < 1.

Consider next a term of the form <I>ﬁ X where X is any term of dimension 2. The condition
that the weight does not exceed z + 2 gives us § < 3G=T) which means that if z > 4/3

we need 8 < 2. Finally we can have terms of the form ®) where v < (Qtz) so that for
z > 8/5 we need that v < 3. In particular it is allowed for all values of 1 < z < 2 to add a
term of the form éi

Since for z > 6/5 we are not allowed to add a kinetic term for (i)x we can integrate
it out. We demand that the resulting action after integrating out &)x is local. This puts
constraints on what «, 8 and 7 can be since they influence the solution for (i)x- We assume
here that «, 8 and v are non-negative integers. We will be interested in values of z close to
z = 2 so we assume that z > 8/5. In that case we have the following allowed non-negative
integer values: a =0, 8 =0,1 and v = 0,1,2. In other words we can add the following &’x
dependent terms

Dy (i + R+ sV, (W7 a,) + dihaga, + dsd, ). (11.1)

There are now two cases of interest: either ds # 0 or d5 = 0. When d5 # 0 we can solve
for (i)x and substitute the result back into the action. The resulting action will be of the
same form as (9.18) where all the terms originating from solving for ‘i’x and substituting
the result back into the action can be absorbed into the potential terms by renaming the
coefficients in V. The other possibility that ds = 0 leads to a rather different situation. In
that case the equation of motion of CT>X leads to the constraint equation

di + do'R + dgv# (hlw(ly) + d4h’“’aua,, =0. (11.2)
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The remaining equations of motion for 7, etc. will depend on (iDX because there is no local
symmetry (in particular no U(1)) that allows us to gauge fix this field to zero. Since there
is no kinetic term for (i)w and hence its value will not be determined dynamically, we fix
it by adding a coupling to an auxiliary field. Recall that for any value of z in the range
1 < z <2 it is allowed by the effective action approach to add a term proportional to i)i
Consider now the following action

S = / dze [éx indep. part+®, (dy + dsR + d3V,, (hﬂ”ay)+d4hﬂ”aua,,)+ﬂ>§} , (11.3)

where crucially now A is an auxiliary field, which has the property that its equation of
motion tells us that CfJX = 0 and further the equation of motion of ‘i)x will lead to the
constraint equation (11.2), which is a more general version of the constraint equation used
in [34] and related works. Since éx = 0 the (i)x dependent terms do not affect the remaining
equations of motion. This essentially accomplishes that (i)x is not present in the theory
and that we have the constraint equation (11.2). More generally we should think of CiDX as
a background field whose value can be set to be equal to some fixed function f. This is
accomplished by writing instead of (11.3) the following

S = /dgxe [(i)x indep. part + ((i)x — f) (di + doR + d3V,, (W ay) + dsh?" aya,)
. 2
2 (CDX - f) } . (11.4)

The A equation of motion enforces the background value (i’x = f, the equation of motion of
®, leads again to (11.2) while the remaining equations of motion involve terms depending
on f through the variation of terms linear in f.

12 Conformal HL gravity from the Schrodinger algebra

In this section we will work with an arbitrary number of spatial dimensions d. In order
to study conformal HL actions we add dilatations to the Bargmann algebra of section 4
and study the various conformal invariants that one can build. To this end we use the
connection A, that takes values in the Schrédinger algebra (where for z = 2 we leave out

for now the special conformal transformations that will be introduced later)'3

1
Ay = Hry + Pael + Gaw, " + §Jabwuab + Ny, + Db, , (12.1)

where the new connection b, is called the dilatation connection. The reason that we re-
named the connections in (12.1) as compared to (4.1) is because the dilatation generator D
is not central so that it modifies the transformations under local D transformations as com-
pared to how say Q,% and w,* would transform using (2.13), (2.16) and (5.1). The transfor-

13Compared to e.g. [19, 21] we have interchanged the field m,, appearing in front of N in the Bargmann
algebra and the field 7, appearing in front of N in the Schrodinger algebra, see also footnote 9.
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mation properties and curvatures of the various fields follow from the Schrodinger algebra:

[D,H]=—zH, [D,P,] =—P,,

[D,G,] = (2 —1)G,, [D,N]=(z2—-2)N,

[H,Ga] = Fa, [Pa s Go] = dapV (12.2)
[Jab s Pe] = 0acPy — dpePa, [Jab s Ge] = 6acGy — 6pcGla
[Jab s Jed] = dacIbd — adJoc — Obedad + ObdJac -

We perform the same steps as before (see (2.3) and onwards), namely we consider the
adjoint transformation of A, i.e.

SAu = 0\ + [A,, A, (12.3)

where we write (without loss of generality)

A=A+ 3%, (12.4)
with now 1
3= G\ + iJab)\“b + No+ DAp, (12.5)
and we define 0.4, as
SA, =6A, — & Fu = Le Ay + 0,5 + [A,, 5], (12.6)

where F,, is the curvature
Fu =0 A, — 0, A, + [A,, A
= HRy(H) + Pu(P) + Galtpn(C) & L TR (J) + N Ry (N)
+ DR, (D), (12.7)

where we put tildes on the curvatures to distinguish them from those given in sections 2
and 4. From this we obtain among others that the dilatation connection b, transforms as

by, = Leby + 0ulp . (12.8)

The following discussion closely follows section 4 of [21]. We will use this b, connection
to rewrite the covariant derivatives (2.12) and (2.13) in a manifestly dilatation covariant
manner.

As a note on our notation we remark that, now that we have learned that we should
work with M, = m, — J,x we take it for granted that we have replaced everywhere m,,
by M, and we from now on suppress x labels as in (10.12) and (10.13). The Schrédinger
algebra for general 2 tells us that the dilatation weights of the fields are as in table 1 while
my, and x (and thus M),) have dilatation weight z — 2. This also agrees with the weights
assigned to A and v in [34].

Coming back to the introduction of b,,, to make expressions dilatation covariant we take
fﬂ,, of equation (5.3) and replace ordinary derivatives by dilatation covariant ones leading
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to a new connection fﬁy that is invariant under the Gy, Jup, N and D transformations and
which is given by [21]

ffw = —0P (0, —zby,) Ty—i-%hpg ((0,—2by) hug+ (8, —2by) hpe — (05 — 2bg) hyw) . (12.9)

For the most part of this section we will work with T}, and its dilatation covariant gener-
alization fﬁy. The final scalars out of which we will build the HL action, i.e. for dynamical
TTNC geometries, are such that it does not matter whether we use f‘ﬁy or f‘ﬁ,, which are
related via (5.7).

With the help of b, and T, we can now rewrite the covariant derivatives (2.12)
and (2.13) as follows

Dyty = Oymy — I, 7p — 2by7 =0, (12.10)
Dueua = 8/Leua - ffwepa - UJ,uaTy - Wuabeyb — bueya =0. (12.11)

b

The w,* and w,*” connections are such that they can be written in terms of £2,* and Quab

together with b, dependent terms such that all the b, terms drop out on the right hand side

of (12.10) and (12.11) when expressing it in terms of the connections T'j,, €,* and Q,.
The field M,, = m,, — 0,,x can be expressed in terms of the Schrédinger connection 7,

as follows. According to (12.2) and (12.6) the Schrédinger connection 7, transforms as

oy, = Lety + 00 + XNeyq + (2 — 2) (oby — Apiy,) . (12.12)
The Stiickelberg scalar y transforms as
Sx=Lex+o+(2—2)Apy. (12.13)

A Schrédinger covariant derivative D, x is given by

Dux = 0ux —myu — (2 —2)bux - (12.14)
Defining M,, = —D,x = m,, — 9, x we see that M, transforms as
M, = LM, + e, Mo + (2 — 2)ApM,, (12.15)
and that
my, = my, + (2 —2)b,x . (12.16)

Hence the dilatation covariant derivative of M, reads
DyM, = 0, M, — I, M, — (2 — 2)b, M, — w, €yq - (12.17)

The torsion f‘ﬁw] has to be a GG, J, N and D invariant tensor. With our TTNC field

content the only option is to take it zero, i.e. f,’iy becomes torsionless [21]. This means
that different from the relativistic case the b, connection is not entirely independent, but

instead reads 1 1
by = —0° (0,7 — Oup) — 00y = —ay — 0Pb,T, (12.18)
z z
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Let X? be a tensor with dilatation weight w, i.e.
oIpXP =—-wApXP”. (12.19)
A dilatation covariant derivative is given by
V., XP 4+ wb, X*, (12.20)

where V, is covariant with respect to f{iu as given in (12.9). Let us compute the

commutator
(@M + wbu) <@V + wby> X — (= v)
= —Rux" X +w (9,b, — b)) X7, (12.21)
where ) i i o o
Ry’ = =00\ + 0,10, — T, T0\ +T0, Ty (12.22)

The introduction of the b, connection has led to a new component 9"b, as visible
in (12.18). We can introduce a special conformal transformation (denoted by K') that allows
us to remove this component. Hence we assign a new transformation rule to b, namely

Orby = AT, . (12.23)
Under special conformal transformations we have
kT, = Ak ((z = 2)0P 71y — 0my — 007, - (12.24)

In order that (6,1 + wbu> (@V + wby> X P transforms covariantly we define the K-covariant
derivative
(Do + wby) (Vo + b, ) X2 = (V0 + wby,) (Vi + wb, ) X7 (12.25)

—wfun, X’ — f, ((z — 2)0PT, T\ — 00Ty — 5§7‘,,) X ,
where f, is a connection for local K transformations that transforms as [21]
Sfu = [,gfu + 6MAK — ZADfu + ZAKbM . (12.26)

In order not to introduce yet another independent field f,, (recall that we are trying
to remove v#b,) we demand that f, is a completely dependent connection that transforms
as in (12.26). This is in part realized by setting the curvature of the dilatation connection
b, equal to zero, i.e. by imposing

R, (D) = 0,b, — 0yb, — furv + furu =0. (12.27)

This fixes all but the 9* f,, component of f,. This latter component will be fixed later by
equation (12.42). The notation is such that a tilde refers to a curvature of the § transfor-
mation (12.6) without the K transformation while a curvature with a check sign refers to
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a curvature that is covariant under the ¢ transformations with the K transformation. We

note that while for the Schrodinger algebra, i.e. with the § transformations (12.3) we can

only add special conformal transformations when z = 2 while for the (different) group of

transformations transforming under § we can define K transformations for any 2 [21].
Taking the commutator of (12.25) we find

(f)u + wbu) (6,, + wb,,) XP — (o v) = —Rup? X, (12.28)
where Rm,)\p is given by

Ruu)\p = Rw/)\p + (Z - 2)@;)7_)\ (fHTV B fl’Tﬂ) - 557-)\fﬂ + 5zT>\fV
- 5§ (f/ﬂ-u - fl/Tu) . (12‘29)

Under K transformations the curvature tensor R;w AP transforms as
(SKRMV)\'O = AK [—(Z — 2)7‘,\TVID“QAJP + (2’ — Q)T)\TM’DV’lA)p] . (12.30)

Besides this property, the tensor RWAP is by construction invariant under D, G, N and J
transformations.
Using the vielbein postulates (12.10) and (12.11) we can write

fZV = —v” (0,7, — 2bu7,) + €f)

(Guez — w, Ty — w, el — bueﬁ) . (12.31)

With this result we can derive

Rue” = =" Ryea(J) + €Ty Rye(G) (12.32)
where Ruycd(J ) and RWC(G) are given by

Ry (J) = 20w, " — 2w, “w,, (12.33)
R (G) = R (G) — 2 (en)® + (2 — 2)7,) M*)
= 20w, — Qw[uabwy]b —2(1 = 2)bpwy
—2f1, (e + (2 = 2)7,)M?) . (12.34)

We next present some basic properties of RWUF’ . The first is
Ry, =0, (12.35)

and the second is

Ripe)’ = 0. (12.36)
Equations (12.32) and (12.36) together give us the Bianchi identity

R[,uuab(‘])ep]b + R[;U/a(G>Tp] =0. (1237)

By contracting this with v*e”.ef, we find

Rei(G) + 'R0 (J) =0, (12.38)
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and by contracting (12.37) with e*pe”,e”. we obtain
Rbaac(J) - Rcaab(J) =0. (1239)

The two identities (12.36) and (12.35) imply that

R0 =0. (12.40)
We define R,, = Rypo.p .
Using the identity (12.38) we can derive

079" Ry = —0" (Rya®(G) + M°R,0%)
= —0" (Rua(G) + 2M Ry, (J)) — M (Rpu™(G) + M Ry, %(J)) . (12.41)

We now turn to the question what 9“9 R,,, should be equal to. Following [21] we will take
this to be equal to

. 1
070" Ry = o5(2 = 2) (W'D, M,)? (12.42)
because the right hand side has the exact same transformation properties under all local
symmetries as 070" Ry,. The combination of RW(D) = 0 together with (12.42) fixes f,
entirely in terms of 7, ez, m,, and x in such a way that it transforms as in (12.26).
Using that

BN DMy = R (K + 0 b3y ) (12.43)
where K, is the extrinsic curvature, we see that
1
d

is invariant under the K transformation because the term 9#b,, cancels out from the above

h*Ph*° D, M, D(,M,y — - (h*D,M,)* (12.44)

difference. Another scalar quantity of interest is
WY Ry, = —R™u(J), (12.45)

which is K invariant and has dilatation weight 2. With these ingredients we can build a
z = d conformally invariant Lagrangian

L=¢ [A <h“Ph””KWKpa — % (hWKW)2> + B (hWRW)d] . (12.46)

This is an example of a Lagrangian for non-projectable HL gravity that is conformally
invariant.

The quantity h‘“’RW can be expressed in terms of R and the torsion vector a, defined
in sections 6 and 7 as follows. Solving (12.11) for w,* and using the relation between I'f,,
and T, given in (5.3) which reads

00, =10, + 20°b,7, — h*7 (buhwo + buhye — bohyw) | (12.47)

we obtain (12.11), via
wp™ = Q" + €Pb,et — b, b (12.48)
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where we used that wu“b and Qﬂab are related, as follows from the vielbein postulates (2.13),
(2.16) and where we furthermore used that for TTNC Q,% = Q,% as follows from (5.7)
and the TTNC relation (6.10). In the relation Q,% = Quab the connection Q,% is found by
employing the vielbein postulate expressed in terms of '}, and likewise Q#“b is obtained by

using the vielbein postulate written in terms of I, Then using (12.33) and (12.48) we find
YR, = —R4(J) = —R +2(d — 1)V, (" a,) — (d —1)(d — 2)h*"a,a,,  (12.49)

where we used (12.18) and R“.4(J) = R which is merely a definition of R.
By fully employing the local Schrodinger algebra we arrive at the conformally invariant
z = d action [1, 34]

1
S = / dd+1xe[ <h“ph”"KWKpU - (h“”KW)2>

+B(R—2(d— 1)V, (h"a,)+ (d—1)(d - 2)h””aua,,)d] . (12.50)

For z = d the dilatation weight of ® is given by 2(d — 1) so that the terms

L
d—

—a® (R —2(d— 1)V, (W"a,) + (d — 1)(d — 2)h*" a,a,) + bd (12.51)

can be added to the action in a conformally invariant manner. Assuming b # 0 we can
integrate out ® which leads to the action (12.50) with a different constant B. The case
with b = 0 can be viewed as a constrained system as discussed in section 11. The inte-
grand of (12.50) has been obtained in Lifshitz holography and field theory using different
techniques and found to describe the Lifshitz scale anomaly [4, 18, 49-51] where A and
B play the role of two central charges. In [18] it was shown that for d = z = 2 the
integrand of (12.50) together with (12.51) for specific values of a and b arises from the
(Scherk-Schwarz) null reduction of the AdSs conformal anomaly of gravity coupled to an
axion.

13 Discussion

We have shown that the dynamics of TTNC geometries, for which there is a hypersurface
orthogonal foliation of constant time hypersurfaces, is precisely given by non-projectable
Hotava-Lifshitz gravity. The projectable case corresponds to dynamical NC geometries
without torsion. One can build a precise dictionary, between properties of TNC and HL
gravities, which we give below in table 2.

We conclude with some general comments about interesting future research directions.

TNC geometries have appeared so far as fixed background geometries for non-
relativistic field theories and hydrodynamics [23-26, 30, 52-54] as well as in holographic
setups based on Lifshitz bulk space-times [17-19, 21, 23]. In all these cases the TNC ge-
ometry is treated as non-dynamical. This is a valid perspective provided the backreaction
onto the geometry can be considered small, e.g. a small amount of energy or mass density
should not lead to pathological behavior of the geometry when allowing it to backreact.
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TNC gravity

HL gravity

twistless torsion: h*?h"? (0,1, — 0,7,) =0

non-projectable

no torsion: 9,7, — 9,7, =0

projectable

Ty = YO, T

scalar khronon ¢ in u, [32]

7 invariant under Galilean

tangent space group

foliation breaks local Lorentz

invariance

torsion vector a,

acceleration a,, [32]

TNC invariant: —7,7, + B/w

metric with Lorentz signature g,

7i =0 ADM decomposition
T lapse N
m; = —N"IN; ADM shift vector N;
ilij metric on constant ¢ slices 7;;

scalar @ in my; = —ﬁfyijNiNj + N®

N—1A [34]

Stiickelberg scalar x

Newtonian prepotential v [34]

Bargmann central extension acting

on my and x

local U(1) acting on A, N; and v

AUV
Vo

extrinsic curvature

two scalar invariants V,0#V, 9" and V,0*V 0"

allowed by local Galilean symmetries

the A parameter in the kinetic term

Effective action organized by

Schrodinger representations

Dimensions: [N] = L%, [v;;] = LY,
[Nz] _ Ll_Z, [A] — [,—2(z-1)

Local Schrodinger invariance

conformal HL actions (invariant

under anisotropic Weyl rescalings)

general torsion: no constraint on 7,

vector khronon [3]

Table 2. Dictionary between TNC and HL terminology.

This renders the question of the consistency of HL gravity in the limit of small fluctuations
around flat space-time of crucial importance for applications of TNC geometry to the realm
of non-relativistic physics.

In this light we wish to point out that (in the absence of a cosmological constant) the
ground state is not Minkowski space-time but flat NC space-time which has different sym-
metries than Minkowski space-time as worked out in detail in [23]. It would be interesting
to work out the properties of perturbations of TTNC gravity around flat NC space-time. In
particular we have shown that generically there is no local U(1) symmetry in the problem
but that rather one can either integrate out (i)x without modifying the effective action in
an essential way or in such a way that it imposes a non-trivial constraint on the spatial
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part of the geometry. It would also be interesting to study the theory from a Hamiltonian
perspective and derive the first and second class constraints and compare the resulting
counting of degrees of freedom with the linearized analysis.

Since it is well understood how to couple matter to TNC geometries the question of how
to couple matter to HL gravity can be readily addressed in this framework. For example it
would be interesting to find Bianchi identities for the TTNC curvature tensor (as studied
in section 7) in such a way that they are compatible with the on-shell diffeomorphism Ward
identity for the energy-momentum tensor as defined in [19, 23, 24]. We emphasize once
more that matter systems coupled to TNC geometries can have but do not necessarily
need to have a particle number symmetry [19, 23]. It would be important to study what
the fate of particle number symmetry is once we make the geometry dynamical. In the
matter sector particle number symmetry comes about as a gauge transformation acting
on M, in such a manner that the Stiickelberg scalar x can be removed from the matter
action [19, 23] making this formulation consistent with [30]. We have seen in section 10
that generically the x field cannot be removed from the actions describing the dynamics
of the TNC geometry. Hence, it seems that the dynamics of the geometry breaks particle
number symmetry except when we use the model (10.10) for projectable HL gravity with
A = 1 in which case the central extension of the Bargmann algebra is a true local U(1)
symmetry and the y field does not appear in the HL action.

Another interesting extension of this work is to consider the case of unconstrained
torsion, i.e. TNC gravity, in which case 7, is no longer restricted to be hypersurface or-
thogonal. In table 2 we refer to this as the vector khronon extension in the last row.
The main difference with TTNC geometry is that now the geometry orthogonal to 7, is
no longer torsion free Riemannian geometry but becomes torsionful. This extra torsion is
described by an object which we call the twist tensor (see e.g. [21]) denoted by T}, and
defined as )

Ty = 3 (5Z + 7,0°) (87 + 1,07) (0pTo — O5Tp) - (13.1)

Therefore apart from the fact that now the 7, appearing in the actions of sections 9-12 is no
longer of the form 10,7 but completely free, we can also add additional terms containing

see again [21] where it was denoted by

the twist tensor 7),,. Another such tensor is T{,),,, (

T(3)y) Which is defined as

Tiayw =

o (8 + 7,0°) (67 4+ 1,07) (Bpag — Dpay) . (13.2)

N | —

Hence we can add for example a term such as
Ty T h*PR (13.3)

which has weight 4 — 2z so that it is relevant for z > 1. In fact for z = 2 this term has
weight zero and so one can add an arbitrary function of the twist tensor squared. In the
IR however the two-derivative term dominates.

Another aspect that would be worthwhile examining using our results is whether one
could learn more about non-relativistic field theories at finite temperature using holography
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for HL. gravity [3-5, 49, 55, 56]. Independently of whether HL gravity is UV complete,
assuming it makes sense as a classical theory it may be a useful tool to compute properties
such as correlation functions of the (non-relativistic) boundary field theory. In particular,
this implies that there must exist bulk gravity duals to thermal states of the field theory,
i.e. classical solutions of HLL gravity that resemble black holes as we know them in general
relativity. In light of this it would be interesting to re-examine the status of black hole
solutions in HL gravity (see e.g. [57-59]). Moreover, it is expected that in a long-wave
length regime some version of the fluid/gravity correspondence should exist, enabling the
computation of for example transport coefficients in finite temperature non-relativistic field
theories on flat (or more generally curved) NC backgrounds.

TNC geometry also appears in the context of WCFTs [60] as the geometry to which
these SL(2) x U(1) invariant CFTs couple to. This was called warped geometry and cor-
responds to TNC geometry in 1 + 1 dimensions with z = oo (or z = 0 if one interchanges
the two coordinates). In that case there is no spatial curvature so the entire dynamics is
governed by torsion. It would be interesting to write down the map to the formulation
in [60] and furthermore explicitly write the HL actions for that case.

It would also be interesting to explore the relation of TNC gravity to Einstein-aether
theory. It was shown in [38] that any solution of Einstein-aether theory with hypersurface
orthogonal 7, is a solution of the IR limit of non-projectable HL gravity. It would thus
be natural to expect that any solution of Einstein-aether theory with unconstrained 7,
is a solution to the IR limit of TNC gravity. In view of the relation [61, 62] between
causal dynamical triangulations (CDT) and HL quantum gravity, both involving a global
time foliation, there may also be useful applications of TNC geometry in the context of
CDT [63]. Finally, since HL gravity is connected to the mathematics of Ricci flow (see
e.g. [64]), examining this from the TNC perspective presented in this paper could lead to
novel insights.
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A Gauging Poincaré

In this appendix we briefly discuss the gauging of the Poincaré algebra to show the power
of the method in a more familiar context. Consider the Poincaré algebra whose generators
are P, and M, satisfying the commutation relations

[Mab s Pc] = 77ach - 77bcPa 5 (Al)
[Mab s Mcd] = nachd - nadec - nbcMad + nbdMac . (A2)

We introduce the Lie algebra valued connection 4, given by
a 1 ab A
Ay = Paej, + §Mabwu . (A.3)

This connection transforms in the adjoint as

5 A = Buh + [ A, Al (A4)
where A is given by

1
A =P+ 5Mabaab. (A.5)

What we have done so far is to make the Poincaré transformations local. However
we would like to connect this to a set of transformations that replace local space-time
translations by diffeomorphisms. This can be achieved as follows. We define a new set
of local transformations that we denote by 6. The main step is to replace the parameters
in A corresponding to local space-time translations, i.e. (* by a space-time vector £ via
(% = &"ef,. This can achieved by the following way of writing A

A=E"A,+3, (A.6)
where
1 ab

with o = f“wu“b + A% Next we define 5.,4# as
SA, =6A, — & Fu = LeA, + 0,5 + [A,, 5], (A.8)
where the second equality is an identity and where F,, is the curvature

Fuw = 0, A, — 0 AL+ [Ay, Al

1
— PaRy,ya(P) + §MabRuyab(M) 5 (Ag)
in which we have
R, (P) = 20),e;, — 2w[ﬂabey]b, (A.10)
Ry (M) = 20p,w,)™ — 2w}, “w,)’c . (A.11)
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a
o

transforms as a vielbein while the connection w,*

Under the 6 transformations, the connection e? associated with the Lorentz momenta P,

b associated with the Lorentz boosts My,
become the spin connection coefficients.

In order to define a covariant derivative on the space-time we first introduce a covariant
derivative D, via

Dyey = Oues — Th,e0 — wusey, (A.12)

which transforms covariantly under the J transformations. The affine connection Ffw trans-
forms under the ¢ transformations as

SFZV = 8H8V§p + €UBUF;6V + FgV8H§U + Fﬁaal/éﬂ - FZuaUép ) (A'13)

so that it is inert under the local Lorentz (tangent space) transformations. We will now
relate the properties of the curvatures R, %(P) and R,,,*°(M) to those of I'},,. This goes
via the vielbein postulate which reads

Dyey = Oues — Th,e8 — wuse, = 0, (A.14)

relating I', to w““b. Taking the antisymmetric part of the vielbein postulate and moving

FP

] to the other side we obtain

_ b _9TP
RHVG(P) = 26[M63} — QW[MQ ey]b = 2F[,u1/]eg . (A15)
From this we conclude that the curvature R,,*(P) is the torsion tensor. To identify the
other curvature tensor R,,,%°(M) we compute the commutator of two covariant derivatives
V. (containing only the connection I';,) leading to

V)i Vil Xp = Ruwp” Xo — 217,V X, (A.16)

where R,,,,7 is the Riemann curvature tensor

Ryvo” = =00y + 0,10, —T0 T3, +T0,T), (A.17)

that is related to R, %(M) (as follows from the vielbein postulate) via
Ry’ = —epanRWab(M) ) (A.18)

so that R,,%(M) is the Riemann curvature 2-form. The vielbein postulate, because of
the fact that wu“b is antisymmetric in @ and b, also tells us that the metric g, = nabeZel;,
which is the unique Lorentz invariant tensor we can build out of the vielbeins, is covariantly
constant, i.e.

Vg = 0. (A.19)

As is well known this fixes completely the symmetric part of the connection making it equal
to the Levi-Civita connection plus torsion terms which are left unfixed. The common
choice in GR to work with torsion-free connections then implies that from the gauging
perspective one imposes the curvature constraint R,,*(P) = 0. This in turn makes wuab
a fully dependent connection expressible in terms of the vielbeins and their derivatives.

Without fixing the torsion e}, and wuab remain independent.

— 39 —



Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] P. Horava, Membranes at Quantum Criticality, JHEP 03 (2009) 020 [arXiv:0812.4287]
[INSPIRE].

[2] P. Hotava, Quantum Gravity at a Lifshitz Point, Phys. Rev. D 79 (2009) 084008
[arXiv:0901.3775] [iNSPIRE].

[3] S. Janiszewski and A. Karch, Non-relativistic holography from Hotava gravity,
JHEP 02 (2013) 123 [arXiv:1211.0005] [INSPIRE].

[4] T. Griffin, P. Horava and C.M. Melby-Thompson, Lifshitz Gravity for Lifshitz Holography,
Phys. Rev. Lett. 110 (2013) 081602 [arXiv:1211.4872] [INSPIRE].

[5] S. Janiszewski and A. Karch, String Theory Embeddings of Nonrelativistic Field Theories
and Their Holographic Hofava Gravity Duals, Phys. Rev. Lett. 110 (2013) 081601
[arXiv:1211.0010] [INSPIRE].

[6] D.T. Son, Toward an AdS/cold atoms correspondence: A geometric realization of the
Schrédinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] INSPIRE].

[7] K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs,
Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].

[8] S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points,
Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].

[9] M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].

[10] G. Dautcourt, On the Newtonian Limit of General Relativity, Acta Phys. Pol. B 21 (1990)
755.

[11] L.P. Eisenhart, Dynamical Trajectories and Geodesics, Ann. Math. 30 (1928) 591.

[12] A. Trautman, Sur la theorie newtonienne de la gravitation, Compt. Rend. Acad. Sci. Paris
247 (1963) 617.

[13] H.P. Kuenzle, Galilei and Lorentz structures on space-time - comparison of the corresponding
geometry and physics, Annales Poincaré Phys. Theor. 17 (1972) 337 [INSPIRE].

[14] C. Duval, G. Burdet, H.P. Kunzle and M. Perrin, Bargmann Structures and Newton-cartan
Theory, Phys. Rev. D 31 (1985) 1841 [InSPIRE].

[15] C. Duval, G.W. Gibbons and P. Horvathy, Celestial mechanics, conformal structures and
gravitational waves, Phys. Rev. D 43 (1991) 3907 [hep-th/0512188] [INSPIRE].

[16] B. Julia and H. Nicolai, Null Killing vector dimensional reduction and Galilean
geometrodynamics, Nucl. Phys. B 439 (1995) 291 [hep-th/9412002] [INSPIRE].

[17] M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Torsional Newton-Cartan
Geometry and Lifshitz Holography, Phys. Rev. D 89 (2014) 061901 [arXiv:1311.4794]
[INSPIRE].

— 40 —


http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1088/1126-6708/2009/03/020
http://arxiv.org/abs/0812.4287
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.4287
http://dx.doi.org/10.1103/PhysRevD.79.084008
http://arxiv.org/abs/0901.3775
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3775
http://dx.doi.org/10.1007/JHEP02(2013)123
http://arxiv.org/abs/1211.0005
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0005
http://dx.doi.org/10.1103/PhysRevLett.110.081602
http://arxiv.org/abs/1211.4872
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.4872
http://dx.doi.org/10.1103/PhysRevLett.110.081601
http://arxiv.org/abs/1211.0010
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0010
http://dx.doi.org/10.1103/PhysRevD.78.046003
http://arxiv.org/abs/0804.3972
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.3972
http://dx.doi.org/10.1103/PhysRevLett.101.061601
http://arxiv.org/abs/0804.4053
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.4053
http://dx.doi.org/10.1103/PhysRevD.78.106005
http://arxiv.org/abs/0808.1725
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.1725
http://arxiv.org/abs/0812.0530
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.0530
http://dx.doi.org/10.2307/1968307
http://inspirehep.net/search?p=find+J+AnnalesPoincarePhys.Theor.,17,337
http://dx.doi.org/10.1103/PhysRevD.31.1841
http://inspirehep.net/search?p=find+J+Phys.Rev.,D31,1841
http://dx.doi.org/10.1103/PhysRevD.43.3907
http://arxiv.org/abs/hep-th/0512188
http://inspirehep.net/search?p=find+EPRINT+hep-th/0512188
http://dx.doi.org/10.1016/0550-3213(94)00584-2
http://arxiv.org/abs/hep-th/9412002
http://inspirehep.net/search?p=find+EPRINT+hep-th/9412002
http://dx.doi.org/10.1103/PhysRevD.89.061901
http://arxiv.org/abs/1311.4794
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4794

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Boundary Stress-Energy Tensor
and Newton-Cartan Geometry in Lifshitz Holography, JHEP 01 (2014) 057
[arXiv:1311.6471] INSPIRE].

J. Hartong, E. Kiritsis and N.A. Obers, Lifshitz space-times for Schridinger holography,
Phys. Lett. B 746 (2015) 318 [arXiv:1409.1519] [INSPIRE].

J. Hartong, E. Kiritsis and N.A. Obers, Sources and Vevs in Lifshitz Holography, in
preparation.

E.A. Bergshoeff, J. Hartong and J. Rosseel, Torsional Newton-Cartan geometry and the
Schrodinger algebra, Class. Quant. Grav. 32 (2015) 135017 [arXiv:1409.5555] [INSPIRE].

R. Andringa, E. Bergshoeff, S. Panda and M. de Roo, Newtonian Gravity and the Bargmann
Algebra, Class. Quant. Grav. 28 (2011) 105011 [arXiv:1011.1145] inSPIRE].

J. Hartong, E. Kiritsis and N.A. Obers, Field Theory on Newton-Cartan Backgrounds and
Symmetries of the Lifshitz Vacuum, arXiv:1502.00228 [INSPIRE].

J. Hartong, E. Kiritsis and N.A. Obers, Schroedinger Invariance from Lifshitz Isometries in
Holography and Field Theory, arXiv:1409.1522 [INSPIRE].

D.T. Son, Newton-Cartan Geometry and the Quantum Hall Effect, arXiv:1306.0638
[INSPIRE].

M. Geracie, D.T. Son, C. Wu and S.-F. Wu, Spacetime Symmetries of the Quantum Hall
Effect, Phys. Rev. D 91 (2015) 045030 [arXiv:1407.1252] InSPIRE].

R. Banerjee, A. Mitra and P. Mukherjee, A new formulation of non-relativistic
diffeomorphism invariance, Phys. Lett. B 737 (2014) 369 [arXiv:1404.4491] InSPIRE].

R. Banerjee, A. Mitra and P. Mukherjee, Localization of the Galilean symmetry and
dynamical realization of Newton-Cartan geometry, Class. Quant. Grav. 32 (2015) 045010
[arXiv:1407.3617] [INSPIRE].

T. Brauner, S. Endlich, A. Monin and R. Penco, General coordinate invariance in quantum
many-body systems, Phys. Rev. D 90 (2014) 105016 [arXiv:1407.7730] INSPIRE].

K. Jensen, On the coupling of Galilean-invariant field theories to curved spacetime,
arXiv:1408.6855 [INSPIRE).

S.F. Ross, Holography for asymptotically locally Lifshitz spacetimes,
Class. Quant. Grav. 28 (2011) 215019 [arXiv:1107.4451] INSPIRE].

D. Blas, O. Pujolas and S. Sibiryakov, Models of non-relativistic quantum gravity: The Good,
the bad and the healthy, JHEP 04 (2011) 018 [arXiv:1007.3503| [INSPIRE].

C. Germani, A. Kehagias and K. Sfetsos, Relativistic Quantum Gravity at a Lifshitz Point,
JHEP 09 (2009) 060 [arXiv:0906.1201] INSPIRE].

P. Horava and C.M. Melby-Thompson, General Covariance in Quantum Gravity at a Lifshitz
Point, Phys. Rev. D 82 (2010) 064027 [arXiv:1007.2410] [INSPIRE].

A .M. da Silva, An Alternative Approach for General Covariant Hotava-Lifshitz Gravity and
Matter Coupling, Class. Quant. Grav. 28 (2011) 055011 [arXiv:1009.4885] [INSPIRE].

T. Zhu, Q. Wu, A. Wang and F.-W. Shu, U(1) symmetry and elimination of spin-0 gravitons
in Horava-Lifshitz gravity without the projectability condition,
Phys. Rev. D 84 (2011) 101502 [arXiv:1108.1237] [INSPIRE].

— 41 —


http://dx.doi.org/10.1007/JHEP01(2014)057
http://arxiv.org/abs/1311.6471
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.6471
http://dx.doi.org/10.1016/j.physletb.2015.05.010
http://arxiv.org/abs/1409.1519
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1519
http://dx.doi.org/10.1088/0264-9381/32/13/135017
http://arxiv.org/abs/1409.5555
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5555
http://dx.doi.org/10.1088/0264-9381/28/10/105011
http://arxiv.org/abs/1011.1145
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1145
http://arxiv.org/abs/1502.00228
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.00228
http://arxiv.org/abs/1409.1522
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1522
http://arxiv.org/abs/1306.0638
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0638
http://dx.doi.org/10.1103/PhysRevD.91.045030
http://arxiv.org/abs/1407.1252
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.1252
http://dx.doi.org/10.1016/j.physletb.2014.09.004
http://arxiv.org/abs/1404.4491
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4491
http://dx.doi.org/10.1088/0264-9381/32/4/045010
http://arxiv.org/abs/1407.3617
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3617
http://dx.doi.org/10.1103/PhysRevD.90.105016
http://arxiv.org/abs/1407.7730
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.7730
http://arxiv.org/abs/1408.6855
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6855
http://dx.doi.org/10.1088/0264-9381/28/21/215019
http://arxiv.org/abs/1107.4451
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.4451
http://dx.doi.org/10.1007/JHEP04(2011)018
http://arxiv.org/abs/1007.3503
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3503
http://dx.doi.org/10.1088/1126-6708/2009/09/060
http://arxiv.org/abs/0906.1201
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1201
http://dx.doi.org/10.1103/PhysRevD.82.064027
http://arxiv.org/abs/1007.2410
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2410
http://dx.doi.org/10.1088/0264-9381/28/5/055011
http://arxiv.org/abs/1009.4885
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.4885
http://dx.doi.org/10.1103/PhysRevD.84.101502
http://arxiv.org/abs/1108.1237
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.1237

[37]

[38]

T. Zhu, F.-W. Shu, Q. Wu and A. Wang, General covariant Horava-Lifshitz gravity without
projectability condition and its applications to cosmology, Phys. Rev. D 85 (2012) 044053
[arXiv:1110.5106] [INSPIRE].

T. Jacobson, Extended Horava gravity and Einstein-aether theory,
Phys. Rev. D 81 (2010) 101502 [Erratum ibid. D 82 (2010) 129901] [arXiv:1001.4823|
[INSPIRE].

D. Blas, O. Pujolas and S. Sibiryakov, Consistent Extension of Horava Gravity,
Phys. Rev. Lett. 104 (2010) 181302 [arXiv:0909.3525] [INSPIRE].

R.-G. Cai, B. Hu and H.-B. Zhang, Dynamical Scalar Degree of Freedom in Horava-Lifshitz
Gravity, Phys. Rev. D 80 (2009) 041501 [arXiv:0905.0255] INSPIRE].

C. Charmousis, G. Niz, A. Padilla and P.M. Saffin, Strong coupling in Horava gravity,
JHEP 08 (2009) 070 [arXiv:0905.2579] [INSPIRE].

M. Li and Y. Pang, A Trouble with Horava-Lifshitz Gravity, JHEP 08 (2009) 015
[arXiv:0905.2751] [INSPIRE].

T.P. Sotiriou, M. Visser and S. Weinfurtner, Quantum gravity without Lorentz invariance,
JHEP 10 (2009) 033 [arXiv:0905.2798] [INSPIRE].

D. Blas, O. Pujolas and S. Sibiryakov, On the Extra Mode and Inconsistency of Horava
Gravity, JHEP 10 (2009) 029 [arXiv:0906.3046] [INSPIRE].

C. Bogdanos and E.N. Saridakis, Perturbative instabilities in Hotava gravity,
Class. Quant. Grav. 27 (2010) 075005 [arXiv:0907.1636] INSPIRE].

K. Koyama and F. Arroja, Pathological behaviour of the scalar graviton in Horava-Lifshitz
gravity, JHEP 03 (2010) 061 [arXiv:0910.1998] [INSPIRE].

M. Henneaux, A. Kleinschmidt and G. Lucena Gémez, A dynamical inconsistency of Horava
gravity, Phys. Rev. D 81 (2010) 064002 [arXiv:0912.0399] [NSPIRE].

X. Bekaert and K. Morand, Connections and dynamical trajectories in generalised
Newton-Cartan gravity 1. An intrinsic view, arXiv:1412.8212 [INSPIRE].

T. Griffin, P. Hotava and C.M. Melby-Thompson, Conformal Lifshitz Gravity from
Holography, JHEP 05 (2012) 010 [arXiv:1112.5660] InSPIRE].

M. Baggio, J. de Boer and K. Holsheimer, Anomalous Breaking of Anisotropic Scaling
Symmetry in the Quantum Lifshitz Model, JHEP 07 (2012) 099 [arXiv:1112.6416]
[INSPIRE].

I. Arav, S. Chapman and Y. Oz, Lifshitz Scale Anomalies, JHEP 02 (2015) 078
[arXiv:1410.5831] [NSPIRE].

A. Gromov and A.G. Abanov, Thermal Hall Effect and Geometry with Torsion,
Phys. Rev. Lett. 114 (2015) 016802 [arXiv:1407.2908] [InSPIRE].

S. Moroz and C. Hoyos, Effective theory of two-dimensional chiral superfluids: gauge duality
and Newton-Cartan formulation, Phys. Rev. B 91 (2015) 064508 [arXiv:1408.5911]
[INSPIRE].

K. Jensen, Aspects of hot Galilean field theory, JHEP 04 (2015) 123 [arXiv:1411.7024]
[INSPIRE].

E. Kiritsis, Lorentz violation, Gravity, Dissipation and Holography, JHEP 01 (2013) 030
[arXiv:1207.2325] [INSPIRE].

— 492 —


http://dx.doi.org/10.1103/PhysRevD.85.044053
http://arxiv.org/abs/1110.5106
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.5106
http://dx.doi.org/10.1103/PhysRevD.82.129901
http://arxiv.org/abs/1001.4823
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.4823
http://dx.doi.org/10.1103/PhysRevLett.104.181302
http://arxiv.org/abs/0909.3525
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.3525
http://dx.doi.org/10.1103/PhysRevD.80.041501
http://arxiv.org/abs/0905.0255
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0255
http://dx.doi.org/10.1088/1126-6708/2009/08/070
http://arxiv.org/abs/0905.2579
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2579
http://dx.doi.org/10.1088/1126-6708/2009/08/015
http://arxiv.org/abs/0905.2751
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2751
http://dx.doi.org/10.1088/1126-6708/2009/10/033
http://arxiv.org/abs/0905.2798
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2798
http://dx.doi.org/10.1088/1126-6708/2009/10/029
http://arxiv.org/abs/0906.3046
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3046
http://dx.doi.org/10.1088/0264-9381/27/7/075005
http://arxiv.org/abs/0907.1636
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.1636
http://dx.doi.org/10.1007/JHEP03(2010)061
http://arxiv.org/abs/0910.1998
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.1998
http://dx.doi.org/10.1103/PhysRevD.81.064002
http://arxiv.org/abs/0912.0399
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.0399
http://arxiv.org/abs/1412.8212
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.8212
http://dx.doi.org/10.1007/JHEP05(2012)010
http://arxiv.org/abs/1112.5660
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5660
http://dx.doi.org/10.1007/JHEP07(2012)099
http://arxiv.org/abs/1112.6416
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6416
http://dx.doi.org/10.1007/JHEP02(2015)078
http://arxiv.org/abs/1410.5831
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.5831
http://dx.doi.org/10.1103/PhysRevLett.114.016802
http://arxiv.org/abs/1407.2908
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.2908
http://dx.doi.org/10.1103/PhysRevB.91.064508
http://arxiv.org/abs/1408.5911
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5911
http://dx.doi.org/10.1007/JHEP04(2015)123
http://arxiv.org/abs/1411.7024
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.7024
http://dx.doi.org/10.1007/JHEP01(2013)030
http://arxiv.org/abs/1207.2325
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.2325

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

C. Wu and S.-F. Wu, Horava-Lifshitz gravity and effective theory of the fractional quantum
Hall effect, JHEP 01 (2015) 120 [arXiv:1409.1178] [NSPIRE].

A. Kehagias and K. Sfetsos, The black hole and FRW geometries of non-relativistic gravity,
Phys. Lett. B 678 (2009) 123 [arXiv:0905.0477] [INSPIRE].

H. Li, J. Mei and C.N. Pope, Solutions to Hotava Gravity,
Phys. Rev. Lett. 103 (2009) 091301 [arXiv:0904.1595] [INnSPIRE].

E.B. Kiritsis and G. Kofinas, On Horava-Lifshitz ‘Black Holes’, JHEP 01 (2010) 122
[arXiv:0910.5487] [iNSPIRE].

D.M. Hofman and B. Rollier, Warped Conformal Field Theory as Lower Spin Gravity,
Nucl. Phys. B 897 (2015) 1 [arXiv:1411.0672] [INSPIRE].

J. Ambjorn, A. Gorlich, S. Jordan, J. Jurkiewicz and R. Loll, CDT meets Horava-Lifshitz
gravity, Phys. Lett. B 690 (2010) 413 [arXiv:1002.3298] [INSPIRE].

J. Ambjern, L. Glaser, Y. Sato and Y. Watabiki, 2d CDT is 2d Hotava-Lifshitz quantum
gravity, Phys. Lett. B 722 (2013) 172 [arXiv:1302.6359] [INSPIRE].

J. Ambjorn, A. Gorlich, J. Jurkiewicz and R. Loll, Nonperturbative Quantum Gravity,
Phys. Rept. 519 (2012) 127 [arXiv:1203.3591] InSPIRE].

I. Bakas, F. Bourliot, D. Liist and M. Petropoulos, Geometric Flows in Hotava-Lifshitz
Gravity, JHEP 04 (2010) 131 [arXiv:1002.0062] [INSPIRE].

— 43 —


http://dx.doi.org/10.1007/JHEP01(2015)120
http://arxiv.org/abs/1409.1178
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1178
http://dx.doi.org/10.1016/j.physletb.2009.06.019
http://arxiv.org/abs/0905.0477
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0477
http://dx.doi.org/10.1103/PhysRevLett.103.091301
http://arxiv.org/abs/0904.1595
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1595
http://dx.doi.org/10.1007/JHEP01(2010)122
http://arxiv.org/abs/0910.5487
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.5487
http://dx.doi.org/10.1016/j.nuclphysb.2015.05.011
http://arxiv.org/abs/1411.0672
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0672
http://dx.doi.org/10.1016/j.physletb.2010.05.054
http://arxiv.org/abs/1002.3298
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.3298
http://dx.doi.org/10.1016/j.physletb.2013.04.006
http://arxiv.org/abs/1302.6359
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.6359
http://dx.doi.org/10.1016/j.physrep.2012.03.007
http://arxiv.org/abs/1203.3591
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.3591
http://dx.doi.org/10.1007/JHEP04(2010)131
http://arxiv.org/abs/1002.0062
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0062

	Introduction
	Local Galilean transformations
	The affine connection: part 1  
	Local Bargmann transformations
	The affine connection: part 2
	Torsion and the Stückelberg scalar
	Curvatures
	Coordinate (ADM) parametrizations
	Horava-Lifshitz actions
	Local Bargmann invariance of the HL action: local U(1)  vs. Stückelberg coupling
	A constraint equation
	Conformal HL gravity from the Schrödinger algebra
	Discussion 
	Gauging Poincaré

