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Abstract X-ray microtomography is routinely used to image the three-dimensional pore
space of sedimentary rocks. Flow and transport properties can then be simulated directly in
such images. Advective transport in porous media is frequently simulated using streamlines.
We present a novel streamline tracing algorithm based on a substantial development of
the most widely used method (the Pollock algorithm) employed for macroscale (Darcy)
flow, making it consistent with solutions of the Navier-Stokes equation with no flow at
solid boundaries. We use this new algorithm to calculate breakthrough curves and time-
of-flight distributions for advection-dominated transport in two three-dimensional images
of sedimentary rocks containing up to 109 voxels: a sandstone and a carbonate. We show
that our approach provides a more accurate description of flow, particularly when only a few
image voxels span each pore. Therefore, it is better suited to capture anomalous (non-Fickian)
transport behaviour than the standard Pollock method.

Keywords Streamline tracing · Solute transport · Pore-scale simulation · Non-Fickian
transport

1 Introduction

The study of flow and transport phenomena in sedimentary rocks is important in a range of
scientific and engineering applications, such as water management, contaminant transport
(Sahimi 2011), oil & gas recovery (Lake 1996) and geological carbon storage (Szulczewski
et al. 2012; Popova et al. 2012). With the advent of X-ray microtomography, high-resolution
images of the pore space of sedimentary rocks (a few microns voxel size) have been made
available. These three-dimensional images can be used tomodel flow and transport properties
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(Blunt et al. 2013), as well as electric and elastic properties (Saenger 2008; Arns et al.
2002) in a wide range of rocks, from relatively homogeneous sandstones to heterogeneous
carbonates (Bijeljic et al. 2011). The availability of high-resolution tomographic images of
rock cores makes it possible to study in detail flow and transport phenomena at the pore
scale. Moreover, it creates an impetus for the development and adaptation of traditional fluid
simulation techniques.

The Lagrangian approach provides a convenient framework to study transport phenomena
in porous media. Unlike Eulerian methods, Lagrangian methods do not suffer from numeri-
cal dispersion and, for advection-dominated problems, deliver a far superior computational
performance (e.g. Batycky et al. 1997; Datta-Gupta and King 2007). Streamline tracing is
a Lagrangian method where solute particles are followed along streamlines traced in the
simulation domain. In a steady flow field, streamlines are the solutions of:

d x
dτ

= V(x) (1)

where V(x) is the velocity field previously calculated on a computational grid and τ is the
time of flight (tof ), the time that a particle following the streamline needs to travel a given
distance. The solution of the Navier–Stokes equations is a necessary input for all streamline
tracing algorithms at the pore scale. At the field scale the prerequisite is the solution of the
pressure equation with the assumption of a Darcy regime between adjacent grid cells, from
which the velocity field is then recovered.

The Pollock algorithm (Pollock 1988) is widely used to trace streamlines in field-scale
models, where the average flow is described by Darcy’s law, in both hydrocarbon reservoirs
(Batycky et al. 1997; Datta-Gupta and King 2007) and aquifers (Donato et al. 2003, Obi and
Blunt 2004). It calculates the velocities through a linear interpolation of the (staggered) grid
velocities in each coordinate direction independently. In doing so, Eq. (1) has an analytical
solution for each grid element, and these solutions are then connected to trace the streamlines
for the whole domain. While originally developed for rectangular grids, Pollock’s algorithm
was later adapted for unstructured grids (Prevost et al. 2002; Matringe et al. 2006).

However, despite its broad range of applications, the Pollock method cannot be immedi-
ately applied at the pore scale. It does not obey the more strict no-slip boundary conditions
necessary when simulating fluid flow and transport on segmented micro-computed tomog-
raphy (micro-CT) images consisting of void and solid voxels. Pore-space images inevitably
have to make a trade-off between resolution (having many image voxels to describe each
pore) and the overall size of the system, to capture the connectivity and heterogeneity of the
sample. As a result, generally only a few voxels span the smallest pores in the image. As
we show later in Sect. 4, the application of the Pollock algorithm, with the wrong boundary
condition at the solid interface, leads to significant errors, particularly when the distance
between solid boundaries is a small number of voxels.

In this paper we propose an extension of the Pollock method where both the normal and
tangential components of the interpolated velocity field are zero at the pore-solid walls, thus
respecting the no-flow boundary condition. Our main result is a semi-analytical streamline
tracing algorithm capable of simulating transport properties directly in three-dimensional
pore-space images. Mostaghimi et al. (2012) attempted to solve the same problem, but for
transport simulations only calculated the velocity at a point in the pore space and then took a
small time step with this fixed velocity. Here we trace streamlines semi-analytically, allowing
the very rapid and accurate prediction of advection-dominated transport.

The paper is organized as follows:we startwith a brief description of thePollock algorithm;
then we proceed explaining why and how it has to be adapted for use at the pore scale and
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present our methodology. We explore the differences between the original method and our
improved version for flow between parallel plates, whose analytical solution is known. Next
we exemplify the application of the new transport method using the geometry and velocity
fields of two micro-CT images of rock samples: a carbonate and a sandstone. We show how
the results of time-of-flight distributions and breakthrough curves (BTCs, concentration of
solute particles versus time) calculated with our method differ qualitatively from the ones
obtained using the standard Pollock algorithm. In particular, the BTCs have the long tails
and power law like behaviour characteristic of non-Fickian transport (Haggerty et al. 2000).
We conclude by highlighting the most important steps of the method and explaining how to
incorporate diffusion.

2 Flow Simulation and Streamline Tracing in Micro-CT Images

2.1 Flow Model

Incompressible flow in a porous medium is described by the Navier–Stokes equation:

ρ

(
∂V
∂t

+ V.∇V
)

= −∇P + μ∇2V (2)

subject to the incompressibility condition ∇.V = 0, where μ is the fluid viscosity, ρ the
fluid density, V the velocity, and P the pressure. Throughout our simulations we make
μ = 0.001 Pas and ρ = 1000 kg/m3, the values for water. Finite-difference (volume) and
lattice-Boltzmann are the most commonmethods to solve for incompressible flow at the pore
scale (Manwart et al. 2002).We use the finite-volumemethod implemented in OpenFoam (an
open source library http://www.openfoam.org) and described in Raeini et al. (2012), Bijeljic
et al. (2013) to solve the Navier–Stokes equation with constant pressure boundary conditions
at inlet and outlet. No flow on the pore–solid boundaries is imposed. The resulting velocity
field is used as input to the streamline tracing algorithms.

2.2 Streamline Tracing—Pollock’s Algorithm

A streamline is a line whose tangential vector is instantaneously parallel to the velocity field
at every point of the flow domain. Pollock’s algorithm (Pollock 1988) is a semi-analytical
approach that calculates the voxel time of flight (the amount of time a tracer particle takes
to cross the voxel) as well as particle entry and exit positions assuming that the velocity in
any point inside a grid cell is a linear interpolation of the face velocities. This method was
developed for large-scale flows governed by Darcy’s law. Here we are studying a different
problem: pore-scale dynamics described by the Navier–Stokes equation. Hence, we will
need to adapt and extend the methodology to account for the different boundary conditions
encountered.

The computational domain is a cubic lattice where voxels assume binary values, represent-
ing a pore or a solid. The velocity field is represented in a staggered grid so that its components
are located at each face of the voxel and denoted by u1 and u2 (faces perpendicular to the
x-direction), v1 and v2 (perpendicular to the y-direction) and w1 and w2 (perpendicular to
the z-direction), see Fig. 1. The velocity field at a point with coordinates (x, y, z) inside a
grid block can be obtained through a linear interpolation of the face velocities:

Vx (x, y, z) = u1 + Δu

Δx
(x − x1) (3a)
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Fig. 1 Voxel representing a void
voxel and its velocity
components. In the staggered grid
the velocities are assigned to the
faces of the voxels

Vy(x, y, z) = v1 + Δv

Δy
(y − y1) (3b)

Vz(x, y, z) = w1 + Δw

Δz
(z − z1) (3c)

where x1, y1 and z1 are the coordinates of the corner voxel marked in Fig. 1, and Δx , Δy
and Δz are the linear dimensions of the grid block while Δu = u2 − u1, Δv = v2 − v1 and
Δw = w2 − w1. For a particle with initial position (xp, yp, z p) and using the interpolated
velocity, it is possible to calculate the time required to leave the voxel through either one of
its faces:

τx = Δx

Δu
ln

[
u2Δx

u1Δx + Δu(xp − x1)

]
(4a)

τy = Δy

Δv
ln

[
v2Δy

v1Δy + Δv(yp − y1)

]
(4b)

τz = Δz

Δw
ln

[
w2Δz

w1Δz + Δw(z p − z1)

]
(4c)

and the particle will leave through the face with the smallest travel time:

τe = min(τx , τy, τz) (5)

The exit coordinates are obtained inverting Eq. 4:

xe = x1 − u1Δx

Δu
+

[
u1Δx

Δu
+ (xp − x1)

]
exp

(
Δuτe

Δx

)
(6a)

ye = y1 − v1Δy

Δv
+

[
v1Δy

Δv
+ (yp − y1)

]
exp

(
Δvτe

Δy

)
(6b)

ze = z1 − w1Δz

Δw
+

[
w1Δz

Δw
+ (z p − z1)

]
exp

(
Δwτe

Δz

)
(6c)

Streamlines are then traced concatenating a series of line segments crossing the voxels inside
the pore space: the point where a segment leaves a voxel is the entrance point for the next
one.
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Table 1 Percentage of the total pore space and to the total flux across the samples (Bentheimer and Ketton)
of the voxels with different numbers of solid neighbours

No. of solid boundaries Bentheimer Ketton

% of pore space % of the total flux % of pore space % of the total flux

0 82.5 97.3 90.1 99.06

1 7.5 1.74 4.2 0.61

2 5.2 0.7 3.1 0.23

3 3.9 0.242 2.5 0.09

4 0.8 0.018 0.055 0.01

5 0.1 – 0.005 –

3 Semi-analytical Streamline Tracing in Pore-scale Images

Pore-scale images segregate pores and solids; each voxel is either one or the other, while
in field-scale models the grid cells are assigned a porosity (fraction of void space) and a
permeability. The assumption that velocities can be calculated via linear interpolations inside
the voxels does not apply to pore-scale models. These velocities do not obey the strict no-flow
condition at the solid walls, meaning that their tangential component is not zero. To address
this problem we modify the original Pollock algorithm postulating analytical expressions for
the velocities where both the normal and tangential components are zero at the pore-solid
walls. These new velocities are then integrated to obtain the particle trajectories, and the
streamlines are traced in the usual way: adding streamline increments through each voxel.
A complication is that now the pore-space geometry is the crucial factor, requiring that each
pore geometry must be treated separately. In a cubic lattice, there are sixty-three possible
configurations for a voxel with solid boundaries—six for one solid, fifteen for two solids,
twenty for three solids and fifteen for four solids, plus the degenerate cases (the velocity is
everywhere zero) with five solid boundaries and the case of an isolated pore (six boundaries).
Each of the non-degenerate geometries will have a particular choice of velocity that has to
be integrated and solved for the exit times and positions, just like in the original Pollock
method.

There are fifty-six cases of potential interest plus the case without any solid boundary—
treated with the standard Pollock algorithm. We note that the number of cases of interest
can be reduced by analysing the velocity field of the rock under study. In the images of real
rocks that we study (see examples in Sect. 5), the voxels with three and four solid boundaries
contribute with less than 5% of the pore space and 0.3% of the flux, having negligible impact
on the total flow across the sample, see Table 1. Although we derived the full semi-analytical
expressions for the time of flight and exit coordinates for these blocks, in the results presented
later we use the standard Pollock method in these cases for simplicity.

Our approach is an extension of the Pollockmethod, where the components of the velocity
vector vary linearly with coordinate direction between average values at each voxel face. We
adapt this to allow the components of the velocity to vary linearly or quadratically with each
direction, subject to the following three constraints. Firstly, the velocity field everywhere is
divergence free (incompressible flow). Secondly, the no-flow boundary conditions at the solid
are strictly obeyed. Thirdly, the average velocity normal to a face is the same as computed
from the numerical solution of the Navier–Stokes equations. This ensures conservation of
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Fig. 2 Pore voxel limited by a solid voxel in lattice position (i + 1, j, k)

volume. In principle there is also a pressure field within each grid block that is consistent
with this velocity and the Navier–Stokes equations. However, as this pressure is not used in
the simulations we do not need to compute it. These constraints are sufficient to define the
velocity field uniquely for every arrangement of solid boundaries. The time of flight can then
be computed analytically from the known velocity field.

To demonstrate our method we show the derivation of the analytical expressions for the
case of voxels with one solid neighbour. The velocities, transit times and exit points for the
cases with two, three and four solid boundaries are shown in the appendices.

3.1 One Solid Boundary

Given a pore voxel in lattice location (i, j, k), there are six possible positions for the neigh-
bouring solid: (i +1, j, k), (i −1, j, k), (i, j +1, k), (i, j −1, k), (i, j, k+1) or (i, j, k−1).
We show the derivation of the casewhere the limiting solid voxel is in the position (i+1, j, k),
Fig. 2. The other five cases with one solid boundary can be derived in the same way.

As in the original Pollock method, the time of flight must be calculated in each direction
according to the velocity distribution inside the pore. It is necessary to define a velocity field
satisfying the no-slip boundary condition at the pore-solid wall and the conservation of flux.

Assuming that the tangential component y varies linearly with the distance from the solid
wall and requiring that it takes its average values v1 and v2 at the cell faces, we can write:

Vy = α

Δx
(x2 − x)

[
v1 + Δv

Δy
(y − y1)

]
(7)

then, the average velocity when y = y1 is:

Vy = 1

ΔxΔz

∫ z2

z1

∫ x2

x1
αv1

x2 − x

Δx
dx dz = αv1

2
(8)

From the condition Vy = v1, we have α = 2. Vz can be calculated in an analogous way. The
component x of the velocity is obtained applying the condition ∇.V = 0:

∂ Vx

∂x
= −2Δv(x2 − x)

ΔxΔy
− 2Δw(x2 − x)

ΔxΔz
(9)
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together with the conservation of flux (note that u2 = 0, so Δu = −u1):

−u1
Δx

+ Δv

Δy
+ Δw

Δz
= 0 (10)

which results in:
∂ Vx

∂x
= −2u1

Δx2
(x2 − x) (11)

Finally, the velocity field is:

Vx = u1
Δx2

(x2 − x)2 (12a)

Vy = 2v1
Δx

(x2 − x) + 2Δv

ΔxΔy
(x2 − x)(y − y1) (12b)

Vz = 2w1

Δx
(x2 − x) + 2Δw

ΔxΔz
(x2 − x)(z − z1) (12c)

The tof in the x-direction (τx ) is defined by the integral:

τx =
∫ x1

xp

dx

Vx
= Δx2

u1

[
1

Δx
− 1

x2 − xp

]
(13)

The tof in the y direction is the time spent to travel to a point with vertical coordinate y2
along a streamline passing through (xp, yp):

τy =
∫ y2

yp

dy

Vy(x, y)
(14)

To eliminate the dependency on x in Eq. (14), we make use of the fact that the slope of the
streamline is given by the ratio of the velocity components and write:

dy

dx
= Vy(x, y, z)

Vx (x, y, z)
(15)

Using Eq. (12a) and (12b) and integrating Eq. (15) from (xp, yp) to (x, y) yield:

[
x2 − xp
x2 − x

] 2ΔvΔx
u1Δy = v1Δy + Δv(y − y1)

v1Δy + Δv(yp − y1)
(16)

(x2 − x) = (x2 − xp)

[
v1Δy + Δv(yp − y1)

v1Δy + Δv(y − y1)

] u1Δy
2ΔvΔx

(17)

Substituting Eq. (17) into Eq. (12b) and solving the integral in Eq. (14), we have the time of
flight:

τy = Δx2

(x2 − xp)u1

⎧⎨
⎩

[
v2Δy

v1Δy + Δv(yp − y1)

] u1Δy
2ΔxΔv − 1

⎫⎬
⎭ (18)

Following the derivation outlined above, τz is readily calculated:

τz = Δx2

(x2 − xp)u1

⎧⎨
⎩

[
w2Δz

w1Δz + Δw(z p − z1)

] u1Δz
2ΔxΔw − 1

⎫⎬
⎭ (19)
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Fig. 3 Streamline tracing algorithm and its prediction of transport are validated using the analytical solution
for the flow of an incompressible fluid between two infinite parallel plates shown schematically here.We study
how accurately transport is simulated for different numbers of voxels used to resolve the pore space between
the two plates

Now using Eqs. (13), (18) and (19) and remembering that the exit time is defined as
τe = min(τx , τy, τz), the exit locations are calculated:

xe = x2 −
[
u1τe
Δx2

+ 1

Δx2p

]−1

(20a)

ye = y1 − v1Δy

Δv
+ v1Δy + ΔvΔyp1

Δv

[
τeu1Δx2p

Δx2
+ 1

] 2ΔxΔv
u1Δy

(20b)

ze = z1 − w1Δz

Δw
+ w1Δz + ΔwΔz p1

Δw

[
τeu1Δx2p

Δx2
+ 1

] 2ΔxΔw
u1Δz

(20c)

where we define Δx2p = x2 − xp , Δyp1 = yp − y1 and Δz p1 = z p − z1.

4 Flow Between Two Parallel Plates

To validate the method and stress the differences between the original and the extended
versions of the Pollock algorithm, we consider the flow of an incompressible fluid between
two infinite parallel plates separated by a distance Ly , Fig. 3. The analytical solution with no-
slip boundary conditions predicts a parabolic velocity profile in the axial direction (Pozrikidis
2011):

Vx = −∇P

2μ
y(Ly − y) (21)

We place 103 particles uniformly along the y-direction and trace streamlines assuming
that the velocity is previously solved in a square grid with an error-free numerical method
that finds the average fluxes at the faces of the grid blocks. In Fig. 4 we plot the particle
velocities calculated with our method and the standard Pollock approach for one, two and
four grid cells across the plates. In this case, the velocity is in the x-direction only and varies
with y, Fig. 3. The Pollock interpolation therefore assumes a fixed velocity in each voxel.
Our new method reduces to the same approximation when there are no solid boundaries, but
allows a linear and a quadratic variation in velocity away from a solid boundary for voxels
with one or two solid boundaries, respectively. This captures more accurately the smallest
flow speeds next to the solids. The case of one grid cell corresponds to the two-dimensional
version of the case discussed in the “Appendix 1: Two Solids in the SameDirection”—a voxel
with two opposing solid boundaries—and the interpolated velocity using our method is an
exact match to the analytical solution. With two cells, our method now assumes a piece-wise
linear velocity profile, for voxels with one solid boundary, as described by Eq. 12b, where
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Fig. 4 Particle velocities with one (a), two (b) and four (c) grid cells between the plates. The analytical
solution is shown in blue dots, the standard Pollock method in the solid black line, and our modified approach
in red dashed line. With one grid cell our modified method is an exact match to the analytical solution while
the linear interpolation from the original method completely fails to reproduce the expected parabolic profile.
With two and four grid cells our extended method also produces better estimates than the original method

Fig. 5 Breakthrough curves with one (a), two (b) and four (c) grid cells between the plates. Unit time is
defined as the break-through time of the particles moving at the average flow speed. The analytical solution is
the dotted blue line, the standard Pollock is the black solid line, and our method is the red dashed line. Using
one grid cell the modified method is an exact match to the analytical solution. With a constant velocity (see
Fig. 4), the Pollock method assumes transport with no dispersion of the original delta-function concentration
profile in the absence of molecular diffusion. With two and four grid cells our extended method also yields
better results than the original method and correctly captures the late-time tail of the distribution. The Pollock
method, assuming piece-wise constant velocities, again fails to reproduce the wide distribution of travel times

the second term on the right-hand side is zero. While this is a poorer representation of the
analytical solution, it is still far superior to the Pollock approach, which assumes that the
velocity is constant within each cell. As the number of cells increases, both our approach
and that of Pollock converge to the correct solution; however, the Pollock method always
over-states the velocity in the cell closest to the solid boundary.

Figure 5 shows the BTCs corresponding to the cases depicted in Fig. 4. We assume an
initial delta-function pulse concentration, and by definition a particle moving at the average
velocity breaks through at unit normalized time. We ignore molecular diffusion and study
transport by advection only. As expected, with only one grid cell our method reproduces
exactly the analytical curve, which the original Pollock completely fails to reproduce: with
a constant velocity, there is no dispersion of concentration and the BTC is a delta function.
With two and four grid cells, even if our proposed method is not able to reproduce exactly the
results, it converges to the true solution for late-time arrivals, determined by the particles close
to the walls, while the original method fails to capture the characteristics of the analytical
solution. When the number of grid cells is high enough, both methods match the exact
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Fig. 6 Increasing the number of
grid cells across the plates (fifty
in this example) both methods
converge to the analytical
solution for the breakthrough
curve. The analytical solution is
shown in the solid line, the
standard Pollock in the green
dots, and our method in the
dashed red line. Here, for a fair
comparison, we have binned the
concentration to construct a
smoothed histogram of the
concentration

solution, Fig. 6. However, this requires a large number of voxels across each pore, which is
rarely—if ever—achieved in pore-scale images and numerical models.

As the preceding results suggest, our method is suitable to simulate transport in the rel-
atively coarse grids typical of pore-scale imaging applications—where individual pores are
resolved with only a few voxels. Real sedimentary rocks have a typical pore throat size of few
microns (Nelson 2009). Since the tomographic images have resolutions of the same order of
magnitude, this means the pore throats must be represented with just a few grid cells. Com-
puting flow on a refined grid, to remove this restriction, rapidly leads to prohibitive simulation
times (Blunt et al. 2013). Inevitably, the trade-off between system size and resolution means
that for realistic systems some pores will be only one or two voxels across; it is necessary that
a numerical model represents transport through these pores with reasonable accuracy. The
Pollock method fails to reproduce the slow flows near the solid, while our modified method
gives a much better representation of the long-time tail of the transport.

5 Streamline Tracing in Images of Sedimentary Rocks

Next we show how streamline tracing can be used to study transport properties in real rocks:
a sandstone and a carbonate. The sandstone is a Bentheimer with image size of 10003 voxels,
voxel size of 3.0µm, porosity of 21.6% and the image-calculated permeability of 3 ×
10−12 m2. The carbonate is a Ketton oolite with dimensions 911 × 902 × 922, voxel size
of 3.8µm, porosity of 13.5% and image-calculated permeability of 13× 10−12 m2 , Fig. 7.
Defining the characteristic length as πV/S, where V is the volume of the porous medium
and S is the area of the pore–solid interface (Mostaghimi et al. 2012), we calculate Reynolds
numbers in our flow simulations of 10−3 and 10−2 for the sandstone and the carbonate,
respectively.

The flowfield is calculated using a finite-volumemethod (Raeini et al. 2012), asmentioned
previously. Tracer particles are injected using a flow weighted rule at the inlet and tracked
until they reach the outlet. In both images we inject 5.0× 104 particles and impose constant
pressure at the inlet and outlet faces (perpendicular to the x-direction) and no flux in the
lateral (y and z) boundaries. In addition to the voxels with no solid boundaries, the ones
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Fig. 7 Orthogonal slices of three-dimensional segmented micro-CT images of a Bentheimer sandstone (a)
and a Ketton carbonate (b). We launch streamlines according to a flow weighted rule at the inlet and trace until
the outlet face. Flow in the Bentheimer sandstone is relatively homogeneous (c), while in the Ketton carbonate
it tends to be concentrated in high-velocity channels (d). Colour in the streamlines is indicative of advective
travel time (slow paths in light blue, fast paths in red), distances in µm

with four and five boundaries are also treated with the standard Pollock method, as they have
negligible impact on the total flux across the sample, as shown in Table 1.

Distributions of the time of flight can be used to characterize the degree of heterogeneity
of the rock (Bijeljic et al. 2011). In addition, BTCs also provide useful insights into the
nature of the transport in porous media and the presence of a heavy tail being indicative
of anomalous (non-Fickian) transport that cannot be adequately described by the classical
advection-diffusion equation (Berkowitz et al. 2000).

In each image we trace streamlines using both the standard Pollock method for every
voxel and our modified version (in the voxels with one, two and three solid neighbours). We
compute the distribution of voxel transit times—ψ(τ)—as a function of the dimensionless
time τ = t/τavg , where τavg = Δx/uavg and uavg is the average flow velocity, see Fig. 8.
The standard Pollock method gives lower voxel transit times in the slow regions, typically
the ones close to the solid interface, compared with our new tracing method. Based on the
results of the previous section, we suggest that ignoring the no-slip boundary conditions at
the solid walls tends to overestimate the speed of the slowest particles and truncate ψ(τ) for
long τ . We also note that both distributions are almost identical for short times, as it would
be expected since the “free” pores, which tend to have the fastest advective travel times, are
treated the in same way.

One of the analytical frameworks to describe anomalous transport in porous media is the
continuous time random walk (CTRW) approach, see Berkowitz et al. (2006) and references
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Fig. 8 Distribution of voxel
transit times against
dimensionless time τ in a
Bentheimer sandstone (top) and
in a Ketton carbonate (bottom)
obtained using both the standard
Pollock algorithm (dashed line)
and our modified version (solid
line). Because it ignores the
decay of the tangential velocities
in the voxels neighbouring the
solid phase, the standard Pollock
method tends to underestimate
the transit times in such slower
voxels

therein. Under its assumptions it can be shown that asymptotically when ψ(t) ∼ t−1−β ,
then the breakthrough concentration scales as C(t) ∼ t−1−β . The exponent β is related to
the degree of heterogeneity of the system and controls the nature of dispersion (e.g. Fickian
or non-Fickian). When β > 2 the first and second moments of the transit time distribution
are finite and the system displays asymptotic Fickian behaviour. To calculate β from the
breakthrough curves, we first define α = 1 + β, meaning that C(t) ∼ t−α . Next, using a
maximum-likelihood method (Clauset et al. 2009), we compute α in the tails of the break-
through curves obtained by both the standard Pollock method and by our modified version,
Fig. 9. Simulating BTCs with the Pollock method gives us values of β of 2.6 and 1.9 for Ben-
theimer and Ketton, respectively, which would lead us to infer Fickian (or almost-Fickian)
behaviour, contradicting several earlier experimental and modelling results on transport in
natural porous media (e.g. Sahimi 2011; Bijeljic et al. 2011; Berkowitz et al. 2000; Becker
and Shapiro 2000; Silliman and Simpson 1987; Bijeljic et al. 2013). However, using our new
method we obtain β = 1.2 and β = 0.9, respectively, indicating the expected non-Fickian
transport behaviour.
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Fig. 9 Breakthrough curves
(concentration as a function of
time) in a Bentheimer sandstone
(top) and in a Ketton carbonate
(bottom) simulated with both the
standard Pollock algorithm
(dashed line) and our modified
version of the algorithm (solid
line). Using our method we have
longer tails and smaller
exponents (α = 1 + β) for the
power law describing the
late-time behaviour. Under the
CTRW approach, the standard
Pollock simulation predicts
Fickian behaviour (β > 2) for the
Bentheimer sandstone, while our
approach predicts non-Fickian
behaviour (β < 2)

6 Conclusions

We have presented a semi-analytical streamline tracing method to simulate pore-scale trans-
port in heterogeneous porous media. The method is a development of a well established
algorithm that has been in use for field-scale (Darcy law) flow simulation for many years.
Our newmethodology is applied to flow controlled by the Navier–Stokes equation at the pore
scale and represents a very efficient way of obtaining transport properties. The simulation
time was only a few minutes using a standard desktop computer, even for billion-cell mod-
els. We apply this new approach to obtain the time-of-flight distributions and breakthrough
curves directly in voxelized micro-CT images of two sedimentary rocks, a Bentheimer sand-
stone and a Ketton carbonate, and compare to the ones obtained with the original Pollock
method. The tails of the distributions are significantly different, which may give misleading
indications about the nature of the transport (Fickian or non-Fickian) in the rocks. In partic-
ular, depending on the method, the Bentheimer sandstone would be characterized as Fickian
(using the standard version) or non-Fickian (using the modified version).

The use of analytically traced streamlines eliminates the numerical stability constraints
associatedwith the size of the time step, an obvious advantage over particle trackingmethods,
such as the Euler or Runge–Kutta methods (Oliveira and Baptista 1998).
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Diffusion processes can be readily treated by implementing a random walk in the particle
tracers (Tompson and Gelhar 1990; Sàlles et al. 1993). The advantage of our algorithm lies
in that the time step would be constrained by the diffusive step only, allowing for larger time
steps and a consequent saving in computational time.

The method can also be used to study the origin of anomalous transport at the pore scale
(Kang et al. 2014) and the scaling behaviour of Lagrangian velocities (Siena et al. 2014).
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Appendix 1: Pores with Two Solid Boundaries

There are fifteen ways of arranging two solid voxels around a pore voxel: three with the solids
along the same direction and twelve with the solids in adjacent positions.

Two Solids in the Same Direction

Below is the case of a pore surrounded by two solids in lattice locations (i + 1, j, k) and
(i − 1, j, k). The velocity field is:

Vx = 0 (22a)

Vy = 6v1
Δx2

(x2 − x)(x − x1) + 6Δv

Δx2Δy
(x2 − x)(x − x1)(y − y1) (22b)

Vz = 6w1

Δx2
(x2 − x)(x − x1) + 6Δw

Δx2Δz
(x2 − x)(x − x1)(z − z1) (22c)

In Sect. 4, where we consider an incompressible two-dimensional flow the second term on
the right-hand side of 22b is identically zero and we recover the parabolic velocity profile
characteristic of flow between two parallel plates.

The x-direction beingblocked, τx is undefined. For a particle starting in a point (xp, yp, z p)
inside the pore voxel, we have the following time of flights in the y and z directions:

τy = Δx2Δy

6ΔvΔx2pΔxp1
ln

[
v2Δy

v1Δy + Δv(yp − y1)

]
(23a)

τz = Δx2Δz

6ΔwΔx2pΔxp1
ln

[
w2Δz

w1Δz + Δw(z p − z1)

]
(23b)

and the exit position is calculated when τe = min(τy, τz):

xe = xp (24a)

ye = y1 − v1Δy

Δv
+ v1Δy + Δv(yp − y1)

Δv
exp

[
6ΔvΔxp1(x2 − xp)τe

Δx2Δy

]
(24b)

ze = z1 − w1Δz

Δw
+ w1Δz + Δw(z p − z1)

Δw
exp

[
6ΔwΔxp1(x2 − xp)τe

Δx2Δz

]
(24c)
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Two Adjacent Solids

The case of a pore voxelwith coordinates (i, j, k) surrounded by two solids in lattice locations
(i − 1, j, k) and (i, j − 1, k) is derived below. Analytical expressions for all other eleven
cases can be obtained in a similar manner. The velocity field is:

Vx = 2u2
Δx2Δy

(x − x1)
2(y − y1) (25a)

Vy = 2v2
ΔxΔy2

(x − x1)(y − y1)
2 (25b)

Vz = 4w1

ΔxΔy
(x − x1)(y − y1) + 4Δw

ΔxΔyΔz
(x − x1)(y − y1)(z − z1) (25c)

To calculate the tof in x and y-directions, it is useful to note that Vx and Vy are functions
of x and y only, the flow is essentially two dimensional. The time to travel to a point with
x-coordinate x ′ along a streamline passing through (xp, yp) is:

τx =
∫ x ′

xp

dx

Vx (x, y)
(26)

but along the streamline passing through (xp, yp) we have:

(y − y1) = (yp − y1)

[
x − x1
xp − x1

] v2Δx
u2Δy

then it can be shown that Eq. (26) yields:

τx = Δx2Δy

2u2(yp − y1)

u2Δy

u2Δy + v2Δx

⎡
⎣ 1

xp − x1
− 1

Δx

[
xp − x1

Δx

] v2Δx
u2Δy

⎤
⎦ (27)

for the tof in y-direction we have:

τy = ΔxΔy2

2v2(xp − x1)

v2Δx

v2Δx + u2Δy

⎡
⎣ 1

yp − y1
− 1

Δy

[
yp − y1

Δy

] u2Δy
v2Δx

⎤
⎦ (28)

and solving for the tof in z-direction we have:

τz = ΔxΔyΔz

2(xp − x1)(yp − y1)Δw

⎡
⎣ √

w2√
w1 + Δw

Δz (z p − z1)
− 1

⎤
⎦ (29)
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and again the exit position is calculated when τe = min(τx , τy, τz):

xe = x1 + (
xp − x1

) v2Δx
v2Δx+u2Δy

[
1

xp − x1
− 2u2(yp − y1)

Δx2Δy

u2Δy + v2Δx

u2Δy
τe

] −u2Δy
v2Δx+u2Δy

(30a)

ye = y1 + (
yp − y1

) u2Δy
v2Δx+u2Δy

[
1

yp − y1
− 2v2(xp − x1)

ΔxΔy2
v2Δx + u2Δy

v2Δx
τe

] −v2Δx
v2Δx+u2Δy

(30b)

ze = z1 − w1Δz

Δw
+

[
w1Δz

Δw
+ (z p − z1)

] [
1 + 2(xp − x1)(yp − y1)Δw

ΔxΔyΔz
τe

]2
(30c)

Appendix 2: Pores with Three Solid Boundaries

There are twenty ways of arranging three solid voxels around a pore. In eight cases the solids
are distributed in all three directions (one solid in x, one in y and one in z). The remainder
twelve cases have two voxels in one direction and one in another direction (e.g. two voxels
in x and one in y).

One Solid in Each Direction

We show the case of a pore voxel with coordinates (i, j, k) blocked by three solids in lattice
locations (i + 1, j, k), (i, j + 1, k) and (i, j, k − 1).

The velocity field is:

Vx = 4u1
Δx2ΔyΔz

(x2 − x)2(y2 − y)(z − z1) (31a)

Vy = 4v1
ΔxΔy2Δz

(x2 − x)(y2 − y)2(z − z1) (31b)

Vz = 4w2

ΔxΔyΔz2
(x2 − x)(y2 − y)(z − z1)

2 (31c)

and the time-of-flight increment in each direction:

τx = Δx2ΔyΔz

4u1Δx2pΔy2pΔz p1
ln

(
Δx2p
Δx

)
(32a)

τy = ΔxΔy2Δz

4v1Δx2pΔy2pΔz p1
ln

(
Δy2p
Δy

)
(32b)

τz = ΔxΔyΔz2

4w2Δx2pΔy2pΔz p1
ln

(
Δz

Δz p1

)
(32c)
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when τe = min(τx , τy, τz) we have the exit point:

xe = x2 − (x2 − xp) exp

[−4u1Δx2pΔy2pΔz p1τe
Δx2ΔyΔz

]
(33a)

ye = y2 − (y2 − yp) exp

[−4v1Δx2pΔy2pΔz p1τe
ΔxΔy2Δz

]
(33b)

ze = z1 + (z p − z1) exp

[
4w2Δx2pΔy2pΔz p1τe

ΔxΔyΔz2

]
(33c)

Two Solids in the Same Direction

There are twelve cases with three solid boundaries where two of the solids lie in the same
direction. Below we show the case in which the x-direction and the w1 face are blocked. We
have the following velocity field:

Vx = 0 (34a)

Vy = 12v1
Δx2Δz

(x2 − x)(x − x1)(z − z1) + 12Δv

Δx2ΔyΔz
(x2 − x)(x − x1)(z − z1)(y − y1)

(34b)

Vz = 6w2

Δx2Δz2
(x2 − x)(x − x1)(z − z1)

2 (34c)

The transit times in the y and z directions are:

τy = Δx2Δz2

6w2Δx2pΔxp1Δz p1

[
1 −

√
v2Δy

v1Δy + ΔvΔyp1

]
(35a)

τz = Δx2Δz2

6w2Δx2pΔxp1

z2 − z p
Δz p1Δz

(35b)

and taking τe = min(τy, τz) we have the exit point:

xe = xp (36a)

ye = y1 − v1Δy

Δv
+

[
v1Δy + ΔvΔyp1

Δv

] [
1 − 6w2Δx2pΔxp1Δz p1τe

Δx2Δz2

]2
(36b)

ze = z1 + Δx2Δz2Δz p1
Δx2Δz2 − w2Δx2pΔxp1Δz p1τe

(36c)

where Δx2p = x2 − xp , Δxp1 = xp − x1, Δyp1 = yp − y1, and Δz p1 = z p − z1.

Appendix 3: Pores with Four Solid Boundaries

There are fifteen cases with a pore voxel and four solid neighbours. In three of them two
directions are blocked. The other twelve have the four solids arranged in three directions (e.g.
two solids in x , one in y and one in z).

123



334 J. P. Pereira Nunes et al.

Two Directions Blocked

Below is the case where directions x and y are blocked; the cases with x and z or y and z
blocked follow immediately.

Only the z component of the velocity field is nonzero:

Vz = 36w1

Δx2Δy2
(x2 − x)(x − x1)(y2 − y)(y − y1) (37)

Integrating along the streamlines we have the time of flight:

τe = τz = Δx2Δy2(z2 − z p)

36w1Δx2pΔxp1Δy2pΔyp1
(38)

and the exit point is obtained straightforwardly:

xe = xp (39a)

ye = yp (39b)

ze = z p + 36w1Δx2pΔxp1Δy2pΔyp1τe
Δx2Δy2

= z2 (39c)

Solids in Three Directions

Below is the case with solids in (i + 1, j, k), (i − 1, j, k), (i, j + 1, k) and (i, j, k − 1). The
velocity field is:

Vx = 0 (40a)

Vy = 12v1
Δx2Δy2Δz

(x2 − x)(x − x1)(y2 − y)2(z − z1) (40b)

Vz = 12w2

Δx2ΔyΔz2
(x2 − x)(x − x1)(y2 − y)(z − z1)

2 (40c)

the time of flight in y and z directions:

τy = Δx2Δy2Δz

12v1Δx2pΔxp1(y2 − yp)(z p − z1)
ln

(
y2 − yp

Δy

)
(41a)

τz = Δx2ΔyΔz2

12w2Δx2pΔxp1(y2 − yp)(z p − z1)
ln

(
Δz

z p − z1

)
(41b)

and the exit point is:

xe = xp (42a)

ye = y2 − Δy2p exp

(−12v1Δx2pΔxp1Δy2pΔz p1τe
Δx2Δy2Δz

)
(42b)

ze = z1 + Δz p1 exp

(
12w2Δx2pΔxp1Δy2pΔz p1τe

Δx2ΔyΔz2

)
(42c)
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