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Abstract This paper presents an extension of the
concept of dynamically consistent Jacobian inverse
from roboticmanipulators (holonomic systems) to non-
holonomic robotic systems, like mobile robots. This
new inverse is derived within the framework of the
endogenous configuration space approach, following a
strict analogywith the original derivation of the dynam-
ically consistent Jacobian inverse for holonomic sys-
tems. The analogy is founded on replacing a finite-
dimensional configuration space of the manipulation
robot by the space of control functions steering the
non-holonomic system. Consequently, a curve in the
space of control functions corresponds to the manip-
ulator’s trajectory in the configuration space, whereas
endogenous velocities and forces are defined as ele-
ments of the tangent and cotangent spaces to the con-
trol space. Three ways of introducing the dynamically
consistent Jacobian inverse are proposed, referred to
as the geometric method, the force method, and the
optimization method. A crucial concept underlying all
these methods is a Riemannian metric in the space of
control functions of the non-holonomic system as well
as in its operational space. It has been shown that, sim-
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K. Tchoń (B) · J. Ratajczak
Chair of Cybernetics and Robotics, Electronics Faculty,
Wrocław University of Technology, ul. Janiszewskiego
11/17, 50-372 Wrocław, Poland
e-mail: krzysztof.tchon@pwr.edu.pl

ilarly as for holonomic systems, the dynamically con-
sistent Jacobian inverse obtained prevents the transmis-
sion of certain internal forces acting in the system from
the endogenous configuration space to the operational
space. This property is illustrated with the example of
the Pioneer 2DX mobile platform. Performance of the
new Jacobian inverse is demonstrated in the context of
motion planning of the rolling ball.

Keywords Non-holonomic system ·Motionplanning ·
Jacobian inverse · Dynamic consistency · Endogenous
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1 Introduction

The concept of a dynamically consistent Jacobian
inverse formanipulation robotswas founded byKhatib,
see [11,12]; it is also known as the inertia weighted
Jacobian pseudoinverse [10,15]. The dynamic consis-
tency of this inverse consists in decoupling a force that
acts in the configuration space into a force coming from
the operational space, and an internal force that affects
solely the motion in the configuration space. The con-
cept of this inverse was supported by further theoretical
arguments [5,8] and applied to the operational control
of holonomic systems, including redundant manipula-
tors [15], mobile manipulators with holonomic base
[4], humanoid robots [13,19], and biomechanical sys-
tems [6,7]. An incorporation of the constraint consis-
tent inertia matrix into a weighted Jacobian inverse
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for non-holonomic wheeled-based mobile manipula-
tors has been proposed in [16,25]; an inherent flaw
of such an approach in the context of general non-
holonomic systemswas revealed in [26]. In this last ref-
erence, the endogenous configuration space approach
was suggested as an alternative. The dynamically con-
sistent Jacobian inverse serves as a tool for solving the
inverse kinematics or the motion planning problem in
the way that respects some basic requirements of the
force transmission from the configuration to the oper-
ational space of the robot. More specifically, since the
robot’s Jacobian can be regarded as a transformation
of velocities from the configuration (joint) to the oper-
ational (task) space, therefore a right Jacobian inverse
transformsvelocities from the operational to the config-
uration space. Consequently, the dual Jacobian inverse
transmits forces acting in the configuration space to the
operational space, so in general, the forces exerted in
the configuration spacewill produce amotionof the end
effector in the operational space. A Jacobian inverse is
calleddynamically consistent, if forces belonging to the
null space of the dual Jacobian inverse are not transmit-
ted to the operational space, so they do not affect the
motion of the end effector. This feature distinguishes
the dynamic consistency.

For completeness and clarity of presentation, this
paper begins with three methods of derivation of
the dynamically consistent Jacobian inverse for holo-
nomic robots. All these methods rely on Riemannian
metrics in the configuration space and in the opera-
tional space, defined by the inertia matrix of the robot
dynamics. In doing so, we approach the subject of
Lagrangian mechanics on infinite-dimensional config-
uration spaces [9,14]. The geometric method assumes
commutativity of a diagram of maps between tangent
and cotangent spaces to the configuration and the oper-
ational spaces. The force method reconstructs orig-
inal Khatib’s construction. The optimization method
designs the dynamically consistent Jacobian inverse as
a solution of a constrainedminimization problem of the
robot’s kinetic energy. Next, the same three methods
are applied to non-holonomic systems. It is assumed
that the kinematics of a non-holonomic robotic system
are represented by a driftless control system with out-
put, and the endogenous configuration space approach
developed in [22,23,26] is adopted. Conceptually, this
approach is rooted in the continuation method traced
back to Ważewski [24], and introduced to robotics
by Sussmann [21]. A fundamental premise of the

endogenous configuration space approach is an anal-
ogy between the configuration of a manipulator and
the control function of the non-holonomic system; for
this reason, the latter is called the endogenous config-
uration. This analogy encompasses the manipulator’s
kinematics and the endpoint map of the control sys-
tem representation of kinematics of the non-holonomic
system. As a consequence, the non-holonomic system
Jacobian is computed by differentiating the kinemat-
ics, and a right Jacobian inverse can be introduced as
an inverse of a map between Hilbert spaces.

In the presence of the non-holonomic constraints,
the dynamics equations of the system are obtained on
the basis of d’Alembert’s Principle. The inertia matrix
computed along the system’s trajectory defines a Rie-
mannianmetric in the endogenous configuration space.
In this setting, the derivation of the dynamically con-
sistent Jacobian inverse for a non-holonomic system
is patterned on the derivation performed for the holo-
nomic systems. Specifically, a curve in the endogenous
configuration space corresponds to the manipulator’s
trajectory in the configuration space, whereas endoge-
nous velocities and forces can be defined as elements
of the tangent and cotangent spaces to the endogenous
configuration space. The geometric, force, and opti-
mization methods of defining the dynamically consis-
tent Jacobian inverse have been developed. In order to
demonstrate and compare the property of dynamic con-
sistency, an immobilization problem has been solved,
for example, holonomic and non-holonomic systems,
acted on by some internal force, by means of first
the dynamically consistent Jacobian inverse and then
the usual Jacobian pseudoinverse. Transmission of this
force to the operational space has not taken place only
in case of the dynamically consistent inverse. Finally,
in order to illustrate performance of the dynamically
consistent Jacobian inverse, a motion planning prob-
lem for the rolling ball has been solved using these two
inverses. An advantages of the dynamically consistent
Jacobian inverse consist in avoiding representation sin-
gularities and smoothing the motion paths.

The presentation of this paper uses some very basic
concepts of analytic mechanics and differential geom-
etry, abundantly provided in [1]. The material con-
cerned with control theory and non-holonomic systems
is covered by [3,20]. The reference [22] may serve as
an introduction to the endogenous configuration space
approach. The concept of dynamically consistent Jaco-
bian inverse was first announced by these authors in a
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conference paper [18]. Then, in [17], an application of
the force method to the design of the dynamically con-
sistent Jacobian inverse for mobile manipulators was
proposed.

This paper is intended as a comprehensive introduc-
tion to dynamically consistent Jacobian inverses for
holonomic and non-holonomic systems. Its main con-
tribution is the following:

1. Introduction of three methods of deriving the
dynamically consistent Jacobian inverse for holo-
nomic systems.

2. Extension of these methods to non-holonomic sys-
tems.

3. Definition of the Riemannian metric and related
concepts for non-holonomic systems.

4. Derivation of the dynamically consistent Jacobian
inverse for non-holonomic systems.

5. Demonstration of dynamical consistency for holo-
nomic and non-holonomic systems.

6. Application of the dynamically consistent Jacobian
inverse to motion planning.

The composition of this paper is the following. In
Sect. 2,we restate a standard derivation of the equations
of motion for a non-holonomic system. Section 3 resti-
tutes Khatib’s dynamically consistent Jacobian inverse
for holonomic systems. Section 4 proposes a derivation
of the dynamically consistent Jacobian inverse for non-
holonomic systems. Section 5 demonstrates computa-
tional examples. The paper is concluded with Sect. 6.

2 Basic concepts

We shall study a robotic system described by general-
ized coordinates q ∈ Q = Rn , and velocities q̇ ∈ TqQ,
subject to l < n independent phase constraints in the
Pfaffian form

A(q)q̇ = 0, (1)

where TqQ ∼= Rn denotes the tangent space to Q at q
and A(q) is a constraints matrix of dimension l×n and
rank l.

Our main focus will be the kinematics of the system
that can be represented as a driftless control system
with output function

{
q̇ = G(q)u = ∑m

i=1 gi (q)ui ,
y = k(q),

(2)

where vector fields gi (q) span the null space of A(q),
u ∈ Rm ,m = n−l, is a control vector, and y ∈ Y = Rr

denotes operational coordinates. It will be assumed that
admissible control functions of (2) belong to a linear
subspaceX ⊂ L2

m[0, T ] of the Lebesgue square inte-
grable functions defined on [0, T ] equipped with the
inner product < u1(·), u2(·) >= ∫ T

0 uT1 (t)u2(t)dt ,
and are such that for every u(·) ∈ X the trajectory
q(t) = ϕq0,t (u(·)) of (2) exists over the interval [0, T ].
The initial state q0 of the system (2) and the control
time horizon T > 0 are regarded as fixed. Following
[22], the space X will be called the endogenous con-
figuration space of the robotic system.

Let gX (u(·)) : Tu(·)X × Tu(·)X −→ R, where
Tu(·)X ∼= X , be a Riemannian metric on the endoge-
nous configuration space X , and gQ(q) : TqQ ×
TqQ −→ R, gY (y) : TyY × TyY −→ R, where
TyY ∼= Rr , denote Riemannian metrics, respectively,
on the configuration space and on the operational space.
These metrics will be specified and exploited later on.
The endpoint map

Kq0,T : X −→ Y

of the system (2) determines the operational space point
reached from q0 at T under the action of the control
function u(·),

Kq0,T (u(·)) = k(q(T )) = k(ϕq0,T (u(·))). (3)

The map (3) will be identified with the kinematics of
(2). The derivative of the kinematics,

Jq0,T (u(·)) = D Kq0,T (u(·)) : Tu(·)X −→ TKq0,T (u(·))Y,

(4)

TKq0,T (u(·))Y ∼= Rr being the tangent space to Y at
the point Kq0,T (u(·)), will be referred to as the Jacobian
of the robotic system. The Jacobian is determined by
the linear approximation to the system (2) along the
control–trajectory pair (u(t), q(t)), see [20],

{
ξ̇ = A(t)ξ + B(t)v
w = C(t)ξ,

(5)

initialized at ξ0 = 0, where ξ ∈ Rn , v ∈ Rm , w ∈ Rr ,
and
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110 K. Tchoń, J. Ratajczak

A(t) = ∂G(q(t))u(t)

∂q
, B(t) = G(q(t)), C(t) = ∂k(q(t))

∂q
.

(6)

Given a control v(·) ∈ Tu(·)X , the Jacobian is com-
puted as

Jq0,T (u(·))v(·) = w(T ) = C(T )

∫ T

0
Φ(T, t)B(t)v(t)dt,

(7)

where Φ(t, s) denotes the fundamental matrix of (5),
satisfying the evolution equation

∂Φ(t, s)

∂t
= A(t)Φ(t, s), Φ(s, s) = In .

Assuming that the Jacobian (7) is known, for a pre-
scribed operational velocity w ∈ Rr , we shall solve
the Jacobian equation

Jq0,T (u(·))v(·) = w. (8)

This equation is solvable for any w, provided that the
Jacobian map is surjective, i.e. the endogenous config-
uration u(·) is regular (non-singular). Assuming reg-
ularity of u(·), a solution of (8) may be obtained by
means of a right Jacobian inverse

J #q0,T (u(·)) : TKq0,T (u(·))Y → Tu(·)X , (9)

so that Jq0,T (u(·))J #q0,T (u(·)) = Ir .
For a non-holonomic robotic system subject to con-

straints (1), the dynamics equations can be derived
using theLagrangian formalismand d’Alembert’s prin-
ciple. Let K (q, q̇) = 1

2 q̇
T M(q)q̇ denote the kinetic

energy of the unconstrained system, with the inertia
matrix M(q) = MT (q) > 0. In the presence of non-
holonomic constraints, this inertia matrix transforms to

F(q) = GT (q)M(q)G(q). (10)

The matrix F(q) is symmetric and, for M(q) being
positive definite and G(q) of full rank, F(q) is also
positive definite.

3 Dynamically consistent Jacobian inverse
for holonomic systems

The idea of the dynamically consistent Jacobian inverse
is based on an assumption that the transmission of
forces by the dual Jacobian inverse from the config-
uration to the operational space should be consistent
with the system’s dynamics in the operational space.
In the light of this assumption, Khatib’s approach can
be reconstructed in the following way.

Suppose that there are no non-holonomic constraints
(G(q) = In), so the system’s kinematics are described
in coordinates by y = k(q), and its inertia matrix is
M(q). It will be assumed that the kinematics are right
invertible, so there exists a map l : Y −→ Q such that
the composition k◦l = idY equals the identity function
on Y . Let J (q) = D k(q) : TqQ −→ Tk(q)Y denote
the Jacobian, and J #(q) : TyY −→ TqQ, y = k(q),
be any right inverse of J (q). Having fixed this inverse,
the map l(y) can be computed by a Jacobian inverse
kinematics algorithm derived, e.g. on the basis of the
continuation method. This derivation can be sketched
as follows. Let q0 denote an initial configuration, and
q(θ) ∈ Rn , θ ∈ R, be a smooth curve starting from
q(0) = q0. Given a desired point y in the operational
space, we define an error e(θ) = k(q(θ)) − y and
request that along the curve q(θ) the error satisfies a
differential equation

de(θ)

dθ
= −γ e(θ), (11)

that makes the error decay exponentially with a decay
rate γ > 0. After substituting for the error, we get

J (q)
dq(θ)

dθ
= −γ e(θ).

By using a right inverse J #(q) of the Jacobian, this
equation is converted into the explicit differential equa-
tion

dq(θ)

dθ
= −γ J #(q)(k(q) − y), q(0) = q0. (12)
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An often used right Jacobian inverse is the Jacobian
pseudoinverse

J # P (q) = J T (q)
(
J (q)J T (q)

)−1
. (13)

The inertia matrix M(q) defines a Riemannian met-
ric gQ(q) : TqQ × TqQ −→ R on Q, given as
gQ(q)(v1, v2) = vT1 M(q)v2. This metric induces
a pair of “musical isomorphisms” between the tan-
gent and the cotangent space at q: the flat map
g�
Q(q) : TqQ −→ T ∗

q Q, and the sharp map g	
Q(q) =

(g�
Q)−1(q) : T ∗

q Q −→ TqQ, defined as

g�
Q(q)(v) = gQ(q)(v, ·) = vT M(q) = p,

and g	
Q(q)(p) = M−1(q)pT = v.

(14)

Suppose also that there exists a Riemannian metric
gY (y) : TyY × TyY −→ R with associated isomor-
phisms

g�
Y (y)(w) = gY (y)(w, ·) = r, and g	

Y (y)(r) = w.

(15)

A specific form of gY will be discovered later on. The
elements p ∈ T ∗

q Q and r ∈ T ∗
y Y of cotangent spaces

will be referred to as momenta and treated as covec-
tors. Observe that the flat map results from the Legen-
dre transformation that serves as a bridge between
Lagrangian and Hamiltonian formulations of mechan-
ics. In what follows we shall use the Riemannian met-
rics in order to present three methods of reconstruc-
tion of the dynamically consistent Jacobian inverse for
holonomic systems.

3.1 Geometric method

By definition, the dual map to the Jacobian, J ∗(q) :
T ∗
k(q)Y −→ T ∗

q Q and the dual map to the Jacobian

inverse J #∗(q) : T ∗
q Q −→ T ∗

k(q)Y are such that

(J ∗(q)r)v = r J (q)v and (J #∗(q)p)w = pJ #(q)w,
where pv and rw denote the pairings between covec-
tors and vectors. All these maps can be arranged into
the following diagram:

y
l−−−−→ l(y) = q

k−−−−→ y⏐⏐	
⏐⏐	

⏐⏐	
TyY

J #(q)−−−−→ TqQ
J (q)−−−−→ TyY⏐⏐	g�

Y (y)


⏐⏐g	
Q(q)


⏐⏐g	
Y (y)

T ∗
y Y

J∗(q)−−−−→ T ∗
q Q

J #∗(q)−−−−→ T ∗
y Y

(16)

An inverse J #(q) that makes this diagram commu-
tative for a suitably defined gY (y) is called a dynam-
ically consistent Jacobian inverse J #DC (q). Specifi-
cally, from commutativity of the lower left part of the
diagram, it follows that

J #DC (q) = g	
Q(q)J ∗(q)g�

Y (y), y = k(q).

After multiplying the above identity from the left by
J (q), we conclude that

g�
Y (y) =

(
J (q)g	

Q(q)J ∗(q)
)−1

.

In thisway, the dynamically consistent Jacobian inverse
is described by the matrix

J #DC (q) = M−1(q)J T (q)
(
J (q)M−1(q)J T (q)

)−1
, q = l(y).

(17)

The matrix DCD(q) = J (q)M−1(q)J T (q) can be
called a dynamically consistent dexterity matrix. Con-
figurations q at which rank DCD(q) is full are called
regular, and the remaining configurations are singular.
Observe that the obtained inverse does not satisfy the
fourth Penrose equation [2]. It follows that the Rie-
mannian metric on the operational space assumes the
form

gY (y)(w1, w2) = wT
1

(
DCD

)−1
(l(y))w2. (18)

Alternatively, the dynamic consistency means that the
momenta that live in the null space of J #∗(q) should not
produce anymotion in Y , so the corresponding velocity
in TyY needs to vanish. In the lower right part of the
diagram (16), this is tantamount to the inclusion

KerJ #DC∗(q) ⊂ KerJ (q)g	
Q(q). (19)
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Since the null space of any dual right Jacobian
inverse J #∗(q) is spanned by idT ∗

q Q − J ∗(q)J #∗(q),
in matrix form the identity (19) reads as

J (q)M−1(q)(In − J T (q)J #DC T (q)) = 0,

which yields exactly the identity (17).

3.2 Force method

So far our exposition has been purely geometric, with-
out any reference to forces acting in the holonomic
system. In order to include these forces, suppose
that the system’s configuration moves along a smooth
curve q(t) ∈ Q, with instantaneous velocity q̇(t) and
momentum p(t) = q̇T (t)M(q(t)). The correspond-
ing operational space trajectory is y(t) = k(q(t)), and
the velocity in the operational space equals ẏ(t) =
J (q(t))q̇(t). As the time derivative of the momentum,
the force is also a covector and belongs to the cotangent
space. Thus, we compute

f (t) = ṗ(t) = q̈T M(q(t)) + q̇T
dM(q(t))

dt
. (20)

It is easily seen that for any right inverse of the Jacobian
the cotangent space decomposes as

T ∗
q Q = ImJ ∗(q) ⊕ KerJ #∗(q),

therefore, in matrix terms,

f T = J T (q)Γ + (In − J T (q)J #T (q)) f0, (21)

where Γ T is a force acting in the operational space, f T0
acts in the configuration space. The acceleration in the
operational space equals

ÿ(t) = J (q(t))q̈ + dJ (q(t))

dt
q̇.

Putting all these things together, we arrive at the fol-
lowing equality

ÿ(t) = J (q(t))M−1(q(t))
(
J T (q(t))Γ

+ (In − J T (q(t))J#T (q(t))) f0 − dM(q(t))

dt
q̇(t)

)

+ dJ (q(t))

dt
q̇. (22)

In order that the force belonging to the null space of
J #∗(q) not affect the acceleration in the operational
space, we need to have

J (q)M−1(q)(In − J T (q)J #T (q)) = 0,

which, again, is equivalent to (17). The decomposi-
tion formula (21) with J #(q) replaced by J #DC (q)

describes a decoupling of the configuration space
forces into the forces coming from the operational
space, and the internal forces that affect only themotion
in the configuration space.

3.3 Optimization method

Last but not least, the dynamically consistent Jacobian
inverse can be obtained directly as a solution of the
following constrained optimization problem

min
v

vT M(q)v on condition that J (q)v = w.

The Lagrange function

L(v, λ) = vT M(q)v + λT (J (q)v − w),

therefore ∂L(v, λ)
∂v

= 0 implies

v = M−1(q)J T (q)(J (q)M−1(q)J T (q))−1w,

that is tantamount to the expression (17).

4 Dynamically consistent Jacobian inverse
for non-holonomic systems

Consider a non-holonomic system with the kinematics
(2), the Jacobian (7), and the inertia matrix (10). As
in case of the holonomic system, it will be assumed
that there exists a right inverse Lq0,T : Y −→ X
of the kinematics, such that Kq0,T ◦ Lq0,T = idY .
For a y = Kq0,T (u(·)), let J #q0,T : TyY −→ Tu(·)X
denote a right inverse of the Jacobian. Given this right
inverse, the map Lq0,T (y) can be computed by a Jaco-
bian inverse kinematics algorithm obtained by using
the continuation method along the lines analogous to
those taken in Sect. 3. For completeness, below we
shall briefly reproduce that reasoning. Beginning with
an initial endogenous configuration u0(·) ∈ X , we
make its deformation into a smooth curve uθ (·), where
θ ∈ R. Next, for a desired point y in the operational
space, we define the error e(θ) = Kq0,T (uθ (·))− y and
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require that along the curve uθ (·) the error decreases
exponentially with a decay rate γ > 0, so that

de(θ)

dθ
= −γ e(θ).

Using the error definition, we write

Jq0,T (uθ (·))duθ (·)
dθ

= −γ e(θ).

Under the right inverse J #(u(·)) of the Jacobian, this
equation is transformed into a functional differential
equation

duθ (·)
dθ

= −γ J #(uθ (·))(Kq0,T (uθ (·)) − y),

uθ=0(·) = u0(·). (23)

The Jacobian pseudoinverse (the Moore–Penrose
generalized inverse)

(J #Pq0,T (u(·))w)(t) = BT (t)ΦT (T, t)CT (T )

×
(
C(T )

[∫ T

0
Φ(T, t)B(t)BT (t)ΦT (T, t)dt

]
CT (T )

)−1

w,

(24)

is a typical right inverse of the Jacobian to be plugged
into (23), see [22].

The dynamically consistent Jacobian inverse will be
developed by analogy to the derivation for holonomic
systems, sketched in Sect. 3. We begin with the intro-
duction of a Riemannian metric into the endogenous
configuration space. Let v1(·), v2(·) ∈ Tu(·)X . We
define

gX (u(·))(v1(·), v2(·)) =
∫ T

0
vT1 (t)Mq0 (u(·))(t)v2(t)dt,

(25)

whereMq0(u(·))(t) = F(ϕq0,t (u(·))), F(q) is the iner-
tia matrix (10), and q(t) = ϕq0,t (u(·)) denotes the tra-
jectory of (2) subject to the control function u(·) ∈ X .
Given this Riemannian metric, the musical isomor-
phisms can be defined in the following way

g�

X (u(·))(v(·)) = vT (·)Mq0(u(·))(·) = p(·),
p(t) = vT (t)Mq0(u(·))(t),
g	

X (u(·))(p(·)) = M−1
q0 (u(·))(·)pT (·) = v(·),

v(t) = M−1
q0 (u(·))(t)pT (t), (26)

where v(·) ∈ Tu(·)X and p(·) ∈ T ∗
u(·)X will be called,

respectively, the endogenous velocity and momentum.

As in the case of the holonomic system, it is possible to
define a sort of Legendre transform producing the flat
isomorphism. The operational space will be equipped
with a Riemannianmetric gY (y), to be specified further
on.After these preparations, the dynamically consistent
Jacobian inverse can be introduced in three ways.

4.1 Geometric method

For the Jacobian (7) and its right inverse J #q0,T (u(·)),
we consider a pair of dual maps J ∗

q0,T
(u(·)) : T ∗

y Y −→
T ∗
u(·)X and J #∗q0,T

(u(·)) : T ∗
u(·)X −→ T ∗

y Y , that oper-
ate in a standard way, namely

(J ∗
q0,T (u(·))r)v(·) = r Jq0,T (u(·))v(·)r

= C(T )

∫ T

0
Φ(T, t)B(t)v(t)dt,

(27)

and

(J #∗q0,T (u(·))p(·))w = p(·)J #q0,T (u(·))w. (28)

It follows from (27) that the dual Jacobian is determined
by a matrix function

J̄ Tq0,T (u(·))(t) = BT (t)ΦT (T, t)CT (T ),

such that (27) can be formulated in terms of the inner
product in the endogenous configuration space

(J ∗
q0,T (u(·))r)v(·) =< J̄q0,T (u(·))(·)rT , v(·) > .

A right Jacobian inverse will be referred to as dynami-
cally consistent, if the following diagram ofmaps com-
mutes.

y
Lq0,T−−−−→ Lq0,T (y) = u(·) Kq0,T−−−−→ y⏐⏐	

⏐⏐	
⏐⏐	

TyY
J #q0,T (u(·))

−−−−−−→ Tu(·)X
Jq0,T (u(·))−−−−−−→ TyY⏐⏐	g�

Y (y)


⏐⏐g	

X (u(·))

⏐⏐g	

Y (y)

T ∗
y Y

J∗
q0,T (u(·))

−−−−−−→ T ∗
u(·)X

J #∗q0,T (u(·))
−−−−−−→ T ∗

y Y

(29)

Requiring commutativity of the lower left subdiagram,
we obtain

J #DC
q0,T (u(·)) = g	

X (u(·))J ∗
q0,T (u(·))g�

Y (y),

y = Kq0,T (u(·)).
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A composition from the left of the above identity with
Jq0,T (u(·)) results in
g�
Y (y) =

(
Jq0,T (u(·))g	

X (u(·))J ∗
q0,T (u(·))

)−1
,

u(·) = Lq0,T (y).

Finally, using (26), we get

J #DC
q0,T (u(·)) = g	

X (u(·))J ∗
q0,T (u(·))(

Jq0,T (u(·))g	

X (u(·))J ∗
q0,T (u(·))

)−1
(30)

or, in a more operational matrix form,

(J #DC
q0,T (u(·))w)(t)

= M−1
q0 (u(·))(t)BT (t)ΦT (T, t)CT (T )

(
DDC
q0,T

)−1
(u(·))w,

(31)

where w ∈ TyY . The matrix

DDC
q0,T

(u(·)) = C(T )[∫ T

0
Φ(T, t)B(t)M−1

q0 (u(·))(t)BT (t)ΦT (T, t)dt

]
CT (T )

(32)

may be referred to as a dynamically consistent dex-
terity (or mobility) matrix, as introduced in [26].
The endogenous configuration u(·) for which rank
DDC

q0,T
(u(·)) = r is called regular; otherwise, this con-

figuration is singular. It follows that the Riemannian
metric in the operational space should be defined as

gY (y)(w1, w2) = wT
1

(
DDC

q0,T

)−1
(Lq0,T (y))w2, (33)

Alternatively, making use of the lower right subdia-
gram of (29), the dynamic consistency requires that
endogenous momenta belonging to the null space of
J #∗q0,T

(u(·)) should not produce any motion in Y , i.e.

KerJ #DC ∗
q0,T (u(·)) ⊂ KerJq0,T (u(·))g	

X (u(·)). (34)

Given a right Jacobian inverse J #q0,T (u(·)), the null

space of J #∗q0,T
(u(·)) is spanned by idT ∗

u(·)X − J ∗
q0,T

(u(·))J #∗q0,T
(u(·)). This being so, the identity (34)

implies that

Jq0,T (u(·))g	

X (u(·))
×

(
idT ∗

u(·)X − J ∗
q0,T (u(·))J #DC ∗

q0,T (u(·))
)

= 0, (35)

from which one directly extracts (30).

4.2 Force method

We shall proceed analogously as in Sect. 3.2. Let the
endogenous configuration move inX along a smooth
curve uθ (·). Let the corresponding endogenous veloc-
ity be equal to duθ (·)

dθ and the endogenous momen-

tum pθ (·) =
(
duθ (·)
dθ

)T
Mq0(uθ (·))(·). The endoge-

nous configuration curve uθ (·) produces an operational
space curve yθ = Kq0,T (uθ (·)), and the velocity trans-
formation is described by the Jacobian (7), i.e.

dyθ
dθ

= Jq0,T (uθ (·))duθ (·)
dθ

. (36)

The endogenous force will be treated as an element of
the cotangent space T ∗

u(·)X and can be computed as

fθ (·) = dpθ (·)
dθ

=
(
d2uθ (·)
dθ2

)T

Mq0(uθ (·))(·)

+
(
duθ (·)
dθ

)T dMq0(uθ (·))(·)
dθ

. (37)

For any right Jacobian inverse, given the dual Jaco-
bian and the dual Jacobian inverse, we have obviously

idT ∗
u(·)X = J ∗

q0,T (u(·))J #∗q0,T (u(·))
+

(
idT ∗

u(·)X − J ∗
q0,T (u(·))J #∗q0,T (u(·))

)
,

therefore

T ∗
u(·)X = ImJ ∗

q0,T (u(·))J #∗q0,T (u(·)) + KerJ #∗q0,T (u(·))
⊂ ImJ ∗

q0,T (u(·)) + KerJ #∗q0,T (u(·)).
This means that

T ∗
u(·)X = ImJ ∗

q0,T (u(·)) + KerJ #∗q0,T (u(·)).
Furthermore, if there exists p(·) = J ∗

q0,T
(u(·))r ∈

KerJ #∗q0,T
(u(·)), then, after multiplying this equality

from the left by J #∗q0,T
(u(·)), we get r = 0, which pro-

duces the following decomposition of the cotangent
space at u(·)
T ∗
u(·)X = ImJ ∗

q0,T (u(·)) ⊕ KerJ #∗q0,T (u(·)).
This decomposition allows us to represent the endoge-
nous force fθ (·) as a sum
f Tθ (·) = J ∗

q0,T (uθ (·))Γ
+

(
idT ∗

uθ (·)X − J ∗
q0,T (uθ (·))J #∗q0,T (uθ (·))

)
f0(·),

(38)
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where Γ T acts in the operational space, whereas the
endogenous force f T0 (·) is exerted in the endogenous
configuration space. Computing from (36) the acceler-
ation of the curve yθ in the operational space

d2yθ
dθ2

= Jq0,T (uθ (·))d
2uθ (·)
dθ2

+ dJq0,T (uθ (·))
dθ

duθ (·)
dθ

,

we can compose the above identities into the following
acceleration formula

d2yθ
dθ2

= Jq0,T (uθ (·))M−1
q0 (uθ (·))(·)

(
J ∗
q0,T (uθ (·))Γ

+
(
idT ∗

uθ (·)X − J ∗
q0,T (uθ (·))J #∗q0,T (uθ (·))

)
f0(·)

− dMq0 (uθ (·))(·)
dθ

duθ (·)
dθ

)
+ dJq0,T (uθ (·))

dθ

duθ (·)
dθ

.

(39)

To guarantee that the term containing f0(·) will not
affect the acceleration in the operational space, we need
to require that

Jq0,T (u(·))M−1
q0 (u(·))(·)

×
(
idT ∗

u(·)X − J ∗
q0,T (u(·))J #∗q0,T (u(·))

)
= 0,

which implies that the Jacobian inverse should be
dynamically consistent (30). As in the holonomic case,
after the substitution of J #DC

q0,T
(u(·)) for J #q0,T (u(·)), the

decomposition formula (38) establishes a decoupling
of the endogenous forces into the forces coming from
the operational space, and the internal forces that affect
only themotion in the endogenous configuration space.

4.3 Optimization method

Analogously to the holonomic case, the dynamically
consistent Jacobian inverse for the non-holonomic sys-
tem can be obtained as a solution to the following con-
strained optimization problem

minv(·)∈Tu(·)X

∫ T

0
vT (t)Mq0(u(·))(t)v(t)dt

under the equality constraint

Jq0,T (u(·)) = C(T )

∫ T

0
Φ(T, t)B(t)v(t)dt = w.

Invoking the standard methods of the calculus of vari-
ations, we introduce the Lagrange function

L (v(·), λ)

=
∫ T

0

(
vT (t)Mq0 (u(·))(t)v(t) + λT C(T )Φ(T, t)B(t)v(t)

)
dt,

where λ ∈ Rr stands for a vector of Lagrange multi-
pliers, and equate its derivative with respect to v(·) to
0. After the elimination of λ this yields

v(t) = J # DC
q0,T (u(·))w = M−1

q0 (u(·))(t)BT (t)

×ΦT (T, t)CT (T )(G DC
q0,T )−1(u(·))w,

withG DC
q0,T

(u(·)) defined by (32), which is equivalent to
(31). It is easily checked that the minimum value of the

objective function is equal to wT
(
G DC
q0,T

)−1
(u(·))w.

5 Examples

5.1 Holonomic systems

In Sect. 3.2, we have derived an operational space
acceleration formula (22). Suppose that the dynami-
cally consistent inverse (17) is used in this formula as
the Jacobian inverse. Our aim will be to find an opera-
tional space force Γ that immobilizes the end effector.
It is easily checked that this will be achieved, if

Γ = J #DC T (q)
dM(q(t))

dt
q̇−

(
DDC

)−1
(q)

dJ (q(t))

dt
q̇.

(40)

When ẏ(0) = 0, the force (40) will guarantee that
y(t) = y(0) = const , independently of f0. An effect
of application of this force in the configuration space,
thanks to the identities (20) and (21), results in

M(q)q̈ +
(
In − J T (q)J#DC T (q)

)(
dM(q(t))

dt
q̇ − f0

)

+ J T (q)
(
DDC

)−1
(q)

dJ (q(t))

dt
q̇ = 0. (41)

Now we take q̇(0) = 0 (this forces ẏ(0) = 0), and
solve (41) for q(t). By the presence of f0, the joints
will move, while the end effector coordinates, y(t) =
k(q(t)) = y(0), remain fixed. This will not be the case,
if instead of the dynamically consistent inverse another
Jacobian right inverse is employed.

Illustrative computations are made using a planar
3R manipulator shown in Fig. 1. For simplicity, the
unit link lengths l1 = l2 = l3 = 1 and masses m1 =
m2 = m3 = 1 are chosen. With these substitutions, the
inertia matrix
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y1

y2

q1

q2

q3

l1,m1

l2,m2

l3,m3

Fig. 1 3R planar manipulator

M(q) =

⎡
⎢⎢⎣

1
3 (12 + 3c2 + c3 + c23)

1
6 (10 + 9c2 + 6c3 + c23)

1
6 (2 + 3c3 + 3c23)

1
6 (10 + 9c2 + 6c3 + c23) 1 + c3

1
6 (2 + 3c3)

1
6 (2 + 3c3 + 3c23) 1

6 (2 + 3c3) 1
3

⎤
⎥⎥⎦ ,

where ci , ci j denote, respectively, cos qi and cos(qi +
q j ). Computations have been run for f0 = −1/100
(0,−9.81, 0) and the initial conditionsq0 = (0, π/3, 0),
q̇0 = (0, 0, 0), for T = 10. Results are presented in
Fig. 2. The end effector steered by the dynamically
consistent Jacobian inverse remains at the same place,
despite the joints are moving. Also, the motion under
J #DC showsmuchmore “grace”, if can be said so, than
when the Jacobian pseudoinverse J #P (13) is applied.

5.2 Non-holonomic systems

By analogy to the holonomic case, we begin with the
acceleration expression (39)

d2yθ
dθ2

= Jq0,T (uθ (·))M−1
q0 (uθ (·))(·)

(
J ∗
q0,T (uθ (·))Γ

+
(
idT ∗

uθ (·)X − J ∗
q0,T (uθ (·))J #∗q0,T (uθ (·))

)
f0(·)

− dMq0 (uθ (·))(·)
dθ

duθ (·)
dθ

)
+ dJq0,T (uθ (·))

dθ

duθ (·)
dθ

.

Under assumption that the dynamically consistent
Jacobian inverse (31) has been employed, an opera-
tional space force able to immobilize the system (i.e.
to get identical output yθ (T ) for any θ ) can be com-
puted as

Γ = J #DC ∗
q0,T (uθ (·))dMq0(uθ (·))(·)

dθ

duθ (·)
dθ

−
(
DDC

q0,T

)−1
(uθ (·))dJq0,T (uθ (·))

dθ

duθ (·)
dθ

. (42)

It follows that, if dyθ
dθ

|θ=0 = 0 then under the action
of (42) the operational space curve yθ = y0 = const ,
for any f0(·). To conclude, by combining (42) with
(37) and (38) we arrive at a differential equation in the
endogenous configuration space

Mq0 (uθ (·))(·)d
2uθ (·)
dθ2

+
(
idT ∗

u(·)X − J ∗
q0,T (u(·))J #DC ∗

q0,T (uθ (·))
)

+
(
dMq0 (uθ (·))(·)

dθ

duθ (·)
dθ

− f0(·)
)

J ∗
q0,T (uθ (·))

(
DDC

q0,T

)−1
(uθ (·))dJq0,T (uθ (·))

dθ

duθ (·)
dθ

= 0.

(43)

Having solved this equation for uθ (·) with initial
condition duθ (·)

dθ |θ=0 = 0 (or any other implying
dyθ
dθ |θ=0 = 0), we find the operational space curve
yθ = Kq0,T (uθ (·)). When the dynamically consis-
tent Jacobian inverse is used, this curve stays constant,
yθ = y0 = Kq0,T (u0(·)); otherwise, it does not.

For computational reasons, since the Eq. (43) is
defined in the infinite-dimensional endogenous config-
uration space,weneed to introduce afinite-dimensional
parametrization of control functions, e.g. using an
orthogonal basis of functions inX . Let thematrix P(t)
contain the basic functions arranged in such a way that
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Fig. 2 3R planar manipulator: joint trajectories and postures for J #DC and J #P Jacobian inverses

u(t) = P(t)λ, λ ∈ Rs , and
∫ T

0
PT (t)P(t)dt = Is ,

where s denotes the dimension of the parametrization.
Having replaced u(·) by λ, we compute the parame-
trized trajectory of the system (2) and the endpointmap,

ϕ̃q0,t (λ) = ϕq0,t (u(·)), K̃q0,T (λ) = Kq0,T (u(·)),
as well as the Jacobian and the inertia matrix

J̃q0,T (λ) = Cλ(T )

∫ T

0
Φλ(T, t)Bλ(t)P(t)dt,

M̃q0(λ)(t) = F(ϕ̃q0,t (λ)),

where Aλ(t), Bλ(t), Cλ(t) should be computed for the
parametrized control in accordance with (6). Conse-
quently, the parametrized Riemannian metric

g̃X (λ)(μ1, μ2) = μT
1 Rq0,T (λ)μ2,

where μ1, μ2 ∈ Rs , and

Rq0,T (λ) =
∫ T

0
PT (t)M̃q0(λ)(t)P(t)dt.

This Riemannian metric generates the musical isomor-
phisms

g̃�

X (λ)(μ) = μTRq0,T (λ) = p and g̃	

X (λ)(p)

= μTR−1
q0,T

pT .

Finally, in accordance with the optimization method,
weminimize the quadratic formμTRq0,T (λ)μ on con-
dition that J̃q0,T (λ)μ = w and obtain the parametrized
dynamically consistent Jacobian inverse in the form

J̃ #DC
q0,T (λ) = R−1

q0,T
(λ) J̃ Tq0,T (λ)

(
D̃DC

q0,T (λ)
)−1

,

where

D̃DC
q0,T (λ) = J̃q0,T (λ)R−1

q0,T
(λ) J̃ Tq0,T (λ).

Suppose that λθ is a smooth curve in the parameter
space Rs , producing a curve uθ (t) = P(t)λθ in the
endogenous configuration space X . By analogy with
subsection 4.2, we introduce for the curve λθ the para-
metrized operational space curve

ỹθ = K̃q0,T (λθ ),
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its derivatives

d ỹθ
dθ

= J̃q0,T (λθ )
dλθ

dθ
,

d2λθ

dθ2
= J̃q0,T (λθ )

d2λθ

dθ2

+d J̃q0,T (λθ )

dθ

dλθ

dθ
,

as well as the parametrized momentum

pθ =
(
dλθ

dθ

)T

Rq0,T (λθ ),

and the parametrized force

f Tθ = dpθ

dθ
=

(
d2λθ

dθ2

)T

Rq0,T (λθ )

+
(
dλθ

dθ

)T dRq0,T (λθ )

dθ
. (44)

Let J̃ #q0,T (λ) denote a right inverse of the parametrized
Jacobian. Then, as in (38), we have a decomposition

fθ = J̃ Tq0,T (λθ )Γ +
(
Is − J̃ Tq0,T (λθ ) J̃

# T
q0,T (λθ )

)
f0.

(45)

Using these outcomes, after suitable substitutions, we
arrive at the following

d2 ỹθ
dθ2

= J̃q0,T (λθ )R
−1
q0,T

(λθ )
(
J̃ Tq0,T (λθ )Γ

+
(
Is − J̃ Tq0,T (λθ ) J̃

# T
q0,T (λθ )

)
f0

−dRq0,T (λθ )

dθ

dλθ

dθ

)
+ d J̃q0,T (λθ )

dθ

dλθ

dθ
.

In order to get ỹθ = y0 = K̃q0,T (λ0), we use the
parametrized dynamically consistent Jacobian inverse,
request that

Γ = J̃ #DC T
q0,T (λθ )

dRq0,T (λθ )

dθ

dλθ

dθ

−
(
D̃DC

q0,T

)−1
(λθ )

d J̃q0,T (λθ )

dθ

dλθ

dθ
,

and assume that dλθ

dθ |θ=0 = 0. In conclusion, a combi-
nation of (44) and (45) yields the following differential
equation for λθ

Rq0,T (λθ )
d2λθ

dθ2

+
(
Is − J̃ Tq0,T (λθ ) J̃

#DC T
q0,T (λθ )

) (
dRq0,T (λθ )

dθ

dλθ

dθ
− f0

)

+ J̃ Tq0,T (λθ )
(
D̃DC
q0,T

)−1
(λθ )

d J̃q0,T (λθ )

dθ

dλθ

dθ
= 0. (46)

q2

q1 y1

y2

q3l

Fig. 3 Pioneer 2DX

After solving (46), we get ỹθ = K̃q0,T (λθ ). If the para-
metrized dynamically consistent Jacobian inverse has
been chosen, it should be ỹθ = y0 = K̃q0,T (λ0).

We shall check this for a simplified, unicycle-type,
model of the Pioneer 2DX mobile robot, moving with-
out a lateral slip of the wheels, shown schematically
in Fig. 3. The vector of generalized coordinates q =
(x, y, θ). The robot’s mass m = 8.67, the moment of
inertia with respect to the Z -axis, I = 0.256, the dis-
tance between driving wheels 2l = 0.326. The non-
holonomic inertia matrix (10) is constant, F(q) =
diag{m, I }. The control functions are chosen in the
form of the trigonometric series with nine terms for
every input. The initial state q0 = (1, 0, π/4), the
control horizon T = 5. The initial control is set to
λ0 = (1, 0, 0.5, 01×6, 0.5, 01×8) ∈ R18. The inter-
nal force f0 = (0, 0, 1, 01×8, 0.1, 0, 1, 01×4) ∈ R18.
Results of computations are shown in Fig. 4. Driven by
the dynamically consistent Jacobian inverse the Pio-
neer for consecutive θ reaches the same final position
and orientation, despite the existence of the force f0. It
can be noticed that this does not happen in case of the
Jacobian pseudoinverse (24).

In order to further demonstrate the performance of
a non-holonomic system driven by the dynamically
consistent Jacobian inverse, we shall solve an exam-
ple motion planning problem for the rolling ball, using
the dynamically consistent inverse J #DC

q0,T
and the Jaco-

bian pseudoinverse J #Pq0,T
. The ball is shown in Fig. 5.

Its coordinate vector q = (x, y, ϕ, θ, ψ) consists of the
Cartesian coordinates of the contact point with respect
to the external frame, spherical coordinates of this point
with respect to the ball frame, and the ball orientation
angle. The ball has the unit mass m = 1, the radius
R = 0.1, and the inertia I = 2

5mR2. The kinematics of
the rolling ball are represented by the driftless control
system (2) with the control matrix
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Fig. 4 Pioneer 2DX:
controls and XY -paths for
J #DC
q0,T

, and XY -paths for

J #Pq0,T
inverse (bottom right).

The arrows indicate
increase of θ
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Fig. 5 Rolling ball

G(q) =

⎡
⎢⎢⎢⎢⎣

Rs4s5 Rc5
−Rs4c5 Rs5

1 0
0 1

−c4 0

⎤
⎥⎥⎥⎥⎦ ,

si , c j standing for sin qi and cos q j , and the output
function k(q) = (q1, q2, q5). The non-holonomic iner-

tia matrix F(q) = (I +mR2)diag{s24 , 1}. The motion
planning problem consists in the ball reaching the posi-
tion and orientation yd = (1, 0,−π

2 ) in time T = 5.
The control functions are assumed trigonometric, con-
taining up to third-order harmonics. The initial state of
the ball is assumed q0 = (0, 0, 0, π

4 , π
2 ), the initial con-

trol coefficients λ0 = (5, 01×6, 0.1, 01×6) ∈ R14, and
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Fig. 6 Kinematics of the
ball: paths in the XY plane,
trajectories of q1, q2 and
q4, q5, velocities q̇1 and q̇2
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γ = 0.02. Figure 6 shows the solutions of this prob-
lem provided by the dynamically consistent Jacobian
inverse and the Jacobian pseudoinverse. The computa-
tions have been run until the error in the operational
space drops below 10−4. The knot in the loop appear-
ing on the path produced by J #Pq0,T

corresponds to the
rolling through the north pole (q4 = θ = 0) that is a
representation singularity of the ball, where the spher-
ical coordinates as well the inertia matrix become sin-
gular. The introduction of J #DC

q0,T
avoids this kind of

motion.

6 Conclusion

Within the framework of the endogenous configura-
tion space approach, we have extended the concept of
the dynamically consistent Jacobian inverse from holo-
nomic to non-holonomic robotic systems. This new
inverse has been built around a Riemannian metric in
the configuration space and founded on a conceptual
analogy between holonomic and non-holonomic sys-
tems. The dynamically consistent Jacobian inverse has
been applied to solve a motion planning problem for
the rolling ball. Further research needs to be conducted
towards using this inverse to the force control problems
in non-holonomic systems.
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