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Abstract We construct solutions, for small values of G and angular frequency �, of
special relativistic scalar gravity coupled to ideally elastic matter which have helical
but no stationary or axial symmetry. They correspond to a body without any sym-
metries in steady rotation around one of its axes of inertia, or two bodies moving on
a circle around their center of gravity. Our construction is rigorous, but modulo an
unproved conjecture on the differentiability of a certain functional.

Keywords Elasticity · Scalar gravity · Helical motion

1 Introduction

In Newton’s theory of gravity there are solutions describing two bodies which move
at constant angular velocity on a circle around their common center of gravity. The
existence of such solutions for fluid bodies was demonstrated by Lichtenstein [10]. In
Einstein’s theory we do not expect such solutions to exist, because such a system will
emit gravitational radiation, and so the two bodies will spiral towards each other.
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2032 R. Beig, B. G. Schmidt

However, in 1992, Detweiler and Blackburn [8] conjectured that such solutions
should exist also in general relativity, provided there is just the right amount of incom-
ing gravitational radiation to keep the bodies on their circle. Friedman, Price and
coworkers ([2,9] and references therein), followed this idea and analysed various
model systems mathematically and numerically. There are many conceptual and tech-
nical problems involved. From the Schild solution [11] of electromagnetism, which
describes two point charges moving on a circle, it becomes clear that such a system
has infinite energy because the required amount of incoming (and outgoing) radiation
is unbounded. So, in GR we expect that the ADM mass will be infinite. Consequently
the system will not by asymptotically flat in the sense of any of the known definitions,
which in turn makes it difficult to even define such a system. We want the spacetime
to admit a Killing vector which behaves like ∂t +�∂φ . The meaning of this, however,
is unclear if there is no asymptotic symmetry group. There are ways out, Friedman
proposes a definition in [12].

There is another subtlety: in Minkowski space the helical Killing vector ∂t +�∂φ is
timelike near the center and spacelike near infinity. Hence, the metric on the quotient
of the Killing vector changes signature. It is completely unclear, how to deal with the
Einstein equations in such a situation.

All numerical model systems treated so far do not treat the ‘bodies’ dynamically. In
this paper we consider a special relativistic theory in which the bodies are composed
of some elastic material and gravity is modeled by a scalar field. The main point of
the paper is to demonstrate that solutions do exist in which the incoming radiation
keeps the bodies on their circle. In special relativity there is no problem to define such
systems. We just want the solution to be invariant under the Killing vector ∂t + �∂φ .
The scalar gravitational field satisfies the wave equation in Minkowski space.

There is a case which is technically simpler than the 2-body system. This is a rig-
idly rotating ‘tri-axial body’. By this we mean that the body does not have to have any
symmetries. Again, in Newtons theory such solutions exist [5]. In GR, however, the
body should spin down because it radiates gravitational waves if it is not axisymmetric
with respect to the axis of the rotation.

The plan of the paper is as follows. In Sect. 2 we describe the theory we are using:
special relativistic elasticity formulated as a Lagrangian field theory [3] minimally cou-
pled to a version of scalar gravity. Section 3 discusses helical symmetry and derives
the equations for which we want to show existence. In Sect. 4 we consider a triaxial
body in helical motion and describe ‘its gravitational field’ according to scalar grav-
ity. We try to find a solution with the right amount of incoming radiation by taking as
gravitational field (1/2 of) the sum of the retarded and advanced solution of a given
source motion. With any other combination our method would break down. We want
to show existence using the implicit function theorem. Because the linearized operator
has a nontrivial range we first solve a ‘projected system’ first and only then the full
system.

In Sect. 5 we discuss in outline the helical 2-body problem for which existence
can be established by essentially the same method. We were not able to show that no
solution exists if we take just the retarded solution of the wave equation.

There is a gap in our existence proof, because we do not demonstrate that the ‘grav-
itational force’ depends differentiably on the configuration, in the function spaces we
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Helical solutions in scalar gravity 2033

are using for elasticity. We consider this as a technicality. If this point can be cleaned
up, we are confident that even for complicated non linear systems such as GR the
idea that incoming radiation can balance outgoing radiation works. Finally, we use
elastic bodies only because in this case we understand the boundary value problem.
A corresponding result should certainly also be true for fluids.

2 Scalar gravity coupled to elasticity

Consider a Lagrangian field theory on Minkowski space M space with metric ηµν =
diag(−1, 1, 1, 1) with dynamical variables given by a scalar field V (xµ) descibing
gravity and and the fields f A(xµ) describing elasticity in Special Relativity [3], which
are viewed as maps M → B with B, the so-called material space or body, being a
bounded domain in R

3 with smooth boundary ∂B. The action is

S = 1

2

∫
ηµνV,µV,ν

√−η d4x + 4πG
∫

ρF(V )
√−η d4x . (2.1)

We assume that B is endowed with an Euclidean metric δAB , where A, B = 1, 2, 3
and that the scalar ρ defining the elastic material depends only on the principal invari-
ants of the matrix H A

B = H ACδBC , where H AB = f A
,µ f B

,νη
µν . This means, in

standard language, that we consider isotropic materials.
The energy momentum tensor of the system is:

T tot
µν = V,µV,ν − 1

2
ηµνη

σλV,σ V,λ + 4πGTµν F, (2.2)

with Tµν the elasticity energy momentum tensor from [3].

Tµν = ρ uµuν − σµν, (2.3)

where uµ is the future-pointing vector field given by

f A
,µuµ = 0, ηµνuµuν = −1 (2.4)

The existence and uniqueness of uµ is a regularity condition on the fields f A we are
considering. The quantity σµν is given by

− σµν = n
∂ε

∂ H AB
f A

,µ f B
,ν , (2.5)

where

ρ = nε, (2.6)

and n is defined by

εABC f A
,µ(x) f B

,ν(x) f C
,λ(x) = n(x) εµνλσ uσ (x) (2.7)
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2034 R. Beig, B. G. Schmidt

The equation for V is

�V − 4πGρF ′ = 0. (2.8)

To obtain a linear equation we choose

F(V ) = 1 + V (2.9)

We have

∇ν T tot
µν = 0. (2.10)

The Eqs. (2.2, 2.10) imply

0 = ρV,µ + Tµ
νV,ν + (1 + V )(ρuµuν − σµ

ν),ν (2.11)

Or (hµ
ν = δµ

ν + uµuν)

0 = [
ρ hµ

ν − σµ
ν
]

V,ν + (1 + V ) (ρuµuν − σµ
ν),ν (2.12)

Note that in the calculation of σµ
ν
,ν in terms of the f A the first term in ρ does

not contribute. Furthermore, both the ‘force term’ (involving Vν) in (2.12) and the
remaining term is orthogonal to uν (for the latter this is e.g. shown in [3]).

We have a PDE system for V, f A. This has a Newtonian limit which is treated in
Sect. 5 of [5].

3 Helical motion

We assume that the material flow is parallel to the helical Killing vector ∂t +�∂φ , i.e.
that

f A
,µ(∂t + �∂φ)µ = 0 (3.1)

and that V is invariant under ∂t + �∂φ , i.e.

Vµ(∂t + �∂φ)µ = 0 (3.2)

For concreteness we choose coordinates (τ, y), so that τ = 0 coincides with the hyper-
plane t = 0 with y Euclidean coordinates thereon and ∂t + �∂φ = ∂τ . Explicitly the
transformation is given by

x1 = y1 cos �τ − y2 sin �τ, x2 = y1 sin �τ + y2 cos �τ, x3 = y3, t = τ

(3.3)
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In these coordinates the configuration f A can be written as functions f̂ A of y, and
similarly for V . By slight abuse of notation we will omit the bar in what follows.
Now Eq. (3.1) implies that the quantities n, ρ and σµ

ν are all also invariant under
∂t + �∂φ and σµ

ν(∂t + �∂φ)µ = 0. Using the orthogonality pointed out at the end
of the previous section and the expression for the projection of σµ

ν
,ν on the quotient

calculated in the paper [5], we obtain

0 =
[
ρh j

i − σ j
i
]

Di V + (1 + V )
[
−e−U Di (e

U σ j
i ) + ρD jU

]
, (3.4)

where −e2U is the norm of the helical Killing vector given by

e2U = 1 − �2r2, r2 = (x1)2 + (x2)2, r2�2 < 1 (3.5)

hi j is the metric on the quotient of ∂t +�∂φ and Di the covariant derivative with respect
to hi j . Note that, for � = 0, hi j equals δi j . Note also that now H AB = f A

,i f B
, j hi j .

We rewrite (3.4) as

Di

[
(1 + V ) eU σ j

i
]

− ρ eU [
D j V + (1 + V ) D jU

] = 0 (3.6)

The second and third term in (3.6) is respectively the gravitational and centrifugal
force. We write (3.6) as

0 = Di

[
(1 + V ) eU σ j

i
]

+ W j + Z j , (3.7)

and

− W j = eU ρ D j V (3.8)

with

− Z j = eU ρ (1 + V ) D jU, (3.9)

and

D jU = �2
(

1 − �2r2
)− 1

2 1

2
D j r2 (3.10)

4 Triaxial rotating body

The first case we want to consider is a triaxial rotating body coupled to scalar gravity.
We repeat that ‘tri-axial’ means that the set B need not have any symmetries. Let us
denote the corresponding relaxed configuration by �̄. We take for the gravitational
field the symmetric (i.e. one half the sum of the retarded and advanced) solution of the
scalar wave equation. Note that this makes sense globally in Minkowski space. But we
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2036 R. Beig, B. G. Schmidt

will only make use of that solution inside the support of the body, where r2�2 < 1.
For a source ρ invariant under helical motion we have from the Appendix that

V (y) = G
∫

H(y, y′)ρ(y′)
√

−ξ2(y′) h(y′) dy′, (4.1)

where H(y, y′) is given by (6.12). Clearly this function is even in �. Expanding V in
� only even powers occur and we have

V = GṼ = V N + �2V 2 + · · · = G(Ṽ N + �2Ṽ 2 + · · · ) (4.2)

where V N is the Poisson integral of the source.

4.1 Solution of the projected system

The fundamental equation (with V still chosen half the sum of retarded and advanced
potential defined by ρ) is

0 = Di

[
(1 + V ) eU σ j

i
]

+ GW̃ j + �2 Z̃ j (4.3)

with

W j = GW̃ j (4.4)

and

Z j = �2W̃ j (4.5)

Equation (4.3) forms a quasilinear second-order system of partial differential equa-
tions for the functions f A, which has to be solved subject to the (Neumann-type)
boundary condition

σi
j n j | f −1(∂B) = 0 (4.6)

Due to the presence of a free boundary we will also need the material form of (4.3),
where the dependent variable f (y) is replaced by its inverse �(X) with X ∈ B. Then,
with W̄ j = n−1W̃ j (φ(X))) and Z̄ j = n−1 Z̃ j (φ(X))), there results

0 = Fj (�,�2, G) = ∇A

[(
1 + GV̄

)
eU σ A

j

]
+ GW̄ j + �2 Z̄ j (4.7)

where σ A
j is the ‘first Piola stress’ given by σ A

j = n−1 f A
iσ

i
j . The boundary

condition now takes the form

σ A
i n A|∂B = 0 (4.8)

We have two parameters in the problem, namely �2 and G.
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Now one has to define an appropriate space for �(X), which will be a neighbour-
hood of the identity map in a suitable Sobolev space, we refer for details to the paper
[1]. Let �̄ be a relaxed, i.e. stressfree configuration, which we take to be the identity
map. We also take B to be contained in the set [(X1)2 + (X2)2]�2 < 1, whence, for
deformations �(X) sufficiently close to the identity, the set �(B) is inside the light
cylinder [(y1)2 + (y2)2]�2 < 1.

We next require that the function ε(H AB) in (2.6) satisfies

ε(δAB) = ε̊ = const > 0,
∂ε

∂ H AB

∣∣∣∣
H AB=δAB

= 0 (4.9)

Then we have a solution Fj (�̄, 0, 0) = 0 of (4.7). Assume that furthermore

(
∂2ε

∂ H AB∂ HC D

) ∣∣∣∣
H E F =δE F

= λ δABδC D + 2µδC(AδB)D (4.10)

with the constants µ, λ obeying µ > 0, 3λ + 2µ > 0. The linearization of Fj at
(�̄, 0, 0) is the standard operator of flat-space linear elasticity on B, which has to
be considered together with the linearized form of the boundary condition (4.8). It is
well-known (see e.g. [1]) that this is an elliptic operator with finite dimensional kernel
and range. The latter is given by fields li (X), such that

∫
B ηA(X) δi

A li (X) d3 X = 0
for all Euclidean Killing vectors ηA on B. One can like in [1] define a projection P

onto the range of the linearized operator and study the projected system

0 = PFi (�,�2, G) = P

{
∇A

[(
1 + GV̄

)
e

U
c2 σ A

i

]
+ GW̄i + �2 Z̄i

}
(4.11)

Assuming differentiability of this nonlinear map we can apply the implicit function
theorem. Differentiability is standard for the Z̄i -term (see [5]). For the W̄i -term, which
contains the retarded + advanced scalar field, we have to leave this as a conjecture. The
corresponding result for the Newtonian gravitational field has been proved in [4].

The kernel of the linearized operator consists of Killing vectors of flat Euclidean
space. We restrict the deformations � to ones of the form

�i (X A, G,�2, ai , b jk) = δi
A X A + ai + bikδk A X A + �̃ (4.12)

where ai and bi j are constants with bi j = b[i j] and �̃ is in a complement of the kernel.
Thus we obtain a unique solution of the projected equations for each value of ai , bik

defining an infinitesimal motion. Hence we know �̃(X A, G,�2, ai , bik).
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2038 R. Beig, B. G. Schmidt

4.2 Equilibration

To obtain a solution of the full equations we will construct a family (ai (G,�2), b jk

(G,�2)) such that

�i (X A, G,�2, a j (G,�2), bkl(G,�2)) (4.13)

satisfies the equation and the boundary condition. We will determine this family by
solving (I − P)Fi = 0. This condition is equivalent to

0 = Ñ(α)(G,�2, C) =
∫

B
ξ i
(α)

{
∇A

[(
1 + GV̄

)
eU σ A

i

]
+ GW̄i + �2 Z̄i

}
d3 X

(4.14)

for all Killing vectors ξ i
(α) with α = 1, . . . , 6 of the flat metric on the body, C =

(ai , b jk) and �i (X A, G,�2, C) is inserted in the integrand. Note that ξ i
(α) = a′i +

b′i
j y j has to be composed with�, so the rotational terms depend on�i(X A, G,�2, C).

To have only one parameter we assume ω2 = κG with κ a positive constant and, with
this in mind, define the “normalized force map” as

N(α)(G, C) = G−1
∫

B
ξ i
(α)

{
∇A

[(
1 + GV̄

)
eU σ A

i

]
+ GW̄i + �2 Z̄i

}
d3 X

(4.15)

and replace (4.14) by

N(α)(G, C) = 0 (4.16)

This is well defined because both the forces and σ A
i have a factor G.

In analyzing the ’equilibration condition’ (4.16) we show, first of all, that (4.16)
is indeed satisfied for arbitrary G, when ξ(α) is ∂y3 or y2∂y1 − y1∂y2 or a constant
linear combination thereof. To prove this, it is simplest to look at the spatial version
of (4.16), namely (see (4.3))

G−1
∫

�(B)

ξ
j
(α)

{
Di

[
(1 + V ) eU σ j

i
]

+ GW̃ j + �2 Z̃ j

}√
h d3 y = 0 (4.17)

Now, the first term in (4.17) is zero: use integration by parts, the Killing equation for
each of these two vectors and the vanishing of the boundary term by virtue of (4.6).
For the third contribution already the integrand is zero, again by the symmetries of U .
Finally, the second term is zero: this amounts to the statement, proven in the Appendix,
that, for a body which rotates rigidly around the y3-axis, the y3-component of both
the force and torque due to its own gravitational field is zero, provided this field is
given by the symmetric solution of the wave Eq. (2.8).
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We thus only consider

N(α′)(G, C ′) = 0 (4.18)

where C ′ = (a1, a2, a3 = 0, b12 = 0, b13, b23) and ξ(α′) to be the collection

{ξ(1), ξ(2), ξ(13), ξ(23)} = {∂x1, ∂y2 , y3∂y1 − y1∂y3 , y3∂y2 − y2∂y3}. (4.19)

Suppose N(α′)(0, 0) = 0 and
∂ N(α′)
∂C ′ (0, 0) is invertible. Then, by the (finite-dimen-

sional) implicit function theorem, for sufficiently small G there exists a function
C ′(G) such that N(α′)(G, C ′(G)) = 0, and we have a solution of our problem.

Calculating N (0, 0) is the same as ∂ Ñ
∂G . The first term in the integrand gives ∂Aδσ A

i
which is equilibrated as was discussed in Eq. (4.2) of [1]. So we have only to consider
the force terms.

N(α′)(G, C ′) =
∫

B
ξ i
(α′)

(
W̄i + κ Z̄i

)
d3 X. (4.20)

We obtain

N(α′)(0, C ′) = −
∫

B

[
ξ1
(α′)(�)�1 + ξ2

(α′)(�)�2
]

d3 X +
∫

B
ξ i
(α′)(�)W̄ N

i (�) d3 X

(4.21)

where � = δi
A X A + ai + bikδk A X A with a3 = b12 = 0. The W̄ N

i -term is simply the
Newtonian gravitational self-force (resp. self-torque), and so its contribution to the
integral vanishes (see e.g. example (i) in the Appendix). We are thus left with

N(α′)(0, C ′) = −
∫

B

[
ξ1
(α′)(�)�1 + ξ2

(α′)(�)�2
]

d3 X, (4.22)

where

N(1)(0, C ′) = −
∫

B

(
X1 + a1 + b13 X3

)
d3 X (4.23)

N(2)(0, C ′) = −
∫

B

(
X2 + a2 + b23 X3

)
d3 X (4.24)

N(13)(0, C ′) = −
∫

B
X3

(
X1 + a1 + b13 X3

)
d3 X (4.25)

N(23)(0, C ′) = −
∫

B
X3

(
X2 + a2 + b23 X3

)
d3 X (4.26)
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2040 R. Beig, B. G. Schmidt

From here we infer that N(α′)(0, 0) is zero iff (i) the rotation axis in the reference estate
goes through the center of mass and (ii) coincides with one of the axes of inertia. In
fact, we assume that the center of mass is at the origin, rather than just (i). With these

assumptions minus the matrix
∂ N(α′)
∂C ′ (0, 0) is given by

⎛
⎜⎜⎝

V 0 0 0
0 V 0 0
0 0 W 0
0 0 0 W

⎞
⎟⎟⎠

where

V =
∫

B
d3 X W =

∫

B
(X3)2d3 X (4.27)

So
∂ N(α′)
∂C ′ (0, 0) is invertible, and our argument is complete.

5 Two bodies in circular motion

In this section we consider two identical bodies in circular motion around their com-
mon center. To simplify matters we assume that the support of the matter in the relaxed
configuration consists of two spherical balls with centers at (−L , 0, 0) and (L , 0, 0)

on the quotient metric. We have as discrete symmetry the reflections (y1, y2, y3) →
(y1,−y2, y3) and (y1, y2, y3) → (y1, y2,−y3). For an isotropic stored energy func-
tions we know that the solution will also have this symmetry. Therefore we consider
only configurations with the property

�1(X1, X2, X3) = �1(X1,−X2, X3) = �1(X1, X2,−X3)

�1(X1, X2, X3) = −�1(X1,−X2, X3) = �1(X1, X2,−X3) (5.1)

�1(X1, X2, X3) = �1(X1,−X2, X3) = −�1(X1, X2,−X3)

One is now able to show the following:

1. For such configurations the gravitational field “ad+ret” inherits this symmetry.
So does the centrifugal force.

2. For an isotropic stored energy also the stress tensor and its divergence inherit this
symmetry because it is an isometry of the quotient metric.

3. All these properties imply that all equilibration integrals, with the exception of
that for the y1—translation Killing vector, are satisfied for any configuration with
these symmetries.

4. If we assume further that y1 → −y1, which exchanges the two bodies, is a
symmetry we have only to consider the elastic equations for one body.

5. As usual, we first solve the projected equations with a parameter a1, the translation
in the y1-direction, and have then to study the bifurcation equation N (G, a1) = 0.
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Helical solutions in scalar gravity 2041

It turns out that N (0, a1) = 0 is the same as in the Newtonian problem which we
solved in [6]. We find a reference configuration with N (0, 0) = 0 and ∂ N

∂a (0, 0) =
0 and have thus solved the 2-body problem.
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Appendix

In this Appendix we prove a result which contains as a special case the statement that
the gravitational contribution to the equilibration integrals (4.15) vanishes, when the
Killing vector is taken to be ∂x3 or ∂φ = −x2∂x1 + x1∂x2 .

Let ρ(t, x) be a source and

V (t, x) =
∫

G(t − t ′; x − x ′) ρ(t ′, x ′) dt ′ d3x ′ (6.1)

be the field, where G is ‘some unique’ Green function (in fact: distribution) of �� = ρ.
By ’some unique Green function’ we mean a Green function sharing the symmetry of
the background (i.e. Minkowski space in our case), such as the retarded or advanced
Green function. We assume that ρ has compact support in space.

Let us next suppose that the source ρ is invariant under the flow of some timelike
Killing vector ξµ∂µ. Using coordinates comoving with ξ , i.e. (τ ; y) so that ξµ∂µ = ∂τ ,
Eq. (1) takes the form

V (τ, y) =
∫

H(y, y′)ρ(y′)
√

−ξ2(y′) h(y′) d3 y′, (6.2)

where H(y, y′) = ∫
G(τ − τ ′; y, y′)dτ ′, ξ2 = gµνξ

µξν and h is the determinant
of the metric on the quotient of ξµ (the square root in (2) is

√−g in the comoving
system). Clearly V is actually independent of τ .

Let now η be a spacelike Killing field commuting with ξ , i.e. projecting to η =
ηi (y)∂i on the quotient. Consider the expression Fη given by

Fη =
∫

ρ(y) [ηi∂i H(y, y′)] ρ(y′)
√

−ξ2(y) h(y)

√
−ξ2(y′) h(y′) d3 y d3 y′ (6.3)

This is up to sign the equilibration integral
∫

f −1(B)
ηi Wi

√
h d3 y. Since the (unique)

Green function shares the symmetry of the background there has to hold (operate on
both arguments with the symmetry and linearize)

[ηi (y)∂i + ηi ′(y′)∂i ′ ] H(y, y′) = 0 (6.4)
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2042 R. Beig, B. G. Schmidt

(Note this relation holds irrespective of whether we take the retarded, advanced or any
other combination.) Furthermore ηi∂i is a Killing vector in the quotient space, so that
in particular

∂i (
√

h ηi ) = 0 (6.5)

Also there holds

ηi∂i ξ2 = 0 (6.6)

We use (6.4, 6.5, 6.6) and integration by parts in y′ to obtain (the two minus-signs
arising in the process cancel)

Fη =
∫

ρ(y) H(y, y′) [ηi ′(y′)∂i ′ ρ(y′)]
√

−ξ2(y) h(y)

√
−ξ2(y′) h(y′) d3 y d3 y′

(6.7)

But we can also perform partial integration in the y-variable to find that

Fη = −
∫

[ηi (y)∂i ρ(y)] H(y, y′) ρ(y′)
√

−ξ2(y) h(y)

√
−ξ2(y′) h(y′) d3 y d3 y′

(6.8)

We now assume that the Green function is the symmetric one, so that G is invariant
under the joint interchange of (τ, τ ′) and (y, y′). It follows that H(y, y′) = H(y′, y).
Whence, by (6.3, 6.8), we find that Fη is zero. We illustrate the previous result by two
examples:

(i) Static symmetry: Here ξ is given by ξµ∂µ = ∂t , and the, say retarded, Green
function in adapted coordinates takes the well-known form (τ = t , y = x):

4πGret(τ − τ ′; y, y′) = δ(τ − τ ′ − |y − y′|)
|y − y′| (6.9)

Furthermore

4π H(y, y′) = 1

|y − y′| (6.10)

i.e. H(y, y′) is the Poisson kernel (this result is of course independent on which
combination of the retarded and advanced Green function has been chosen). The
quotient metric h is the Euclidean one and spacetime Killing vectors projecting
to the quotient in this case are simply all Euclidean ones in y-space. We have
thus recovered the well-known Newtonian result, that the force and torque on a
static body due to its own gravitational field are zero.

(ii) Helical symmetry (see [7]): Here ξ is given by ξµ∂µ = ∂t +�∂φ , and the retarded
Green function takes the form (τ = t , µ = φ − �t , z = x3)
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4πGret(τ − τ ′; y, y′)

=
δ
(
τ − τ ′ − √

r2 + r ′2 − 2rr ′ cos[µ − µ′ + �(τ − τ ′)] + (z − z′)2
)

√
r2 + r ′2 − 2rr ′ cos[µ − µ′ + �(τ − τ ′)] + (z − z′)2

(6.11)

whence (assuming r2�2 < 1)

4π H(y, y′) = 1

2

(
1

σ+(µ − µ′, r, r ′, z − z′)
− 1

σ−(µ − µ′, r, r ′, z − z′)

)
,

(6.12)

with σ±(µ, r, r ′, z) being implicitly given by

σ± = ±
√

r2 + r ′2 − 2rr ′ cos(µ + �σ±) + z2 (6.13)

(If we had not chosen the symmetric Green function the quantity corresponding
to H(y, y′) would have been different, in particular not symmetric.) The quotient
metric h is given by

hi j dxi dx j = dr2 + r2

1 − �2r2 dµ2 + dz2 (6.14)

and spacetime Killing vectors projecting to the quotient are given by ∂x3 = ∂z

and ∂φ = ∂µ. Applying the main statement of this Appendix to these two Killing
vectors yields the result concerning the second term in Eq. (4.17).
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