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Abstract We prove that if a pure simplicial complex � of dimension d with n facets
has the least possible number of (d − 1)-dimensional faces among all complexes
with n faces of dimension d, then it is vertex decomposable. This answers a question
of J. Herzog and T. Hibi. In fact, we prove a generalization of their theorem using
combinatorial methods.
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1 Introduction

We call a simplicial complex pure if all its facets are of the same dimension.

Definition 1 A pure simplicial complex � of dimension d and n facets is called
extremal if it has the least possible number of (d − 1)-dimensional faces among all
complexes with n faces of dimension d.

In particular, for d = 0, all zero-dimensional complexes are extremal, since all of
them have exactly one (−1)-dimensional face, namely the empty set.
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In this paper, we generalize and prove by only combinatorial means the following
theorem of Herzog and Hibi from 1999.

Theorem 1 ([8], Theorem 2.3) An extremal simplicial complex is Cohen–Macaulay
over an arbitrary field.

Their proof is algebraic and uses results from Refs. [1] and [6]. In fact, they asked
for a combinatorial proof. We give it by proving that an extremal simplicial complex
is vertex decomposable. It is well known that vertex decomposable complexes are
Cohen–Macaulay. Our proof goes along the lines of the proof of Kruskal–Katona
inequality. We start with a presentation of some necessary preliminaries.

1.1 Vertex Decomposable and Cohen–Macaulay Complexes

For a simplex σ in a simplicial complex �, the simplicial complex

{τ ∈ � : τ ∩ σ = ∅ and τ ∪ σ ∈ �}

is called a link of σ in �, and denoted by lk�σ . For a vertex x of � by �\ x , we mean
the simplicial complex {τ ∈ � : x /∈ τ }.
Definition 2 A pure simplicial complex � is vertex decomposable if one of the
following holds:

(1) � is empty,
(2) � is a single vertex,
(3) for some vertex x , both lk�{x} and � \ x are pure and vertex decomposable.

Definition 3 For a simplicial complex � on the set of vertices {1, . . . , n} and a given
field K, the Stanley–Reisner ring (the face ring) is K[�] := K[x1, . . . , xn]/I , where
I is generated by all square-free monomials xi1 . . . xil for which {i1, . . . , il} is not a
face in �.

When we say that a simplicial complex is Cohen–Macaulay, we always mean that
its Stanley–Reisner ring has this property.

The following is a folklore result (we refer the reader to, e.g., [2]).

Theorem 2 For a simplicial complex �, the following implications hold:

� is vertex decomposable ⇒ � is shellable ⇒ � is Cohen–Macaulay over any field.

We recall a combinatorial description of Cohen–Macaulay complexes.

Theorem 3 ([13]) Let R = K[�] be the face ring of �. Then the following conditions
are equivalent:

(1) R is Cohen–Macaulay ring,
(2) H̃i (lk�σ ; K) = 0 for i < dim(lk�σ) for all simplices σ ∈ �.

For classical techniques of counting homologies, we refer the reader to [7,14]. For
entertaining ones, we advise Sect. 3.2 of [12].
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1.2 Kruskal–Katona Theorem

One of the most natural questions concerning simplicial complexes is:
What is the minimum number of (k−1)-element faces in simplicial complex with n faces
of size k?
This question was answered independently by Kruskal [11] and Katona [10] in 1960s.
For a positive integer k, they enlisted all k-element subsets of integers in the following
order, called the squashed order: A < B if max(A \ B) < max(B \ A). Let Sk(n) be
the set of first n sets in this list. For a given set U of k-element sets, denote by �U,
the set of all (k − 1)-element sets which are contained in some member of U. The
Kruskal–Katona theorem reads as follows.

Theorem 4 For a positive integers n, k and a set U of n sets of size k, we have

∣
∣�U

∣
∣ ≥ ∣

∣�Sk(n)
∣
∣.

This result was further generalized by Clements and Lindström in [3]. Daykin [4,5]
gave two simple proofs, and later Hilton [9] gave another one. For an algebraic proof,
we refer the reader to [1]. We will work mainly with Hilton’s idea.

Note that the cardinality of �Sk(n) may be easily determined. For a given k, each
positive integer n can be uniquely expressed as

n =
(

ak

k

)

+
(

ak−1

k − 1

)

+ · · · +
(

at

t

)

,

with 1 ≤ t ≤ at and at < · · · < ak . We have

δk−1(n) := ∣
∣�Sk(n)

∣
∣ =

(
ak

k − 1

)

+
(

ak−1

k − 2

)

+ · · · +
(

at

t − 1

)

.

As a consequence of Kruskal–Katona theorem, we get

Corollary 1 A pure simplicial complex � of dimension d > 0 with f -vector
( f0, . . . , fd) is extremal if and only if fd−1 = δd( fd).

2 The Main Result

For a better understanding of the assumption that � is extremal, we will use Hilton’s
idea from his proof [9] of the Kruskal–Katona theorem. First, we define sets similar to
Sk(n). Let Si

k(n) denote the first n sets of k-element subsets of integers in the squashed
order (A < B if max(A \ B) < max(B \ A)) which do not contain i . We also denote
by {i}(∪)U the set {{i} ∪ A : A ∈ U}.

Let U be a n-element set of k-element sets, let V = ⋃

A∈U A be an underlying set,
and let v be its cardinality. For i ∈ V , let Bi = {A ∈ U : i /∈ A}, Ci = {A \ {i} :
i ∈ A ∈ U}, and let bi , ci be the respective cardinalities. Note that ci 	= 0. We want to
find an index i such that

∣
∣�Bi

∣
∣ >

∣
∣Ci

∣
∣.
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Lemma 1 Either there exists an i such that
∣
∣�Bi

∣
∣ >

∣
∣Ci

∣
∣, or U consists of all possible

k-element subsets of V .

Proof We are going to count the sum of cardinalities of both sets when i runs over all
elements of V . Then

∑

i∈V

∣
∣�Bi

∣
∣ ≥ kn(v − k)/(v − k) = kn =

∑

i∈V

∣
∣Ci

∣
∣,

since at left hand side each A ∈ U gives k distinct sets in its boundary, and it is counted
once for every i /∈ A. Some sets in boundaries of sets from Bi can be the same, but
their number is at most (v − 1) − (k − 1) = v − k. On the other hand, each A ∈ U is
counted k times at the right side. Hence, we can find a desired i , or the above bounds
are tight. In the latter case, when A ∈ �Bi , all v − k possibilities of completing it to
a k-element set has to be in U. This means that U consists of all possible k-element
subsets of V because from any set in U we can delete any element and insert any
other. 
�
Lemma 2 If � is an extremal simplicial complex of positive dimension, then there
exists a vertex x such that both lk�{x} and � \ x are extremal.

Proof Let � be of dimension d − 1 > 0 and let U be the set of all d-element sets
in �. If U consists of all possible d-element subsets of a given v-element set, then
the assertion of the lemma is clearly true (we can take any vertex). Otherwise, due to
Lemma 1, there exists an i ∈ V such that

∣
∣�Bi

∣
∣ >

∣
∣Ci

∣
∣. We have that

�U = �Bi ∪ Ci ∪ ({i}(∪)�Ci ).

Since �Bi and {i}(∪)�Ci are disjoint, it follows that

∣
∣�U

∣
∣ ≥ ∣

∣�Bi
∣
∣ + ∣

∣{i}(∪)�Ci
∣
∣ >

∣
∣Ci

∣
∣ + ∣

∣{i}(∪)�Ci
∣
∣.

So, by Theorem 4,

∣
∣�U

∣
∣ ≥ ∣

∣�Si
d(bi )

∣
∣ + ∣

∣{i}(∪)�Si
d−1(ci )

∣
∣, (2.1)

and

∣
∣�U

∣
∣ >

∣
∣Si

d−1(ci )
∣
∣ + ∣

∣{i}(∪)�Si
d−1(ci )

∣
∣. (2.2)

Since �Si
d(bi ) = Si

d−1(e) for some e, there are now two possibilities:

(1) �Si
d(bi ) ⊂ Si

d−1(ci ), then by (2.2) we get
∣
∣�U

∣
∣ >

∣
∣Si

d−1(ci )
∣
∣+∣

∣{i}(∪)�Si
d−1(ci )

∣
∣ = ∣

∣�(Si
d(bi )∪({i}(∪)Si

d−1(ci )))
∣
∣, which

contradicts the assumption that � is extremal, since a complex generated by sets
Si

d(bi ) ∪ ({i}(∪)Si
d−1(ci )) has bi + ci = ∣

∣U
∣
∣ maximal faces.
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(2) �Si
d(bi ) ⊃ Si

d−1(ci ), then by (2.1), we obtain
∣
∣�U

∣
∣ ≥ ∣

∣�Si
d(bi )

∣
∣ + ∣

∣{i}(∪)�Si
d−1(ci )

∣
∣ = ∣

∣�(Si
d(bi ) ∪ ({i}(∪)Si

d−1(ci )))
∣
∣, and

equality holds if and only if Ci ⊂ �Bi ,
∣
∣�Bi

∣
∣ = ∣

∣�Si
d(bi )

∣
∣, and

∣
∣�Ci

∣
∣ =

∣
∣{i}(∪)�Si

d−1(ci )
∣
∣ = ∣

∣�Si
d−1(ci )

∣
∣.

The complex � is extremal, so equality holds, and we get that Ci ⊂ �Bi and
[Bi ], [Ci ] are extremal, where [A] means the simplicial complex generated by the set
of faces A. Observe that lk�{i} = [Ci ] and � \ i = [Bi ]. The first equality is obvious,
while the second is not as clear. If σ = {v1, . . . , vk} is a face in � \ i then it is a
subface of some facet F = {v1, . . . , vd}. If i does not belong to F then F ∈ [Bi ] and
so σ does. Otherwise, F \ {i} ∈ Ci ⊂ �Bi , so F \ {i} ∪ { j} ∈ Bi for some j . Hence,
σ ∈ [Bi ]. Now i = x gives the assertion. 
�

Finally, we are ready to prove the generalization of Theorem 1.

Theorem 5 An extremal simplicial complex is vertex decomposable.

Proof The proof goes by an induction on d the dimension of � and secondly on the
number of facets. If d = 0, then � consists of points and by the definition it is vertex
decomposable. When d > 0, then by Lemma 2 there exists a vertex x , such that both
complexes lk�{x} and �\x are extremal. The first is of lower dimension and the second
either has the same dimension as � but fewer facets, or it has smaller dimension. By
the inductive hypothesis, both lk�{x} and � \ x are vertex decomposable, and as a
consequence � also is. 
�

The above result is best possible in the following sense. Let � be a pure simplicial
complex of dimension d > 0 with f -vector ( f0, . . . , fd), and with fd−1 = δd( fd) +
c, c ∈ N. Due to Corollary 1, the meaning of Theorem 5 is that if c = 0, then � is
vertex decomposable. But even for c = 1, complex � does not have to be Cohen–
Macaulay, which by Theorem 2 is a weaker property then vertex decomposability. We
show the following.

Example 1 We have that δd(2) = 2d + 1. Let � be a pure simplicial complex of
dimension d with the set of facets U consisting of two disjoint ones. Then

∣
∣�U

∣
∣ =

2d+2, and H̃0(lk�∅; K) = 1, so due to Theorem 3, complex� is not Cohen–Macaulay
over any field K, and as a consequence it is also not vertex decomposable.

Acknowledgments This publication is partly supported by the Polish National Science Centre grant no.
2011/03/N/ST1/02918. The author would like to thank Ralf Fröberg and Jürgen Herzog for many inspiring
conversations and introduction to this subject. The author would also like to thank Jarek Grytczuk and Piotr
Micek for help in preparation of this manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Aramova, A., Herzog, J., Hibi, T.: Gotzmann theorems for exterior algebras and combinatorics.
J. Algebra 191, 174–211 (1997)

123



Discrete Comput Geom (2013) 49:296–301 301

2. Björner, A.: Topological methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of
Combinatorics, vol. 2, pp. 1819–1872. Elsevier, Amsterdam (1995)

3. Clements, G., Lindstöm, B.: A generalization of a combinatorial theorem of Macaulay. J. Comb. Theory
7, 230–238 (1969)

4. Daykin, D.: A simple proof of the Kruskal–Katona theorem. J. Comb. Theory A 17, 252–253 (1974)
5. Daykin, D.: An algorithm for cascades giving Katona-type inequalities. Nanta Math. 8, 78–83 (1975)
6. Eagon, J., Reiner, V.: Resolutions of Stanley–Reisner rings and Alexander duality. J. Pure Appl. Algebra

130, 265–275 (1989)
7. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
8. Herzog, J., Hibi, T.: Componentwise linear ideals. Nagoya Math. J. 153, 141–153 (1999)
9. Hilton, A.: A simple proof of the Kruskal–Katona theorem and of some associated binomial inequalities.

Period. Math. Hungar. 10(1), 25–30 (1979)
10. Katona, G.: A theorem of finite sets. In: Erdös, P., Katona, G. (eds) Theory of Graphs (Proc. Colloq.

Tihany, 1966), pp. 187–207. Academic Press, New York (1968)
11. Kruskal, J.: The number of simplices in a complex. In: Bellman, R. (ed) Mathematical Optimaization

Techniques, pp. 251–278. University of California Press, Berkeley (1963)
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