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1 Introduction

The rigid supersymmetry of gauge theories in curved backgrounds allows us to compute

exact results of a certain class of BPS observables, for instance, the partition function

of four-dimensional N = 2 theories in the Omega background [1] and on a round four-

sphere [2]. The generalizations to other dimensions and also other curved backgrounds

have been explored extensively. A far from complete list of references includes [3–22].

The goal of this paper is to extend the previous investigations [23–25] to the super-

symmetric gauge theories on four-dimensional spheres with conical singularities. One of

the motivations is to compute exact Rényi entropy. For conformal field theories (CFTs),

the flat space Rényi entropy with spherical entangling surface can be mapped to that on a

four-sphere where the entangling surface is mapped to the great two-sphere. In three di-

mensions, the authors of [23] studiedN ≥ 2 Chern-Simons matter theory on the q-branched

three-sphere S3
q with certain background vector fields turned on to maintain rigid super-

symmetry. They computed the supersymmetric partition function, with which a quantity

called supersymmetric Rényi entropy (henceforth SRE) is defined

Ssuper
q =

logZq(µ(q))− q logZ1(0)

1− q
. (1.1)

It can be considered as the generalization of the usual Rényi entropy, which instead has the

non-supersymmetric partition function Zq(0) (with zero chemical potential) in the defini-

tion (1.1). On the other hand we know that superconformal theories can also be studied via

holography and in particular Rényi entropy can be computed from the thermal entropy of

topological black hole [26–30]. It has been shown [24] that free energy and also the super-

symmetric Rényi entropy computed from CFT on S3
q and those computed holographically

from the four-dimensional charged BPS topological black hole (TBH) agree exactly, which

motivated the authors to propose TBH4/qSCFT3 correspondence (See also [25] where Wil-

son loop was discussed).

In this paper, we study the correspondence between superconformal field theories on

the q-branched four-sphere S4
q and the five-dimensional charged BPS topological black hole

(TBH5/qSCFT4). The branched sphere S4
q is a singular space and generally the conical

singularity breaks the supersymmetry globally. To compensate the singularity one can turn

on a background Abelian R-symmetry gauge field to provide an extra holonomy (around

the singularity) so that some of the Killing spinors survive. For N = 4 SYM, the Cartan

subgroup of the SO(6) R-symmetry group is U(1)3, and therefore we have multiple choices

for the R-symmetry background fields. We consider generic backgrounds with one or more

U(1) fields turned on. In each background, free energy and supersymmetric Rényi entropy

in the zero coupling limit can be computed by heat kernel method, taking into account the

holonomy contribution.

To perform localization computation, we consider S4
q as the singular (ε → 0) limit of

the smooth resolved space Ŝ4
q(ε).

1 Following [10], we construct the N = 2 supersymmetric

1It is also possible to cut off the cone at radius ε and impose boundary conditions on fields. This is the

so-called “Hard Wall” prescription. But here we instead use the “smooth cone” prescription.
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gauge theories on the resolved space by working out the background field configuration

that admits Killing spinors. In the particular case N = 4 SYM, the singular limit of

this construction returns to the background with two equal U(1) fields. We then use the

associated supercharge Q (to be precise Q̂ = Q + QB, where QB is the BRST operator)

to localize the path integral of the partition function to a matrix model. Interestingly, we

find that the partition function is insensitive to the resolving function, and therefore is

identical to the one on a squashed four-sphere (ellipsoid) [10].

We evaluate the matrix integral of N = 4 SYM in the supergravity limit (large N , large

’t Hooft coupling λ). In this limit, the instanton contribution can be neglected. We solve

the saddle point equation and find that the q-dependence of the free energy (and therefore

also the SRE) factorizes. We note that in even dimensions, the universal term is the one

with logarithmic divergence. Even though the free energy we get has been regularized,

divergence can be restored by the replacement log λ→ log λ− log
(
`
Λ

)2
.2

In the q → 1 limit, the coefficient of the logarithmic term is proportional to the

a-anomaly (see e.g. [31] and references therein), which is a protected quantity and in-

dependent of the coupling constant. It is tempting to guess the same independence may

hold for the q > 1 generalization since we have unbroken supersymmetry. Extracting the

q-dependent coefficient of the logarithmic term of free energy we find that it is the same

as the one in the zero coupling limit and therefore it is protected.

To find the gravity solution dual to N = 4 SYM on S4
q we turn to the so-called STU

model, which is a particular five-dimensional N = 2 gauged supergravity theory with three

Abelian gauge fields. We note that the STU model can be embedded [52] into N = 8 SO(6)

gauged supergravity, which is the known gravity dual of N = 4 SYM on a round sphere.

Since the U(1)3 Cartan subgroups on both sides are identical, it is natural to expect that

the topological black holes carrying one or more U(1) charges are the duals of N = 4 SYM

on S1 × H3 ( and therefore on S4
q by conformal mapping ) with the corresponding U(1)

background gauge fields turned on. We find perfect agreement between the two sides.

The rest of the paper is organized as follows. In section 2, we study N = 4 super-

symmetric gauge theories on a branched four-sphere S4
q . We consider various types of

background that preserve supersymmetry on S4
q . In the case with two equal U(1) back-

ground gauge fields turned on, we compute the exact partition function using localization

technique. We then solve the saddle point equation in the supergravity limit and obtain

the q-dependence of free energy and supersymmetric Rényi entropy. Moreover, we compute

the q-dependence in the zero coupling limit and find the results are the same as those in

the strong coupling limit. In section 3, we study general R-charged BPS topological black

holes in the STU model. In section 4, we propose that these black holes can be regarded

as the gravity duals of N = 4 SYM on S4
q . We show that the supersymmetric Rényi en-

tropy as well as the free energy obtained from the gravity side precisely agree with the

corresponding field theory results. We conclude and discuss future questions in section 5.

2See e.g. [32] for the relation between the divergent and the finite parts of the free energy on a round

sphere.
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2 qSCFT4

Four-dimensional N = 2 supersymmetric field theories on a round sphere have been stud-

ied extensively in [2]. This work has been generalized to squashed four-sphere [10, 11].

A systematic approach to construct supersymmetric theories on four-manifold has been

developed in [33–35] (see also [36–38]). The basic idea is to take the rigid limit of four-

dimensional supergravity that couples to the R-multiplet of the field theory. Along this line,

N = 1 supersymmetric theories on complex four-manifolds with various topologies, such as

S2×T2 [12] and S1×S3 [13–16] have been explored.3 In this section, we refine the previous

constructions to the four-sphere with a conical singularity, denoted by S4
q . The conical

singularity is specified by a real parameter q ∈ R. We can think of S4
q as a q deformation

of the round four-sphere S4. Unlike in three dimensions, in four dimensions the systematic

construction of supersymmetric field theories on generic manifolds with sphere topology

is still lacking as the aforementioned approach does not apply to this case. Therefore, in

what follows, we use a less systematic approach in which we particularly focus on the q

deformation of round sphere. Our goal is to explore interesting physical results depending

on q, such as free energy and supersymmetric Rényi entropy.

We will mainly focus on N = 4 SYM with different types of supersymmetric back-

grounds, all of which admit solutions to Killing spinor equations. In one particular case,

partition function can be computed exactly using localization technique and the result

is valid for general N = 2 theories. In this case we will see that the field theory on S4
q

shares interesting feature with that on a squashed four-sphere [10], although the former was

motivated by computing supersymmetric Rényi entropy while the latter was motivated by

Alday-Gaiotto-Tachikawa (AGT) correspondence. This equivalence is the four-dimensional

analogy of the similar relation between three-dimensional ellipsoid and branched sphere.

In the supergravity (large λ and large N) limit the matrix integral of the partition function

can be evaluated using saddle point method. Interestingly, in this limit the q-dependence

of the free energy (and SRE) completely factorizes just like in three-dimensions. We also

perform the heat kernel computation in the free field limit and find that the q-dependence

remains exactly the same.

2.1 Killing spinors on S4
q

As a common knowledge of constructing rigid supersymmetric field theories in curved

spacetime, one needs to set up the Killing spinor equations. Those equations will generally

tell us what backgrounds allow a set of Killing spinors, which generate rigid supersymme-

tries. The Killing spinors on a round four-sphere S4 were well explored in the pioneering

work [2], where the metric was presented as a warped form of the flat metric in R4. We

start with a metric representing S4 as the blowing up of round three-sphere with manifest

U(1)×U(1) toric structure,4 whose metric is

ds2/`2 = dθ2 + sin2 θdτ2 + cos2 θdφ2 . (2.1)

3See [39, 40] for seminal works on four-dimensional superconformal index.
4These coordinates are particularly convenient for later use. Namely it can be easily mapped to a

hyperbolic space S1 ×H3 by a Weyl rescaling.
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Replacing dφ2 by a two sphere one obtains

ds2/`2 = dθ2 + sin2 θdτ2 + cos2 θ(dφ2 + sinφ2dχ2) , (2.2)

where the domains of coordinates are specified by

θ ∈ [0, π/2] , τ ∈ [0, 2π) , φ ∈ [0, π) , χ ∈ [0, 2π) . (2.3)

This metric (2.2) can also be obtained by embedding the four-sphere into R5

x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = `2 , (2.4)

and taking the following polar coordinates

x0 = ` cos θ cosφ ,

x1 = ` sin θ cos τ ,

x2 = ` sin θ sin τ ,

x3 = ` cos θ sinφ cosχ ,

x4 = ` cos θ sinφ sinχ . (2.5)

The branched four-sphere S4
q can be specified by the deformation of S4. This can be easily

seen by dilating the metric while keeping domains of coordinates (2.3) intact. The metric

of S4
q then turns into

ds2/`2 = dθ2 + q2 sin2 θdτ2 + cos2 θ(dφ2 + sinφ2dχ2) . (2.6)

This space has a conical singularity at θ = 0, but regular everywhere else. It can be

regarded as a deviation from S4 parameterized by q − 1. Therefore we expect that the

Killing spinor equations have minimal deviations from those on round sphere, with an

additional background vector field Aµ. In 4-spinor notation, they take the forms of

Dµζ = +
1

2`
γµζ
′ , (2.7)

Dµζ
′ = − 1

2`
γµζ , (2.8)

where the background field Aµ is included in the covariant derivatives,

Dµ = ∇µ ± iAµ . (2.9)

Notice that we have not put in the indices for the R-symmetry group, which are necessary

for theories with N > 1 supersymmetry. In what follows, we study (2.7) and (2.8) on the

branched sphere to determine Aµ, which compensates the conical singularity.

– 5 –
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2.1.1 solution 1

For the metric (2.6), the vielbein can be chosen as

e1 = `dθ , e2 = q` sin θdτ , e3 = ` cos θdφ , e4 = ` cos θ sinφdχ , (2.10)

and the non-vanishing spin connections are

ω12
τ = −ω21

τ = −q cos θ , ω13
φ = −ω31

φ = sin θ ,

ω14
χ = −ω41

χ = sin θ sinφ , ω34
χ = −ω43

χ = cosφ . (2.11)

We choose the following four-dimensional Euclidean gamma matrices expressed in terms

of Pauli matrices as

γ1 =

(
0 iτ1

−iτ1 0

)
, γ2 =

(
0 iτ2

−iτ2 0

)
,

γ3 =

(
0 iτ3

−iτ3 0

)
, γ4 =

(
0 12×2

12×2 0

)
. (2.12)

Imposing ζ ′ = −iζ, we see that the two Killing spinor equations (2.7)(2.8) coincide

Dµζ = − i

2`
γµζ . (2.13)

For q = 1, we find the solution with vanishing background field Aµ

ζ1 = e−
i
2
γ1θe−

1
2
γ2γ1τe−

1
2
γ3γ2γ1φe−

1
2
γ4γ3χζ0 , (2.14)

where ζ0 is a constant spinor

ζ0 =


0

c2

0

c4

 . (2.15)

Now we look for Killing spinor solutions for q > 1. The strategy is adding background field

Aµ to keep (2.14) still a solution. We find that, with the background field

AS4
q

=
q − 1

2
dτ , (2.16)

which couples to Killing spinor through the covariant derivative

Dµ = ∇µ − iAµ , (2.17)

(2.14) is still a solution for the q-branched four-sphere. There is also a Killing spinor that

has opposite R-charge and satisfies the Killing spinor equation with ζ ′ = iζ

(∇µ + iAµ) ζ =
i

2`
γµζ . (2.18)
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This solution is given by

ζ2 = e
i
2
γ1θe−

1
2
γ2γ1τe−

1
2
γ3γ2γ1φe−

1
2
γ4γ3χζ̃0 , (2.19)

where ζ̃0 is a constant spinor

ζ̃0 =


c1

0

c3

0

 . (2.20)

2.1.2 solution 2

One can also consider the round four-sphere as a three-sphere fibered on the ρ direction.

The metric is given by

ds2/`2 = dρ2 + sin ρ2(dθ2 + sin2 θdτ2 + cos2 θdφ2) . (2.21)

The vielbein can be chosen as

e1/` = sin ρ sin(τ + φ)dθ + sin ρ cos(τ + φ) sin θ cos θ(dτ − dφ) ,

e2/` = − sin ρ cos(τ + φ)dθ + sin ρ sin(τ + φ) sin θ cos θ(dτ − dφ) ,

e3/` = sin ρ (sin θ2dτ + cos θ2dφ) , e4/` = dρ . (2.22)

We can define a T matrix as

T (ρ) =


0 0 −1

2 tan ρ
2 0

0 0 0 −1
2 tan ρ

2
1
2 cot ρ2 0 0 0

0 1
2 cot ρ2 0 0

 . (2.23)

With the gamma matrices given in (2.12), we find the following matrix identities

1

4
ωµ = γµT (ρ) , µ = θ, τ, φ (2.24)

where ωµ are spin connections. This implies that an arbitrary constant 4-spinor ζ0 satisfies

the first three components (µ = θ, τ, φ) of equations (2.7), provided

1

2`
ζ ′ := T (ρ)ζ . (2.25)

There remains an undetermined ρ-dependent matrix factor S(ρ) and the Killing spinor

solution will be given by

ζ = S(ρ)ζ0 . (2.26)

S(ρ) can be determined by studying the ρ component of equation (2.7) and it is given by

S(ρ) =


sin ρ

2 0 0 0

0 sin ρ
2 0 0

0 0 cos ρ2 0

0 0 0 cos ρ2

 . (2.27)

– 7 –
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Now the q-branched four-sphere is obtained by simply replacing dτ in (2.21)(2.22) by qdτ ,

and it is straightforward to see that

ζ = S(ρ)


c1

c2

c3

c4

 . (2.28)

is still a solution, provided that a background field is turned on through the coupling

Dµ = ∇µ + iAµ


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 , (2.29)

where Aµ takes the value

AS4
q

=
q − 1

2
dτ . (2.30)

The solution (2.28) can be decomposed into 2-spinors (ξ, ξ̄) following appendix B

ξ = sin
ρ

2

(
c1

c2

)
, ξ̄ = cos

ρ

2

(
c3

c4

)
. (2.31)

One can further introduce subscript indices A,B (A,B = 1, 2) to denote R-charges, and

the solution (2.28) can be decomposed as ξA and ξ̄A

ξ1 = sin
ρ

2

(
c1

0

)
, ξ2 = sin

ρ

2

(
0

c2

)
, ξ̄1 = cos

ρ

2

(
c3

0

)
, ξ̄2 = cos

ρ

2

(
0

c4

)
. (2.32)

In terms of the R-charge indices A,B the background field in the 2-spinor notation can be

written in a matrix form

[Aτ ]AB =
q − 1

2

(
1 0

0 −1

)
. (2.33)

As we will see later in (2.104), this background can be embedded into SU(2)R background

as the diagonal part.

2.2 From CFT on S4
q to CFT on S1 ×H3

One of the motivations to study the supersymmetric branched sphere is to compute the

supersymmetric Rényi entropy [23]. Let us first go over the basic definitions of Rényi en-

tropy and its supersymmetric generalization. Consider a quantum state, or more generally

a density matrix ρ defined on a spatial slice that consists of two regions A and B separated

by the entangling surface Σ. We can trace over degrees of freedom in the region B and

obtain a reduced density matrix ρA = TrBρ. Rényi entropy for ρA is defined by

Sq =
1

1− q
log Tr(ρqA) . (2.34)

– 8 –
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For QFT, the qth-power of density matrix can be expressed in terms of the partition

function

Tr(ρqA) = Zq/(Z1)q, (2.35)

where Zq is the partition function on the q-fold cover of the original Euclidean spacetime.

The q → 1 limit then gives the entanglement entropy across Σ. This method to compute

the entanglement entropy is the so-called replica trick.

Most of the time Zq is difficult to compute for interacting quantum field theories.

However the computation may be greatly simplified when supersymmetry is preserved on

the covering space and localization techniques become available. Generally supersymmetry

is broken globally on the covering space and we need to turn on certain background fields

in order to have unbroken supercharges. The supersymmetric quantity to compute is

Sq =
1

1− q
log

(
Zq(µ)

Z1(0)q

)
, (2.36)

where Zq(µ) is the partition function on the q-fold covering space with nonvanishing back-

ground gauge field (or equivalently chemical potential µ). This gauge field couples to the

R-current. Note that (2.36) is similar yet different from the charged Rényi entropy [41].

The latter contains Z1(µ)q (instead of Z1(0)q) in the denominator and therefore (gener-

ally) is not a supersymmetric quantity. We notice however that the q → 1 limit in either

case gives the entanglement entropy. In the remaining of this paper, we will focus on the

SRE on four-sphere, which is related to the flat space R4 by a conformal mapping. The

entangling surface becomes the great two-sphere under the mapping and the q-fold cover

is the branched sphere S4
q .

Other than exploring the possibility of supersymmetric localization, the problem of

computing (supersymmetric) Rényi entropy can also be approached with the help of con-

formal mapping. A CFT on Sdq can be mapped to that on S1 × Hd−1 after appropriate

Weyl rescaling of the metric. The metric of Sdq

ds2/`2 = dθ2 + q2 sin2 θdτ2 + cos2 θdΣd−2,+1 (2.37)

can be rewritten under the coordinate transformation

sinh η = − cot θ (2.38)

in the form

ds2 = sin2 θ
(
dτ2 + `2(dη2 + sinh2 ηdΣd−2,+1)

)
, (2.39)

where we have defined

τ = qτ`, τ ∈ [0, 2πq`) , (2.40)

and dΣd−2,+1 represents the metric of a unit round d− 2 sphere. By dropping the overall

Weyl scale factor sin2 θ, we get the metric on S1 ×Hd−1

ds2 = dτ2 + `2(dη2 + sinh2 ηdΣd−2,+1) . (2.41)

– 9 –
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Under the conformal mapping, the North Pole θ = 0 is mapped to the boundary of the

hyperbolic space, η → −∞.

In odd dimensions, the partition functions (whose finite part is physical) of conformal

field theories are invariant under the Weyl rescaling

Z[Sdq ] = Z[S1
q ×Hd−1] , d odd . (2.42)

This is no longer the case in even dimensions due to conformal anomaly. Yet the coefficient

a in front of the log term of free energy

logZ[Sdq ] = . . . + a log

(
`

ε

)
+ . . . , d even , (2.43)

which is associated with Weyl anomaly and independent of regularization scheme, is ex-

pected to be universal and invariant under Weyl rescaling

a[Sdq ] = a[S1
q ×Hd−1] , d even . (2.44)

This allows us to compute the log term of SRE on a sphere by studying the thermal partition

function on S1×Hd−1. Note that the background gauge field A on Sdq is also invariant under

the Weyl rescaling since the rescaling only affects the metric. The computation of non-

supersymmetric Rényi entropy for a free field theory using this mapping can be found

in [42, 43]. As in the non-supersymmetric case [44], the conformal mapping also allows us

to identify the SRE of a general CFT on Sd with the SRE across a spherical entangling

surface in R1,d−1. In the case of strongly coupled CFTs, this mapping allows one to relate

Rényi entropy to the thermal entropy of the dual AdS black hole [41, 45]. The exact gravity

dual of SRE in three dimensions was found in [24, 25].

2.3 Supersymmetric Rényi entropy in free limit

In this section, we compute the SRE for N = 4 super Yang-Mills on S4
q (or a spherical

entangling surface in R1,3) in the free field limit. This computation can be extended to

N = 2 and N = 1 conformal field theories straightforwardly. After a conformal mapping

from S4
q to S1 × H3, the problem becomes computing the thermal partition function on a

hyperbolic space, which can be solved using the heat kernel methods [42]. Generalization

to the case with nonvanishing gauge field is straightforward [41].

The partition function Z(β) on S1
β ×Hd can be computed from the heat kernel of the

Laplacian operator ∆

logZ(β) =
1

2

ˆ ∞
0

dt

t
KS1×Hd(t) , (2.45)

where

K(t) := Tr(e−t∆) =

ˆ
ddx
√
gK(x, x, t), K(x, y, t) := 〈x|e−t∆|y〉 , (2.46)

and β = 2πq denotes the size of S1. The heat kernel on a product manifold can be factorized

KS1×Hd(t) = KS1(t)KHd(t)e
(d−1)2π2t , (2.47)

– 10 –
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where the exponentiation is to eliminate the gap in the spectrum of the Laplacian on Hd.

The heat kernel on S1 is known as

KS1(t) =
β√
4πt

∑
n 6=0,∈Z

e
−β2n2

4t . (2.48)

The hyperbolic space H3 is homogeneous and therefore the volume V factorizes

KH3(t) =

ˆ
d3x
√
g KH3(x, x, t) := V KH3(0, t) . (2.49)

The equal-point heat kernel on H3 for a complex scalar is known as

Kb
H3(0, t) =

2

(4πt)d/2
e−(d−1)2π2t , d = 3 , (2.50)

while for a Weyl spinor the heat kernel is

Kf
H3(0, t) =

2(1 + t
2)

(4πt)d/2
e−(d−1)2π2t , d = 3 . (2.51)

Turning on a constant background field

Aτ = µ/q (2.52)

along S1 gives the heat kernel a phase shift. Making use of the formulae above (2.45)–(2.51),

the free energy for a complex scalar on S1
β ×H3 can be computed

F b(β, µ) := − logZb(β, µ) = −V
∑

n6=0,∈Z

1

2

ˆ ∞
0

[
dt

t

β√
4πt

e
−n2β2

4t
2

(4πt)3/2

]
ei2nπµ . (2.53)

The free energy for a Weyl spinor can be obtained similarly5

F f (β, µ) = V
∑

n6=0,∈Z

1

2

ˆ ∞
0

[
dt

t

β√
4πt

e
−n2β2

4t
2(1 + t

2)

(4πt)3/2

]
ei(2πµ−π)n , (2.54)

where we have imposed anti-periodic boundary condition for the spinor at µ = 0. Evalu-

ating F b and F f explicitly, we get

F bq (µ) := F b(2πq, µ) =
V
(
µ4 + 2µ3 + µ2 − 1

30

)
12πq3

, (2.55)

and

F fq (µ) = −V

[
240µ4 − 120µ2 +

(
30− 360µ2

)
q2 + 7

2880πq3

]
. (2.56)

For fixed µ, one can compute the charged Rényi entropy for both scalar and spinor using

Scharged
q =

qF1(µ)− Fq(µ)

1− q
, (2.57)

5There is an additional overall minus sign compared to scalar.
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while for SRE, µ is required to be a function of q with the constraint µ(q = 1) = 0 because

of supersymmetry and therefore

Ssuper
q =

qF1(0)− Fq(µ(q))

1− q
. (2.58)

One can easily see that when the field is neutral µ = 0, the charged and supersymmetric

Rényi entropies reduce to the non-supersymmetric one

Scharged
q = Ssuper

q = Snon-SUSY
q . (2.59)

As a consistent check, one can reproduce the known result of non-supersymmetric Rényi

entropy for free N = 4 super Yang-Mills (including 6 real scalars, 4 Weyl spinors, 1

vector) [46]6

Snon-SUSY
q = 6× Sb

2
+ 4× Sf + Sv =

(
1 + q + 7q2 + 15q3

)
V

48πq3
, (2.60)

where we have inserted the Rényi entropy for a vector field

Sv =

(
91q3 + 31q2 + q + 1

)
V

360πq3
. (2.61)

In the rest of the text, we will mainly focus on the SRE and for simplicity of notation we

denote it by Sq.

Now we are ready to compute the SRE of N = 4 super Yang-Mills theory. For

convenience, we extract the extra contribution in the SRE for each field ∆S := Sq −
Snon-SUSY
q due to the non-vanishing µ. For a complex scalar

∆Sb(µ) =
(µ+ 1)2µ2V

12π(q − 1)q3
, (2.62)

while for a Weyl spinor

∆Sf (µ) =
µ2
(
−2µ2 + 3q2 + 1

)
V

24π(q − 1)q3
. (2.63)

Note that the vector field is neutral under the R-symmetry group.

As discussed in section 2.1, the conical singularity can be compensated by the back-

ground gauge fields so that some of supercharges are preserved. These background gauge

fields couple to U(1) R-currents. In the case of N = 4 SYM, there are three independent

U(1)’s as the Cartan subgroup of SO(6) R-symmetry. We denote the three U(1)’s by U(1)i
and the corresponding background fields by Ai ( chemical potential µi is defined by Aiτ and

we will omit the subscript τ from now on). The charges (k1, k2, k3) of the field components

of N = 4 multiplet are listed in table 1.

6Note that we temporarily drop the overall group factor for the theory with SU(N) gauge group, which

is not relevant for the q-scaling behavior. This group factor needs to be recovered when we compare the

free field results with the localization results as well as the gravity results later.
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ψ1 ψ2 ψ3 ψ4 Aµ φ1 φ2 φ3

k1 +1
2 −1

2 −1
2 +1

2 0 +1 0 0

k2 −1
2 +1

2 −1
2 +1

2 0 0 +1 0

k3 −1
2 −1

2 +1
2 +1

2 0 0 0 +1

Table 1. charges under three U(1)’s

SU(2)L SU(2)R k1 k2 k3

ξA 2 0 ±1
2 ±1

2 +1
2

χ̄Ȧ 0 2 ±1
2 ∓1

2 +1
2

ξ̄A 0 2 ±1
2 ±1

2 −1
2

χȦ 2 0 ±1
2 ∓1

2 −1
2

Table 2. charges of Killing spinors

Because the complex scalars φi and Weyl spinors ψ1,2,3,4 of the N = 4 SYM couple to a

few different background gauge fields, we need to determine the effective chemical potential

µ, which follows from the weighted (by charges) sum of individual chemical potentials µ =

kiµi. Note that Killing spinors should couple to all background fields Ai, although we did

not distinguish different background fields when we were solving Killing spinor equations.

The charges of the chiral Killing spinors are given in table 2,7 where SU(2)L×SU(2)R is the

local rotation group on S4. As we can see, ξA and ξ̄A are chiral and anti-chiral components

of a Dirac spinor. We will discuss various cases in which some of the Killing spinors survive

and they are classified according to how many background gauge fields are turned on.

2.3.1 A single U(1)

We first consider the case with a single background field (µ3 6= 0). The compensation

by gauge field is measured by kiA
i (or equivalently kiµi). Since the chiral Killing spinors

have charges |k3| = 1
2 , the chemical potential can be determined from the value of the

background field (2.16)

µ3 = q − 1 . (2.64)

From table 1 we see that there are two pairs of Weyl fermions charged ±1
2 respectively and

one complex scalar charged +1. Note that the contribution to SRE from fermions (2.63)

7The values in the table follows from a similar table in [2], where the R-symmetry group has been

reduced to SU(2)RL × SU(2)RR × SO(1, 1)R. In our case, the internal space is no longer Lorentzian and we

have the Euclidean version SO(2)R instead, which can be chosen as U(1)3. We note that four of the six

real scalars are charged under the Cartan subgroup of SU(2)RL with each pair having the same charge. So

this Cartan subgroup is generated by the sum of the two generators of U(1)1 ×U(1)2, while the Cartan of

SU(2)RR is associated with the difference of the two.
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is an even function of the chemical potential. The SRE is computed by

Sq = Snon-SUSY
q + 4∆Sf

(
µ =

q − 1

2

)
+ ∆Sb(µ = q − 1) , (2.65)

and finally we obtain
Sq
S1

= 1 . (2.66)

Note that the ratio we discuss here is also the ratio of the universal terms since the common

factor, the volume V contains log divergence.

2.3.2 Two U(1)’s

Next we consider the case with two background fields of equal values (µ1 = µ2 6= 0). The

compensation is given by µ1(k1 +k2) and we have the effective charge given by r = k1 +k2.

To make the charged ( |k1 + k2| = 1 ) Killing spinors still satisfy equations (2.7)(2.8), the

values of chemical potentials should be

µ1 = µ2 =
q − 1

2
. (2.67)

From table 1 we see that there are two Weyl fermions charged ±1 respectively and two

complex scalars charged +1. The SRE reads

Sq = Snon-SUSY
q + 2∆Sf

(
µ =

q − 1

2

)
+ 2∆Sb

(
µ =

q − 1

2

)
, (2.68)

and finally we obtain
Sq
S1

=
3q + 1

4q
. (2.69)

2.3.3 Three U(1)’s

Finally we consider the generic case with all three background U(1) fields turned on. For

the same reason in the two cases above, we can preserve the Killing spinors of equivalent

charge |k1 + k2 + k3| = 3
2 with the choice of chemical potentials

µ1 = (q − 1)
a

3
, µ2 = (q − 1)

b

3
, µ3 = (q − 1)

(
1− a+ b

3

)
. (2.70)

We can define the effective charge r for all the charged fields(
q − 1

2

)
r = kiµi . (2.71)

From table 1 we see that, effective charges r of the four Weyl spinors are +1, −1 + 2a
3 ,

−1 + 2b
3 and −1 + 2a+2b

3 . The three complex scalars are effectively charged +2a
3 , +2b

3 and
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2− 2a+2b
3 . The SRE is then given by

Sq = Snon-SUSY
q + ∆Sf

(
µ =

q − 1

2

)
+ ∆Sf

(
µ =

(3− 2a)(q − 1)

6

)
+∆Sf

(
µ =

(3− 2b)(q − 1)

6

)
+ ∆Sf

(
µ =

(3− 2b− 2a)(q − 1)

6

)
+∆Sb

(
µ =

(q − 1)a

3

)
+ ∆Sb

(
µ =

(q − 1)b

3

)
+∆Sb

(
µ =

1

3
(q − 1)(3− a− b)

)
, (2.72)

and the q-dependence is

Sq
S1

=
1

27q2

(
q2C2 + qC1 + C0

)
, (2.73)

with the coefficients

C2 = −a2(−3 + b)− a(−3 + b)2 + 3(9− 3b+ b2) ,

C1 = a2(2b− 3) + a
(
2b2 − 9b+ 9

)
− 3(b− 3)b ,

C0 = −ab(a+ b− 3) . (2.74)

In the special case with all chemical potentials being equal (a = b = 1),

µ1 = µ2 = µ3 =
q − 1

3
, (2.75)

the SRE is computed by

Sq = Snon-SUSY
q + 3∆Sf

(
µ =

q − 1

6

)
+ ∆Sf

(
µ =

q − 1

2

)
+ 3∆Sb

(
µ =

q − 1

3

)
, (2.76)

and the ratio (2.73) becomes

Sq
S1

=
19q2 + 7q + 1

27q2
. (2.77)

2.4 Exact partition function on S4
q

In this section the exact partition function of N = 4 super Yang-Mills on the branched

four-sphere is studied. In order to do this, we first construct N = 2 SCFT on a resolved

branched sphere and then compute its partition function using localization technique. It

turns out that the partition function on the branched sphere with background (2.67) and

the one on an ellipsoid [10] are equal, as in the three-dimensional case [23]. Finally we

study the large N matrix model in the special case of N = 4 SYM on the branched sphere

and work out the q-dependence of the partition function and SRE. We leave the explicit

localization on branched sphere with generic background (2.70) for future work.
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2.4.1 Supersymmetric resolved branched four-sphere

We recall that the branched four-sphere S4
q (2.6) has a conical singularity at θ = 0. As a

common recipe [47] to handle the singularity, one may instead study a sequence of smooth

resolved spaces Ŝ4
q(ε) (ε > 0 is small) and consider S4

q as the ε→ 0 limit of Ŝ4
q(ε). In order

to see how the resolving is introduced, we first turn to the 4d ellipsoid, which is defined by

the embedding equation in R5 (b := (˜̀/`)1/2),

x2
0

`2
+
x2

1 + x2
2

˜̀2
+
x2

3 + x2
4

`2
= 1 . (2.78)

In particular, for ˜̀= q`, the metric of the ellipsoid is obtained using (2.5) (with `→ q` for

x1, x2),

ds2 = f(θ)2 dθ2 + `2(q2 sin2 θ dτ2 + cos2 θ(dφ2 + sin2 φ dχ2)) , (2.79)

where f(θ) =
√
`2(sin2 θ + q2 cos2 θ). The difference between the singular metric (2.6) and

the smooth one (2.79), implies that we should resolve the singular metric by adding a factor

fε(θ). Thus the metric of Ŝ4
q(ε) is given by

ds2 = fε(θ)
2 dθ2 + `2(q2 sin2 θ dτ2 + cos2 θ(dφ2 + sin2 φ dχ2)) , (2.80)

where fε (θ) is a smooth function satisfying

fε (θ) =

{
q` , θ → 0

` , ε < θ ≤ π
2 .

(2.81)

As we shall see, with appropriate background fields turned on, the resolved space (2.80)

allows Killing spinors. For later convenience, from now on we switch to the coordinates

(ρ, η, τ, χ), in which τ, χ remains intact but ρ, η are related to θ, φ by the transformations

sin θ = sin η sin ρ ,

tanφ = cos η tan ρ . (2.82)

The metric then becomes

ds2 = `2 sin2 ρ(q2 sin2 ηdτ2 + cos2 ηdχ2) + (F sin ρdη +Hdρ)2 +G2dρ2 , (2.83)

where F,G,H are functions of η, ρ. Their explicit forms, together with vielbein and spin

connection are given in appendix C. Now we study the Killing spinor equations on the

resolved branched sphere (2.83). The strategy is to require the Killing spinor on a round

sphere to remain a solution on the resolved space and we search for the appropriate back-

ground configuration for that to happen. Then the Killing spinor equations can be turned

into a set of linear algebraic equations of the background fields which have nontrivial solu-

tions.

Following the setup in [10], we shall construct N = 2 theories with R-symmetry group

SU(2)R×U(1)R on the resolved branched sphere (2.83). Particularly we use a non-Abelian
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background SU(2)R gauge field and 2-rank tensor fields T ab, T̄ ab to compensate the devi-

ation from the round sphere. The Killing spinor equations consist of main equation and

auxiliary equation. The former set is essentially extended (2.7) in the 2-spinor notation8

DµξA + T abσabσµξ̄A = −iσµξ̄′A ,
Dµξ̄A + T̄ abσ̄abσ̄µξA = −iσ̄µξ′A , (2.84)

where T ab, T̄ ab are self-dual and anti-self-dual real background tensor fields, respectively.

The covariant derivatives Dµ are defined with background SU(2)R gauge field Vµ
A
B in

addition to the spin connection Ωab
µ ,9

DµξA ≡ ∂µξA +
1

4
Ωab
µ σabξA + iξBVµ

B
A ,

Dµξ̄A ≡ ∂µξ̄A +
1

4
Ωab
µ σ̄abξ̄A + iξ̄BVµ

B
A . (2.85)

The set of auxiliary equation, which follows from extended (2.8) in 2-spinor notation reads

σµσ̄νDµDνξA + 4DµTabσ
abσµξ̄A = MξA ,

σ̄µσνDµDν ξ̄A + 4DµT̄abσ̄
abσ̄µξA = Mξ̄A , (2.86)

where M is a background scalar field.

We choose the particular Killing spinors (2.32) on round sphere S4, which was studied

in section 2.1. They can also be presented as

ξA = (ξ1, ξ2) = sin
ρ

2

(
κ++ , κ−−

)
,

ξ̄A =
(
ξ̄1, ξ̄2

)
= cos

ρ

2

(
iκ++ ,−iκ−−

)
, (2.87)

where κst are Killing spinors on S3 (for m over the coordinates (η, τ, χ) and k, l = 1, 2, 3),

(
∂m +

1

4
Ωkl
mτ

kl
)
κst = − ist

2`
ekmτ

kκst , κst ≡
1

2

(
e
i
2

(sτ+tχ−stη)

−se
i
2

(sτ+tχ+stη)

)
. (2.88)

Substituting this solution into the auxiliary equation (2.86) with vanishing background

vector and tensor fields Vµ
A
B = 0, Tab = T̄ab = 0, we get M = −1

3R, where R is the Ricci

scalar of S4.

Now we determine the background fields on the resolved sphere. First we can regard ξA
and ξ̄A as 2× 2 matrices ξ with spinor row indices and SU(2)R column indices. From now

on, we use boldface letters to denote 2× 2 matrix quantities. In addition to ξ, others are

V + V [3]τ3 ≡ Ṽ = EaṼa , iT ≡ σabT
ab , iT̄ ≡ σ̄abT̄

ab , (2.89)

8We use the same notations as that used in [10], see appendix A. The decomposition of 4-spinor to

2-spinor is shown in appendix B.
9In this subsection, vielbein and spin connection we take are shown in appendix C, which are different

from those in section 2.1.2.
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and

ξ′ = Sξ = −iσabSabξ , ξ̄
′
= S̄ξ̄ = −iσ̄abS̄abξ̄ , (2.90)

where Sab, S̄ab are anti-symmetric tensors. In defining Ṽ, we subtract the background

field −V [3]τ3 in three dimensions. Note that the spinors κst remain Killing spinors on a

three-dimensional resolved branched sphere when V [3] is turned on,(
∂m +

1

4
Ωkl
mτ

kl ∓ iV [3]
m

)
κ±± = − i

2fε
ekmτ

kκ±± ,

V [3] ≡ 1

2

(
1− `

fε

)
dχ+

1

2

(
1− q`

fε

)
dτ . (2.91)

As we will see in the singular limit ε → 0, all other fields vanish and V [3] is the only

nontrivial background field on the branched four-sphere. Requiring (2.87) to remain a

solution of the main equation (2.84), we obtain a set of linear algebraic equations for the

unknowns Ṽ,T, T̄,S and S̄. In terms of the boldface notation, they read (a = 4)

ξṼ4 + Tξ̄ + S̄ξ̄ = i
cos ρ+ 1

2G sin ρ
ξ − H

2FG sin ρ
τ3ξ +

1

2
Ω34

4 τ
3ξ ,

ξ̄Ṽ4 + T̄ξ + Sξ = i
cos ρ− 1

2G sin ρ
ξ̄ − H

2FG sin ρ
τ3ξ̄ − 1

2
Ω34

4 τ
3ξ̄ , (2.92)

and (a, b = 1, 2, 3)

ξṼa − iTτaξ̄ − iτaS̄ξ̄ =
1

2F sin ρ
τaξ +

1

2
Ωb4
a τ

bξ ,

ξ̄Ṽa + iT̄τaξ + iτaSξ =
1

2F sin ρ
τaξ̄ − 1

2
Ωb4
a τ

bξ̄ , (2.93)

where Ωb4
a := EµaΩb4

µ and they take the following form,

Ω13
1 = − 1

F
csc ρ tan η , Ω23

2 =
q

F
csc ρ cot η ,

Ω14
1 =

csc ρ(cos ρF + tan η H)

FG
, Ω24

2 =
csc ρ(cos ρF − cot η H)

F G
, (2.94)

Ω34
3 =

∂ρF + cot ρF − csc ρ ∂ηH

F G
, Ω34

4 = −csc ρ ∂ηG

F G
.

To solve the equations it is helpful to rewrite the action of R-gauge field Ṽ on ξ as Gamma

matrices acting from the left. This can be done using

τ1
η ξ = −ξτ3, (2.95)

where

τ1
η ≡ τ1 cos η + τ2 sin η , (2.96)

and

τ3ξ = ξ
{

cos(χ+ τ)τ1 + sin(χ+ τ)τ2
}
. (2.97)

Moreover, we can also express ξ̄ in terms of ξ using

τ1
η ξ = i tan

ρ

2
ξ̄ . (2.98)
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With all these replacements, every equation in (2.92) and (2.93) is of the form of a matrix

(linear combination of 1 and τk) multiplying ξ. The supersymmetric background admitting

Killing spinor can be determined by requiring all the matrices to be zero. Note that

the manifold with unspecified F,H,G is a generalization of the ellipsoid in [10] and the

equations for background fields are similar though not the same.

We nevertheless found nontrivial solutions. The solutions are not unique and can be

shifted by solutions to the homogeneous equation, namely the equations (2.92) and (2.93)

with the r.h.s. set to zero. The homogeneous equations are insensitive to the metric and

remain the same as those in [10]. With a properly chosen homogeneous solution, a simple

special solution to (2.92)(2.93) is given by (τ2
η ≡ iτ1

η τ
3)

T =
1

4

( 1

F
− 1

G

)
τ1
η +

H

4FG
τ2
η , T̄ =

1

4

( 1

F
− 1

G

)
τ1
η −

H

4FG
τ2
η ,

S = −1

4

( 1

F
+

1

G

)
τ1
η −

H

4FG
τ2
η , S̄ = −1

4

( 1

F
+

1

G

)
τ1
η +

H

4FG
τ2
η , (2.99)

and

ξṼ1 =
cos η csc ρ (G− F )− sin η cot ρH

2FG
τ1
η ξ −

sin η [cot ρ(F −G) + csc ρ tan η H]

2FG
τ2
η ξ ,

ξṼ2 =
sin η csc ρ (G− F ) + cos η cot ρH

2FG
τ1
η ξ +

cos η [cot ρ(F −G) + csc ρ tan η H]

2FG
τ2
η ξ ,

ξṼ3 =
Ω34

3 F − cot ρ

2F
τ3ξ , ξṼ4 =

Ω34
4 F G+ cot ρH

2FG
τ3ξ . (2.100)

Note that T, T̄,S and S̄ can be obtained from the solution on ellipsoid [10] by replacing

the variables f, g, h (whose explicit forms can be found in (C.7)) by F,G,H. However, that

is not the case for the background gauge field Ṽ. On the other hand, when fε(θ) is chosen

to be
√
`2(sin2 θ + q2 cos2 θ), the background becomes that of ellipsoid.

The remaining background scalar field M can be determined straightforwardly. In

2× 2 matrix notations, the auxiliary equation (2.86) becomes

−4 cot
ρ

2

(
σµDµS̄−DµTσ

µ
)
τ1
η − 4σµS̄T̄σ̄µ

= 4 tan
ρ

2

(
σ̄µDµS−DµT̄σ̄

µ
)
τ1
η − 4σ̄µSTσµ = M · 1 . (2.101)

Plugging in the special solution above (2.99)(2.100) we can see that terms with derivatives

on F,G,H all cancel and M is given by

M =
1

F 2
− 1

G2
+

H2

F 2G2
− 4

FG
. (2.102)

Branched sphere limit. In the singular limit ε → 0, we get to the branched sphere

which has

F = G = ` , H = 0 . (2.103)

One can immediately see that, in this limit all the fields in (2.99)(2.100) vanish except for

S and S̄.10 The only nontrivial background gauge field is

Vτ
A
B = −V [3]

τ τ3 = AU(1)J
τ

(
1 0

0 −1

)
, AU(1)J

τ =
q − 1

2
, (2.104)

10S and S̄ return to their values on a round sphere.
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which is exactly the background we worked out before (2.33). We use U(1)J to denote the

Cartan subgroup of SU(2)R.

In the case of N = 4 SYM in the supersymmetric background (2.99)(2.100), we shall

identify the singular limit as the theory on the branched sphere with two equal U(1)

chemical potentials turned on. The latter has been discussed in section 2.3.2 in details.

Gauge fields of N = 2 R-symmetry subgroups U(1)J and U(1)R are linear combinations of

Ai since both can be embedded in U(1)3. The coefficients of Ai can be obtained by tracing

the transformation properties of the scalars. The N = 4 SYM consists of one N = 2 vector

multiplet and one N = 2 hypermultiplet. Each of the three complex scalars represents one

of U(1)i (i = 1, 2, 3), with the charges listed in table 1. Following the conventions in [10], the

vector multiplet consists of a gauge field, 2 Weyl fermions and 2 scalars (Aµ, λαA, λ̄α̇A, φ, φ̄)

and the hypermultiplet consists of 4 scalars and 2 Weyl fermions (qAI , ψαI , ψ̄
α̇
I ) (I = 1, 2).

From table 1, the complex scalar φ (identified as φ3) is only charged under U(1)3, which

can then be identified as U(1)R.11 We note that the charged complex scalar has U(1)R
charge +2 and k3 = +1. As a result of the different normalization, the gauge fields are

related in the following way

A3 = 2AU(1)R . (2.105)

The scalars qAI transform as a doublet of SU(2)R and they have opposite charges under

Cartan subgroup U(1)J of SU(2)R. We can identify q11 as φ1 and q†21 as φ2. From table 1,

these two scalars have charges k1 = +1 and k2 = +1 respectively. Hence we can fix the

coefficients of the linear combination

AU(1)J =
1

2
(A1 +A2) . (2.106)

There is another combination 1
2(A1 − A2), which is not in the N = 2 R-symmetry group.

So the current N = 2 background corresponds to the case of A1 = A2. Combining these,

we can see that the singular limit of background configuration (2.104) give

A1 = A2 =
q − 1

2
, (2.107)

which precisely agrees with (2.67).

2.4.2 Localization on resolved branched four-sphere

The background (2.99)(2.100) allows Killing spinor solutions (2.87) on the resolved branched

sphere. With the corresponding supercharge Q, we can compute the partition function of

N = 2 supersymmetric gauge theories using localization techniques. Since the procedure

is insensitive to the resolving factor fε(θ) and the specific forms of the background fields

Ṽ,T, T̄,M , it will be essentially identical to what is presented in [10]. So we will be as

brief as we can and only list the key steps and the final results. Readers interested in the

details can consult [10] (see also [2]).

11Note that, in order to turn on U(1)R, we have to temporarily relax the reality condition for φ and φ̄.
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Saddle point. First consider the N = 2 vector multiplet, which contains a gauge field

Aµ, gauginos λαA, λ̄α̇A, two real scalar fields φ, φ̄ and an auxiliary field DAB = DBA. All

of them are Lie algebra valued and satisfy reality conditions. The Lagrangian of super-

symmetric Yang-Mills theory on the resolved sphere takes the following form

LYM = Tr
[1

2
FµνF

µν + 16Fµν(φ̄Tµν + φT̄µν) + 64φ̄2TµνT
µν + 64φ2T̄µν T̄

µν − 4Dµφ̄D
µφ

+2Mφ̄φ− 2iλAσµDµλ̄A − 2λA[φ̄, λA] + 2λ̄A[φ, λ̄A] + 4[φ, φ̄]2 − 1

2
DABDAB

]
.

(2.108)

It is argued in [10] that, the saddle point locus on the deformed sphere is given by (except

at north and south poles),

Aµ = 0, φ = φ̄ = − i
2
a0 , DAB = −ia0wAB , (2.109)

where

wAB ≡
4ξAσ

µνξB (Tµν − Sµν)

ξCξC
= −4ξ̄Aσ̄

µν ξ̄B (T̄µν − S̄µν)

ξ̄C ξ̄C
. (2.110)

Note that the constant matrix a0 needs to be integrated over the Lie algebra but the

integration domain can be reduced to the Cartan subalgebra, contributing an extra factor of

Vandermonde determinant. At the north (south) pole, the field strength can take the anti-

self-dual (self-dual) form, leading to instanton (anti-instanton) contribution. The classical

contribution to the path integral which follows from evaluating Yang-Mills action (2.108)

on the locus (2.109) is given by

S =
1

g2
YM

ˆ
d4x
√
gLYM

∣∣∣
saddle point

=
8π2

g2
YM

q`2Tr(a2
0) . (2.111)

One-loop determinant. The value of path integral is invariant under the Q̂-exact defor-

mation L → L+ tQ̂V ′.12 By choosing the bosonic part of Q̂V ′ positive definite and sending

t→∞, Gaussian approximation becomes exact for the path integral over the fluctuations

around the locus. The Gaussian integral gives the square root of the ratio between the

determinant of fermionic kinetic operator Kfermion and that of the bosonic kinetic operator

Kboson, both of which follow from the quadratic part of the Q̂-exact regulator Q̂V ′. The

quadratic part of V ′ can be written as

V ′
∣∣∣
quad.

= (V + VGF)
∣∣∣
quad.

= (Q̂X,Ξ)

(
D00 D01

D10 D11

)(
X

Q̂Ξ

)
, (2.112)

where Dij are differential operators. X and Ξ are bosonic and fermionic fields, respectively.

The fields X,Ξ can be regarded as sections of bundles E0, E1 on the manifold and therefore

D10 acts on the complex

Γ(E0)→ Γ(E1) . (2.113)

12Q̂ = Q + QB with QB being the BRST operator. V ′ = V + VGF, where VGF is the gauge fixing term.
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The ratio of the determinants can be related to the spectrum of operator H ≡ Q̂2 on the

kernel and cokernel of the operator D10 [2]

detKfermion

detKboson
=

detCokerD10H

detKerD10H
. (2.114)

The latter can be extracted from the equivariant index of the transversely elliptic opera-

tor D10,

indD10 ≡ TrKerD10

(
e−iHt

)
− TrCokerD10

(
e−iHt

)
. (2.115)

Here is the explanation how this can actually be done. The determinant of H is given by

the product of its eigenvalues
∏
i λi, while the trace Tre−iHt can be written as

∑
aλi with

a ≡ e−it. To get the determinant, we can take down the exponents and replace the sum

by product.

According to Atiyah-Bott formula, the index can be evaluated as the sum of contribu-

tions from the two fixed points (north and south poles, where x = x̃)

ind(D10) =
∑

x: fixed point

TrE0γ − TrE1γ

det(1− ∂x̃/∂x)
. (2.116)

Note that generic fields (sections) on the manifold transform under e−iHt as

e−iHts(x) = γs s(x̃). (2.117)

Square of fermionic symmetry. As we can see, the index and therefore the one-loop

determinant only depend on how the fields and points on the manifold transform under

H. Now we study the action of H = Q̂2. The square of fermionic symmetry Q̂2 is a linear

combination of various symmetry transformations

Q̂2 = iLv + Gauge(a0) + Lorentz(Lab)

+Scale(w) + RU(1)R(Θ) + RSU(2)R(Θ̂AB) , (2.118)

where the transformation parameters can be read off from the SUSY transformation rule

shown in [10],

vµ = 2ξ̄Aσ̄µξA , (2.119)

Lab = D[avb] + vµΩµab , (2.120)

w = −(i/2)
(
ξAσµDµξ̄A +Dµξ

Aσµξ̄A
)
, (2.121)

Θ = −(i/4)
(
ξAσµDµξ̄A −Dµξ

Aσµξ̄A
)
, (2.122)

Θ̂AB = −iξ(Aσ
µDµξ̄B) + iDµξ(Aσ

µξ̄B) + vµVµAB . (2.123)

The effect of gauge transformation will be discussed later and we will temporarily take the

gauge group to be Abelian. Killing vector vµ∂µ as a bilinear of ξ̄A, ξA can be computed

2ξ̄Aσ̄µξA ∂µ =
1

q`
∂τ +

1

`
∂χ. (2.124)
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Plugging in Ωnab given in (C.4) one can further show Lab = 0. From the explicit Killing

spinor solutions (2.87), we get w = Θ = 0. With the use of the main equation (2.84),

we can express the SU(2)R parameter ΘA
B in terms of Sab, S̄ab and V A

B. Substituting in

(2.91) and (2.100), we get

Θ̂A
B =

(
− 1

2q`
− 1

2`

)
· (τ3)AB. (2.125)

In summary, the action of H on the resolved branched space is essentially identical to that

on an ellipsoid. This is particularly clear near the poles where ρ = 0, π. As we can see

from the behavior of fε(θ) (2.81), functions F,G,H given in (C.3) return to f, g, h (as a

result of fε → q`) and Ŝ4
q turns into an ellipsoid.

For non-Abelian gauge group G, a0 is in the Cartan subalgebra and there is an extra

factor for the index (2.116)

rankG+
∑
α∈∆

eta0·α . (2.126)

Obviously, this factor is independent of the geometry of the manifold.

Partition function. To summarize, the one-loop determinant for the vector multiplet

should be the same as that on an ellipsoid with deformation parameter b =
√
q,

Detvec =

√
detKfermion

detKboson
=
∏
α∈∆+

Υq(iâ0 · α)Υq(−iâ0 · α)

(â0 · α)2
, (2.127)

where â0 ≡ `
√
qa0 and Υq(x) is defined to regularize the following infinite products

Υq(x) =
∏

m,n≥0

(
mq1/2 + nq−1/2 +Q− x

)(
mq1/2 + nq−1/2 + x

)
, Q ≡ √q+

1
√
q
. (2.128)

We can also introduce matter to the theory. The components of the N = 2 hypermul-

tiplet matter are localized at the origin [10]. The one-loop determinant can be computed

the same way as before and the final result should be the same as that on an ellipsoid with

b =
√
q. For N = 2 hypermultiplet in representation R we have

Dethyp =
∏
ρ∈R

Υq

(
iâ0 · ρ+ Q

2

)−1
. (2.129)

Let us now consider the contribution from the instantons localized at two poles. In the

neighborhood of the north pole x0 = ` (ρ = 0), we can choose the Cartesian coordinates

x1,...,4 and the metric becomes flat gµν ' ηµν after we drop terms vanishing as O(x2) or

faster. Up to this order, the only nonvanishing background field is the tensor field T and

it reduces to the value at the pole

T '
[

1

4

( 1

F
− 1

G

)
τ1
η +

H

4FG
τ2
η

] ∣∣∣
ρ=0

=
1

4

( 1

f
− 1

g

)
τ1
η +

h

4fg
τ2
η

∣∣∣
ρ=0, ˜̀=q`

. (2.130)
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The second equality follows from the explicit forms of F,G,H and f, g, h (see (C.3) and

(C.7) in appendix C). One can show that locally the background fields take the same form

of the Omega background with ε1 = `−1, ε2 = (q`)−1

TΩ ≡ 1

2
TΩ
µνdxµdxν =

1

16

( 1

q`
− 1

`

)(
dx1dx2 − dx3dx4

)
,

VΩ = T̄Ω = MΩ = 0 . (2.131)

Therefore the instanton contribution is essentially given by the Nekrasov’s instanton par-

tition function Zinst(ε1, ε2, a0, τ), where τ = θ
2π + 4π

g2
YM
i. Similarly, we get instanton contri-

bution from the south pole Zinst(ε1, ε2, a0, τ̄).

Putting all the pieces together, the partition function on the resolved sphere is

Z =

ˆ ∏
i

d(â0)i e
− 8π2

g2
YM

Tr(â2
0)
∏
α∈∆+

Υq(iâ0 · α)Υq(−iâ0 · α)∏
I
∏
ρ∈RI Υq(iâ0 · ρ+ Q

2 )
|Zinst|2 , (2.132)

where I denotes different types of hypermultiplet matter. Note that the partition function

is independent of the resolving function fε and therefore we can take the limit ε → 0 and

obtain the partition function on the branched sphere S4
q

Zq = Zε→0 = Z . (2.133)

2.4.3 Partition function in the large N limit

In section 2.4.2, we have shown that the path integral of N = 2 gauge theory on branched

sphere S4
q with two U(1) background fields (2.107) can be localized in the Coulomb branch

to a finite-dimensional matrix integral. We are particularly interested in the special case

of N = 4 theory with hypermultiplet in the adjoint representation of gauge group SU(N).

Our goal in this section is to study the resulting matrix model in the large N limit. By

â0 · ρ = â0 · α, the matrix integral (2.132) of N = 4 theory can be written as

Z =

ˆ ∏
i

d(â0)ie
− 8π2N

λ
Tr(â2

0)
∏
α∈∆+

Υq(iâ0 · α)Υq(−iâ0 · α)

Υq(iâ0 · α+ Q
2 )Υq(−iâ0 · α+ Q

2 )
|Zinst|2 , (2.134)

where λ = g2
YMN is the ’t Hooft coupling and the instanton contributions |Zinst|2 become

negligible at large N due to exponential suppression [32]. From now on we will set Zinst = 1.

In the planar limit, the matrix integral (2.134) is governed by the saddle point. In

terms of the eigenvalue density

ρ(x) =
1

N

∑
i

δ(x− (â0)i) , (2.135)

the saddle point equations are equivalent to a singular integral equation

 µ

−µ
dy ρ(y)K(x− y) =

8π2

λ
x . (2.136)
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The function K(x) here is defined as

K(x) =
1

2
∂x log

(
Υq(ix)Υq(−ix)

Υq(ix+ Q
2 )Υq(−ix+ Q

2 )

)
. (2.137)

Recall that Υq(x) can be decomposed as Barnes double gamma functions

Υq(x) =
∏

m,n≥0

(
mq1/2 + nq−1/2 + x

)(
mq1/2 + nq−1/2 +Q− x

)
=

1

Γ2[x, (q1/2, q−1/2)] Γ2[Q− x, (q1/2, q−1/2)]
. (2.138)

At large |x|, Barnes double gamma function can be expanded as13

log Γ2[x, (a, b)] = − 1

2ab
x2 log x+

3

4ab
x2 +

1

2

(
1

a
+

1

b

)
(x log x− x)

−
(

1

12

(
a

b
+
b

a

)
+

1

4

)
log x+ · · · . (2.139)

Then at large x, K(x) becomes

K(x) =
(1 + q)2

4q

1

x
+

(q2 − 1)2

96q2

1

x3
+O(x−4) . (2.140)

When q → 1, all the higher terms vanish, K(x) becomes 1
x and the saddle point equa-

tion (2.136) returns to that of N = 4 SYM on round sphere S4

 µ

−µ
dy ρ(y)

1

x− y
=

8π2

λ
x . (2.141)

To leading order in the large x expansion (2.140), the q-dependence of K(x) is simply

factorized

K(x) ≈ Q2

4

1

x
, Q =

√
q +

1
√
q
. (2.142)

Notice that
´
dy ρ(y) is always order one and therefore the large x expansion is essentially

the large λ expansion by requiring consistent scalings of x and λ in the saddle point

equation.

From now on we take this leading order approximation and then the saddle point

equation (2.136) becomes that of N = 4 SYM on S4 with a rescaled ’t Hooft coupling

 µ

−µ
dy ρ(y)

1

x− y
=

8π2

λ̃
x , λ̃ =

Q2

4
λ . (2.143)

This saddle point equation (2.143) is solved by Wigner’s semicircle

ρ(x) =
8π

λ̃

√
µ2 − x2 , (2.144)

13The large x expansion of log Γn(x, ~ω) is given in appendix E.
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where the width µ is determined by the normalization condition

1 =
4π2µ2

λ̃
, µ =

√
λ̃

2π
=

√
λ

4π
Q . (2.145)

With this solution, the large N free energy on S4
q can be computed by

Fq = − logZq

=
8π2N2

λ

ˆ µ

−µ
ρ(x)x2dx− N2

2

Q2

4

ˆ µ

−µ
ρ(x)

 µ

−µ
ρ(y) log(x− y)2dxdy . (2.146)

The first term of (2.146) is evaluated to be

8π2N2

λ

ˆ µ

−µ
ρ(x)x2dx =

1

2
N2 λ̃

λ
. (2.147)

Using the identity

 µ

−µ

√
µ2 − y2 log |x− y|dy =

π

2

(
x2 − µ2

2
+ µ2 log

µ

2

)
(2.148)

to simplify the second term of (2.146), the final relevant log term of free energy can be

obtained

Fq = −1

2
N2 λ̃

λ
log λ̃ = −1

2
N2Q

2

4
log λ̃ . (2.149)

One can check that, at q = 1, λ̃ = λ and (2.149) is exactly the result of N = 4 SYM

on round sphere. In the strong ’t Hooft coupling limit, the q-dependence inside the log

in (2.149) is negligible and therefore the q-dependence of free energy Fq simply factorizes

Fq =
Q2

4
F1 =

1

4

(
√
q +

1
√
q

)2

F1 . (2.150)

The SRE is then obtained as
Sq
S1

=
3q + 1

4q
. (2.151)

Both free energy and SRE precisely agree with the results of free field computation, which

implies that both of them are protected. Indeed the coefficient of the log in the q → 1

limit is associated with the Weyl anomaly and independent of the coupling. Our exact

result (2.149) suggests that the universal part of the free energy on q-branched sphere S4
q

is also independent of the coupling constant.

3 Five-dimensional R-charged topological black hole

Now we search for gravity duals for the four-dimensional superconformal field theories on

S4
q . As discussed before, the rigid supersymmetry on S4

q requires additional background

fields, which couple to the conserved R-currents. For simplicity, we want to restrict our-

selves to Abelian R-currents. The R-symmetry group of N = 4 super Yang-Mills is SO(6)
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and its maximal Abelian subgroup is the Cartan U(1)×U(1)×U(1). Adding R-symmetry

backgrounds ( physically interpreted as chemical potentials ) in field theory corresponds

to adding R-charges on the gravity side. Due to the conical singularity on S4
q , it is easier

to search for gravity duals for field theories on the conformally equivalent space S1
q × H3.

In this section, we focus on the candidates for the gravity duals, which are the charged

AdS topological black hole solutions in five-dimensional N = 2 STU gauged supergravity

theory.

3.1 Five-dimensional N = 2 gauged supergravity

Five-dimensional N = 2 supergravity theories can be realized as eleven-dimensional su-

pergravity compactified on Calabi-Yau three-folds [48, 49]. The massless spectrum of the

compactified theory contains nV = h(1,1) − 1 vector multiplet and nH = h(2,1) + 1 hyper-

multiplet, where h(1,1) and h(2,1) are Hodge numbers of the Calabi-Yau manifold. For our

purpose the hypermultiplets are switched off. The field contents of the supergravity mul-

tiplet are the fünfbein eaµ, two gravitini ψAµ and a graviphoton Ãµ. Each vector multiplet

contains a vector Aµ, two spinors λA and one real scalar φ. The fermions in each multiplet

transform as doublet (label by the superscript A) under the SU(2)R R-symmetry group

while all the other fields are neutral. Anti-de Sitter solutions can be obtained by gauging

the U(1) subgroup of SU(2)R. This is done by introducing coupling to a linear combination

of the nV + 1 (including the graviphoton) Abelian gauge fields

VIA
I
µ , I = 1 . . . nV + 1 (3.1)

with coupling constant g = 1
L . The bosonic part of the gauged supergravity Lagrangian is

given by

L√
−g

= −1

2
R+

V

L2
− 1

4
GIJFµν

IFµνJ − 1

2
gij∂µφ

i∂µφj +
1

48
√
−g

εµνρσλCIJKF
I
µνF

J
ρσA

K
λ ,

(3.2)

where i = 1 . . . nV and V is the scalar potential given by14

V = VIVJ

(
6XIXJ − 9

2
gij∂iX

I∂jX
J
)
. (3.3)

The real scalar fields XI have to satisfy the constraint,

V =
1

6
CIJKX

IXJXK = 1. (3.4)

The homogeneous cubic polynomial V specifies a hypersurface embedded in the nV + 1-

dimensional space parameterized by XI and this hypersurface is the target space M with

ϕi as coordinates.15 This manifold is known as “very special” manifold. Other quantities

in (3.2), GIJ and gij can be expressed in terms of V,

GIJ = −1

2

∂

∂XI

∂

∂XJ
(lnV)|V=1 , gij = GIJ∂iX

I∂jX
J |V=1 , (3.5)

14The scalar potential is necessary because of supersymmetry.
15In other words, XI are known functions of φi and these functions themselves are arbitrary as the

Lagrangian is invariant under redefinition of φi.
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where ∂i ≡ ∂
∂φi

. The matrix gij in (3.3) is the inverse of gij , the latter of which is the metric

on M. The BPS solution in the gauged supergravity theory was found in [50]. We leave

the general BPS solution and the Killing spinor analysis in appendix D. In what follows,

we will pay our attention to a special case of the gauged supergravity theory, called STU

model.

3.2 STU black hole

The STU model is a special case of the N = 2 gauged supergravity and it is given by

V = X1X2X3 = 1 . (3.6)

Then we get GIJ from (3.5)

GIJ =
1

2

 (X1)−2

(X2)−2

(X3)−2

 , (3.7)

and with VI = 1
3 we get the potential

V = 2

(
1

X1
+

1

X2
+

1

X3

)
. (3.8)

The three-charge non-extremal black hole solution is described by the metric

ds2 = −H−4/3f(r)dt2 +H2/3

(
1

f(r)
dr2 + r2dΣ3,k

)
,

f(r) = k − m

r2
+
r2

L2
H2 , H2 = H1H2H3 , Hi = 1 +

Qi
r2
, (3.9)

as well as the scalars and the gauge fields

Xi =
H2/3

Hi
, Ai =

[√
k +

m

Qi

(
1

Hi
− 1

)
+ µ̂i

]
dt . (3.10)

The parameter k specifies the spatial curvature of dΣ3,k. For flat space R3 and three-

sphere S3, k takes the values of 0 and +1 respectively. For hyperbolic space H3, k = −1.

This particular solution in the STU model is found by Behrnd, Cvetic and Sabran [51].

This solution with three U(1) charges can also be obtained by S5-reduction of the ten-

dimensional gravity solution coming from spinning D3 branes [52–54].16

We are particularly interested in the extremal limit m = 0 and k = −1 (boundary

being S1×H3). This is a topological BPS black hole as it is a special case of (D.1). Define

the rescaled charges Qi as

κi :=
Qi
r2
h

, (3.11)

16The number of independent angular momenta is exactly the rank of the isometry group SO(6) of the

six-dimensional space transverse to the branes.
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where rh is the largest root of the equation

f(rh) = 0 . (3.12)

Then κi satisfy the relation

(1 + κ1)(1 + κ2)(1 + κ3)
r2
h

L2
= 1 , (3.13)

which shows the black hole horizon is determined by the rescaled charges. The Hawking

temperature of the STU metric (3.9) can be expressed as

T =
1− κ1κ2 − κ1κ3 − κ2κ3 − 2κ1κ2κ3

(1 + κ1)(1 + κ2)(1 + κ3)
T0 , T0 =

1

2πL
. (3.14)

The Bekenstein-Hawking entropy is given by the outer horizon area

SBH =
A

4G5
=
V3L

3

4G5

1

(1 + κ1)(1 + κ2)(1 + κ3)
, (3.15)

where V3 is the volume of unit hyperbolic space. The three total charges are computed by

Gauss law17

Q̂i =
V3

8πG5
iQi := V3 ρi , (3.16)

Here we have taken into account the scalar profile. Using charge-horizon relation, Q̂i can

be further expressed as

Q̂i =
V3L

2

8πG5

iκi
(1 + κ1)(1 + κ2)(1 + κ3)

. (3.17)

The chemical potentials conjugate to the charge densities ρi are determined by requiring

the gauge potentials vanishing at the horizon Ai |r=rh = 018

µ̂i = Ait |r→∞ =
i

κ−1
i + 1

. (3.18)

We have expressed T, SBH, Q̂i, µ̂i in terms of κ1, κ2, κ3 with constant coefficients. It strongly

implies that all physical quantities we might compute from this system will solely depend

on the rescaled charges. From now on we only use the rescaled charges κi as variables.

4 TBH5/qSCFT4 correspondence

In this section we show that the gravity dual of N = 4 super Yang-Mills on branched sphere

S4
q is the charged topological STU black hole. This correspondence is proposed based on

the fact that the R-symmetry background fields on S4
q , which are necessary to compensate

17It can also be computed by 1
16πG5

´
j0, where jµ is the conjugate momentum jµ = −√gF rµ for the

canonical Maxwell action.
18In order to compare with the chemical potential in field theory, one has to take into account the Wick

rotation, because so far we proceed in Lorentz signature for black hole.
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the conical singularity, precisely correspond to the R-charges of the dual black holes. The

matching between the U(1)3 bulk gauge fields and the boundary fields is given by

gAibulk(r →∞) = AiS4
q
, i = 1, 2, 3 . (4.1)

In what follows we shall test the TBH5/qSCFT4 correspondence by comparing supersym-

metric Rényi entropy and free energy.

We now compute the SRE holographically from the charged topological (k = −1) STU

black hole specified by (3.9) (3.10). As we will see, both the SRE and the free energy

agree with the localization results as well as the heat kernel computation in the free field

limit. Substituting the value of κi into (3.18), one can see that the TBH chemical poten-

tials and the field theory chemical potentials ( given by (2.64), (2.67), (2.75) respectively)

satisfy (4.1).19

A single charge. We first consider the STU topological black hole with only one charge,

κ3 = κ , κ1 = κ2 = 0 . (4.2)

As discussed before, the system now only depends on a single variable κ. Since the SRE

involves a branching parameter q, it will be enough if we figure out the relation between

κ and q. This is obtained by requiring that the Bekenstein-Hawking temperature matches

to the geometric period of the boundary S1

T = T0/q , (4.3)

which gives

κ = q − 1 . (4.4)

Expressing all quantities in terms of the branching parameter, it is convenient to compute

SRE using the derived formula in [24],

Sq =
−q
q − 1

ˆ 1

q

(
SBH(n)

n2
− Q̂(n)µ̂′(n)

T0

)
dn . (4.5)

Evaluating the formula above we get

Sq
S1

= 1 , S1 =
V3L

3

4G5
. (4.6)

The q-independence of SRE implies the q-independence of free energy

Iq := − logZ(T, µi) = I1 . (4.7)

It can be easily checked that I1 = −S1, which remains valid in all other cases.

19Note that the equality between one forms (4.1) has included the Wick rotation.
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Two equal charges. Now we consider the STU topological black hole with two equal

charges,

κ1 = κ2 = κ , κ3 = 0 . (4.8)

The κ− q relation is obtained by requiring T = T0/q, which gives

κ =
q − 1

q + 1
. (4.9)

The formula (4.5) can be generalized straightforwardly (i = 1, 2, 3)

Sq =
−q
q − 1

ˆ 1

q

(
SBH(n)

n2
− Q̂i(n)µ̂i′(n)

T0

)
dn , (4.10)

and the SRE is given by
Sq
S1

=
3q + 1

4q
. (4.11)

The q-scaling of SRE immediately gives the q scaling of free energy

Iq =
(q + 1)2

4q
I1 . (4.12)

Three equal charges. Now we compute the holographic SRE from the STU with three

equal charges,

κ1 = κ2 = κ3 = κ . (4.13)

T = T0/q in this case gives

κ =
q − 1

2q + 1
. (4.14)

The SRE and free energy can be obtained the same way as before

Sq
S1

=
19q2 + 7q + 1

27q2
, (4.15)

Iq =
(2q + 1)3

27q2
I1 . (4.16)

In fact the STU black hole with three equal charges can be regarded as the charged BPS

solution20 (see e.g. [55]) in the five-dimensional N = 2 minimal supergravity theory, which

can be obtained by further truncating the STU model. The bosonic part of five-dimensional

minimal supergravity can be considered as an Einstein-Maxwell theory with a negative

cosmological constant and also a Chern-Simons coupling. The charged BPS topological

black hole solution for this theory is a natural extension of the four-dimensional one, the

latter of which has been proposed as the dual of three-dimensional N = 2 superconformal

field theories on branched three sphere S3
q [24].

20The two different forms of metric are related to each other by a coordinate transformation (all Qi are

equal) r2 = r̂2 −Qi.
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Generic charges. One can also compute the holographic SRE from the black hole with

three unequal charges. Note that all physical quantities can be regarded as functions only

depending on µ̂i, due to the generic relation between µ̂i and κi (3.18). To compare with

the field theory result in the end, we first translate the chemical potentials (2.70) to the

language of black hole

µ̂1 = i(1− 1/q)
a

3
, µ̂2 = i(1− 1/q)

b

3
, µ̂3 = i(1− 1/q)

(
1− a+ b

3

)
. (4.17)

With these input parameters, the holographic SRE can be obtained straightforwardly,

Sq
S1

=
(a2 + ab− 3a)(q − 1)[3q − b(q − 1)] + 3q[b(b− 3)(q − 1) + 9q]

27q2
. (4.18)

Then the free energy was obtained, with I1 = −S1

Iq =
[a(q − 1)− 3q] [b(q − 1)− 3q] [a(q − 1) + b(q − 1) + 3]

27q2
I1 . (4.19)

Again, they agree with the free field result (2.73) precisely.

5 Conclusion and discussions

In this work, we studied the four-dimensional superconformal field theories on sphere with

conical singularity. We have mainly focused onN = 4 SYM theories on the branched sphere

S4
q with various background gauge fields. In the particular case of two U(1) background

fields with equal values, we have shown that any N = 2 gauge theory can be embedded as

the singular limit of the theory on a resolved sphere, whose partition function is essentially

equal to that on an ellipsoid.

For N = 4 SYM in each background, we computed the logarithmic term of free energy

as well as supersymmetric Rényi entropy in the free field limit using heat kernel method.

By carefully arranging the background fields as well as the R-charges of dynamical fields

for N = 4 SYM, we showed that the q-dependence simply factorizes. In the particular case

of two equal U(1) backgrounds, by evaluating the matrix integral coming from localization,

we found the same q-dependence in the strong coupling regime, which implies that it is

independent of coupling constant.21

We found natural gravity duals of N = 4 SYM theory on S4
q with various background

gauge fields, the STU topological black holes. We thus provided the first concrete holo-

graphic dual of supersymmetric Rényi entropy in four dimensions which can be tested by

field theory computation. We computed the holographic free energy and supersymmetric

Rényi entropy from the black holes and found precise agreements with the corresponding

large N results of field theory. Based on these facts, we propose the TBH5/qSCFT4 cor-

respondence, the higher dimensional extension of TBH4/qSCFT3 correspondence [24]. We

believe further checks can be made for other observables, such as Wilson loops.

21We note that [56] this is not the case for the non-supersymmetric Rényi entropy.
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Notice that, currently we mostly restricted ourselves to the N = 4 SYM on the q-

deformed sphere. But the free field computations as well as the localization techniques are

applicable for generic N = 2 superconformal theories (SCFTs). It would be interesting

to know whether the coupling independence of the q-scalings of supersymmetric Rényi

entropies still holds in these cases. On the gravity side, however, it is rather unclear what

the duals of SCFTs on the supersymmetric q-deformed sphere should be. Discussions about

the gravity duals of N = 2 SCFTs that are relevant to this problem can be found in [57–63].

Recently the “universal behavior” of Rényi entropy, related to the q-derivative, has

been studied from different perspectives in [64–66]. We note that, similar investigations

can be performed for the supersymmetric Rényi entropy Sq we considered here. Naturally,

the q-derivative of free energy is related to the correlator of stress tensor as well as R-

current (see [67] for the discussion in three dimensions), because variation with respect to

q can be equivalently regarded as the variation with respect to both the metric component

gττ and the background gauge field component Aτ .

In our case, the universal part of Sq (also free energy) itself is independent of the

coupling for N = 4 SYM, and therefore arbitrary q-derivatives of Sq are independent of the

coupling. It would be interesting to show explicitly how Sq is protected by supersymmetry

and receives no quantum corrections. We leave these questions for future works.
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A Notations

On a 4-dimensional Euclidean spin manifold, the tangent space has the structure group

Spin(4) ' SU(2)× SU(2). Chiral spinors in two different Weyl representations (chiral and

anti-chiral) transform as doublets under the first and the second SU(2) respectively. Hence

they are mutually independent. We use α, β = 1, 2 indices for the first SU(2) and α̇, β̇ = 1, 2

indices for the second SU(2). Indices are raised and lowered by the SU(2) invariant tensors

εαβ and εαβ (and also εα̇β̇ and εα̇β̇)

ε12 = −ε21 = −ε12 = ε21 = 1 . (A.1)

Note that the spinors are complex-valued, and a spinor ξα and its complex conjugate ξ∗α
transform under the same representation.

The gamma matrices γa (satisfying Clifford algebra γaγb + γbγa = 2ηab) reverse chi-

rality and they can be written as

γa =

(
0 σ̄a

σa 0

)
. (A.2)
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The set of 2 × 2 half-gamma matrices (σa)αα̇ (a = 1, 2, 3, 4), together with (σ̄a)α̇α =

εα̇β̇εαβ(σa)ββ̇, satisfy the algebra

σaσ̄b + σbσ̄a = 2ηab .

In terms of Pauli matrices, they are given by

σk = −iτk , σ4 = 1 , σ̄k = iτk , σ̄4 = 1 . (k = 1, 2, 3) (A.3)

The SU(2) transformation on spinors are generated by the self-dual tensor σ̄ab (σ̄ab =
1
2εabcdσ̄

cd) and the anti self-dual tensor σab

σab =
1

2
(σaσ̄b − σbσ̄a), σ̄ab =

1

2
(σ̄aσb − σ̄bσa). (A.4)

Two Weyl spinors of opposite chiralities can combine to form a Dirac spinor (4-spinor)

ζ = (ξα, ξ̄
α̇). In this paper, we mostly use the Language of N = 2 supersymmetry. Capital

letters A,B are used to denote SU(2)R indices and they are raised and lowered by tensor

εAB defined the same way as in (A.1).

Following the usual convention, we use Greek letters for spacetime indices and Latin

letters for internal indices.

B 4-spinor to 2-spinor

Here we rewrite the Killing spinor equations (2.7)(2.8) in terms of 2-spinor notations. As we

shall see, they are exactly matched with the Killing spinor equations (2.84) in section 2.4.

First of all, ζ and ζ ′ can be decomposed as

ζ :=

(
ξ

ξ̄

)
, ζ ′ := i

(
ξ′

ξ̄′

)
, (B.1)

and one obtains equations in terms of 2-spinors. For (2.7), after decomposition we have

Dµξ = − i

2`
σµξ̄

′ , (B.2)

Dµξ̄ = − i

2`
σ̄µξ

′ , (B.3)

(2.8) can be equivalently written as additional constraints, by taking one more derivative

up on (2.7). In terms of 2-spinors, they are

σµσ̄νDµDνξ = M ξ , (B.4)

σ̄µσνDµDν ξ̄ = M ξ̄ . (B.5)
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C Resolved branched sphere and ellipsoid

C.1 Resolved branched four-sphere

The vielbein one-forms Ea = Eaµdxµ for the resolved branched sphere can be chosen as

E1 = sin ρe1, E2 = sin ρe2, E3 = sin ρe3 +Hdρ, E4 = Gdρ. (C.1)

where ea are vielbein of the three-dimensional ellipsoid in polar coordinates (χ, τ, η),

e1 = ` cos ηdχ, e2 = q` sin ηdτ, e3 = Fdη. (C.2)

F,G,H in the metric components take the following forms

F (η, ρ) =

√
cos2 η fε(sin η sin ρ)2

1− sin2 η sin2 ρ
+
`2 sin2 η

(
1− sin2 η sin2 ρ

)
cos2 ρ (cos2 η tan2 ρ+ 1)

2 ,

H(η, ρ) =
2 sin 2η cos ρ

[
fε(sin η sin ρ)2 − `2

](
2 sin2 η cos 2ρ+ cos 2η + 3

)
F (η, ρ)

, (C.3)

G(η, ρ) =

√
`2fε(sin η sin ρ)2

(
2 sin2 η cos 2ρ+ cos 2η + 3

)
4
(
cos2 ηfε(sin η sin ρ)2 + `2 sin2 η cos2 ρ

) .

The components of the spin connection one-forms Ωab are given by,

Ω12 = 0, Ω13 = − `

F
sin ηdχ, Ω23 =

q`

F
cos ηdτ,

Ω14 =
`(cos η cos ρF + sin η H)

FG
dχ, Ω24 =

q`(sin η cos ρF − cos η H)

F G
dτ, (C.4)

Ω34 =
H (sin ρ∂ρF − ∂ηH) + cos ρF H −G∂ηG

`G
dη

+
H [H (sin ρ∂ρF − ∂ηH) + cos ρF H −G∂ηG]

` sin ρF G
dρ.

Note that Ω12,Ω13,Ω23 are the spin connection of the three-ellipsoid with vielbein ea.

C.2 Four-ellipsoid

In a different set of coordinates (they are related to (2.5) by (2.82))

x0 = r cos ρ,

x1 = ` sin ρ cos η cos τ,

x2 = ` sin ρ cos η sin τ,

x3 = ˜̀sin ρ sin η cosχ,

x4 = ˜̀sin ρ sin η sinχ,

(C.5)

the metric of the four-ellipsoid (2.78) becomes

ds2 = sin2 ρ(˜̀2 sin2 ηdτ2 + `2 cos2 ηdχ2) + (f sin ρdη + hdρ)2 + g2dρ2 , (C.6)
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where f, g, h are defined by

f :=

√
`2 sin2 η + ˜̀2 cos2 η,

g :=

√
r2 sin2 ρ+ `2 ˜̀2f−2 cos2 ρ,

h :=
˜̀2 − `2

f
cos ρ sin η cos η . (C.7)

Note that, for our purpose, r → `.

D 5d BPS black hole

The BPS black hole solution in the gauged theory was found in [50] and the solution is

given by

ds2 = −H−4/3fdt2 +H2/3

(
f−1dr2 + r2dΣ3,k

)
,

f = k +
r2

L2
H2 , AIt =

√
k
(
H−1Y I − 1

)
− µI , F Irt =

√
k∂r(H−1Y I),

XI = H−
1
3Y I , H =

1

6
CIJKY

IY JY K ,
1

2
CIJKY

JY K = HI = 3VI +
QI
r2

,

(D.1)

where the last equation can be used to solve for Y I . The parameter k specifies the spatial

curvature of dΣ3,k. For flat space R3 and three-sphere S3, k takes the values of 0 and +1

respectively. For hyperbolic space H3, k = −1. The explicit form of the metric for dΣ3,k

can be chosen as

dΣ3,k = dη2 +
(sin

√
kη√
k

)2(
dφ2 + sin2 φdψ2

)
. (D.2)

The supersymmetry transformation of gravitino reads

δψµ =
(
Dµ +

i

8
XI(γµ

νρ − 4δµ
νγρ)Fνρ

I +
1

2L
γµX

IVI −
3

2L
iVIA

I
µ

)
ε, (D.3)

where Dµ is the covariant derivative and γa...b denotes the anti-symmetrized product of

Gamma matrices with unit weight (i.e., γab = 1
2 [γa, γb]). XI is defined by

XI ≡
1

6
CIJKX

JXK =
2

3
GIJX

J . (D.4)

The Killing spinor equation in this background is given by δψµ = 0. We choose the following

fünfbein

e0 = H(r)−2/3
√
fdτ, e1 =

H(r)1/3

√
f

dr, e2 = rH(r)1/3dη

e4 =
rH(r)1/3 sin

√
kη√

k
dφ,

rH(r)1/3 sinφ sin
√
kη√

k
dχ,

(D.5)
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and the spin connection

ω01 =

(
2kH′(r)
3H(r)2

+
r2H′(r)

3L2
+
rH(r)

L2

)
dτ , ω02 = ω03 = ω04 = 0

ω12 = −(rH′(r) + 3H(r))
√
f

3H(r)
dη

ω13 = −sin
√
kη (rH′(r) + 3H(r))

√
f

3
√
kH(r)

dφ

ω14 = −sinφ sin
√
kη (rH′(r) + 3H(r))

√
f

3
√
kH(r)

dψ

ω23 = − cos
√
kη dφ , ω24 = − cos

√
kη sinφ dψ , ω34 = − cosφ dψ.

(D.6)

We can use the integrability condition Pε = 0 to simplify (D.3). The projection operator

P is defined as

P :=
1

2
+

1

2

(
ixΓ0 + yΓ1

)
, (D.7)

where

x = −
√
k√
f
, y = − r√

fL
H , f = k +

r2

L2
H2

Note that we also have the following useful expressions,

VIY
I = H+

1

3
rH′,

and (0, 1 for internal indices)

XIF
I
01 =

2
√
k

3
H−

4
3∂rH.

The temporal and spatial components of the Killing spinor equation are given by,(
∂t − i

√
kg
)
ε = 0 ,(

∂r −
i
√
k

2
√
f

(
1

r
+
H′

H

)
γ0 −

1

2

(
1

r
+
H′

3H

))
ε = 0,(

∂η +
i
√
k

2
γ012

)
ε = 0 ,(

∂φ +
i

2
sin
√
kηγ013 −

1

2
cos
√
kηγ23

)
ε = 0,(

∂ψ +
i

2
sin
√
kη sinφγ014 −

1

2
cos
√
kη sinφγ24 −

1

2
cosφγ34

)
ε = 0.

(D.8)

This type of equations can be solved [68]. We can solve the radial, temporal and angular

equations separately. Time and angular components are solved first. The solution can be

expressed as

ε = ei
√
k
L
te−

i
2
γ012

√
kηe+ 1

2
γ23φe+ 1

2
γ34ψϕ(r) (D.9)
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The radial equation takes the form of

∂rϕ(r) = (a(r) + b(r)Γ1)ϕ(r),

and ϕ(r) also satisfies the constraint Pϕ(r) = 0 with P in the form of

P =
1

2
(1 + x(r)Γ1 + y(r)Γ2) ,

where Γ1,2 are matrices satisfying

Γ2
1 = Γ2

2 = 1, Γ1Γ2 + Γ2Γ1 = 0 . (D.10)

Solution to this type of equation is provided in the appendix of [68]

ϕ(r) = (u(r) + v(r)Γ2)

(
1− Γ1

2

)
ε0, (D.11)

where u, v are defined by,

u =

√
1 + x

y
ew, v = −

√
1− x
y

ew, w(r) =

ˆ r

a(r′)dr′, (D.12)

and ε0 is an arbitrary constant spinor. In our case, (D.11) gives

ϕ(r) =
1

2

√
L

r
V−

1
2

(√√
f + k −

√√
f − kγ1

)
e

1
2

´ r dr̄
(

1
r̄

+ 1
3
V′
V

)
(1− iγ0)ε0 . (D.13)

E Multiple gamma function

Multiple Gamma function Γn(x, ~ω) (~ω being an n-vector (ω1, . . . , ωn)) is defined by

Γn(x, ~ω) :=
∞∏

m1...mn=0

(m1ω1 + . . .mnωn + x)−1. (E.1)

The function log Γn(x, ~ω) can be expanded in the large |x| limit [22] (see also [69])

log Γn(x, ~ω) =
(−1)n+1

n!
Bn,n(x) log x+ (−1)n

n−1∑
k=0

Bn,k(0)xn−k

k!(n− k)!

n−k∑
`=1

1

`
+O

(
w−1

)
, (E.2)

where the functions Bn,m (x) are the so-called multiple Bernoulli polynomials. For n =

2, ~ω = (a, b), (E.2) reduces to

log Γ2(x, (a, b)) = −x
2 log x

2ab
+

3x2

4ab
+

1

2

(
1

a
+

1

b

)
x log x− 1

2

(
1

a
+

1

b

)
x

−
[

1

12

(
a

b
+
b

a

)
+

1

4

]
log x+O(x−1). (E.3)

Similarly for n = 3, ~ω = (a, b, c), we have

log Γ3(x, (a, b, c)) =
1

3!
log x

[
1

abc
x3 − 3(a+ b+ c)

2abc
x2 +

(a+ b+ c)2 + ab+ ac+ bc

2abc
x

−(a+ b+ c)(ab+ ac+ bc)

4abc

]
− 1

3!

[
11

6abc
x3 − 9(a+ b+ c)

4abc
x2

+
(a+ b+ c)2 + ab+ ac+ bc

2abc
x

]
+O(x−1). (E.4)
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[arXiv:1401.6764] [INSPIRE].

[26] R.B. Mann, Pair production of topological anti-de Sitter black holes, Class. Quant. Grav. 14

(1997) L109 [gr-qc/9607071] [INSPIRE].

[27] D.R. Brill, J. Louko and P. Peldan, Thermodynamics of (3+1)-dimensional black holes with

toroidal or higher genus horizons, Phys. Rev. D 56 (1997) 3600 [gr-qc/9705012] [INSPIRE].

[28] L. Vanzo, Black holes with unusual topology, Phys. Rev. D 56 (1997) 6475 [gr-qc/9705004]

[INSPIRE].

[29] R. Emparan, AdS membranes wrapped on surfaces of arbitrary genus, Phys. Lett. B 432

(1998) 74 [hep-th/9804031] [INSPIRE].

[30] D. Birmingham, Topological black holes in Anti-de Sitter space, Class. Quant. Grav. 16

(1999) 1197 [hep-th/9808032] [INSPIRE].

[31] M.J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387

[hep-th/9308075] [INSPIRE].

[32] J.G. Russo and K. Zarembo, Large-N Limit of N = 2 SU(N) Gauge Theories from

Localization, JHEP 10 (2012) 082 [arXiv:1207.3806] [INSPIRE].

[33] G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP

06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

[34] T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring Curved Superspace, JHEP 08

(2012) 141 [arXiv:1205.1115] [INSPIRE].

[35] T.T. Dumitrescu and G. Festuccia, Exploring Curved Superspace (II), JHEP 01 (2013) 072

[arXiv:1209.5408] [INSPIRE].

[36] C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on Curved Spaces and Holography,

JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].

[37] D. Cassani, C. Klare, D. Martelli, A. Tomasiello and A. Zaffaroni, Supersymmetry in

Lorentzian Curved Spaces and Holography, Commun. Math. Phys. 327 (2014) 577

[arXiv:1207.2181] [INSPIRE].

– 40 –

http://dx.doi.org/10.1093/ptep/pts052
http://arxiv.org/abs/1209.0561
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0561
http://arxiv.org/abs/1210.6308
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6308
http://dx.doi.org/10.1103/PhysRevLett.113.141601
http://arxiv.org/abs/1404.1925
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.1925
http://dx.doi.org/10.1007/JHEP09(2014)067
http://arxiv.org/abs/1405.7194
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7194
http://dx.doi.org/10.1007/JHEP10(2013)155
http://arxiv.org/abs/1306.2958
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2958
http://dx.doi.org/10.1007/JHEP03(2014)127
http://arxiv.org/abs/1401.5421
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5421
http://dx.doi.org/10.1007/JHEP07(2014)061
http://arxiv.org/abs/1401.6764
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.6764
http://dx.doi.org/10.1088/0264-9381/14/5/007
http://dx.doi.org/10.1088/0264-9381/14/5/007
http://arxiv.org/abs/gr-qc/9607071
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9607071
http://dx.doi.org/10.1103/PhysRevD.56.3600
http://arxiv.org/abs/gr-qc/9705012
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9705012
http://dx.doi.org/10.1103/PhysRevD.56.6475
http://arxiv.org/abs/gr-qc/9705004
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9705004
http://dx.doi.org/10.1016/S0370-2693(98)00625-X
http://dx.doi.org/10.1016/S0370-2693(98)00625-X
http://arxiv.org/abs/hep-th/9804031
http://inspirehep.net/search?p=find+EPRINT+hep-th/9804031
http://dx.doi.org/10.1088/0264-9381/16/4/009
http://dx.doi.org/10.1088/0264-9381/16/4/009
http://arxiv.org/abs/hep-th/9808032
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808032
http://dx.doi.org/10.1088/0264-9381/11/6/004
http://arxiv.org/abs/hep-th/9308075
http://inspirehep.net/search?p=find+EPRINT+hep-th/9308075
http://dx.doi.org/10.1007/JHEP10(2012)082
http://arxiv.org/abs/1207.3806
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.3806
http://dx.doi.org/10.1007/JHEP06(2011)114
http://dx.doi.org/10.1007/JHEP06(2011)114
http://arxiv.org/abs/1105.0689
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0689
http://dx.doi.org/10.1007/JHEP08(2012)141
http://dx.doi.org/10.1007/JHEP08(2012)141
http://arxiv.org/abs/1205.1115
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1115
http://dx.doi.org/10.1007/JHEP01(2013)072
http://arxiv.org/abs/1209.5408
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.5408
http://dx.doi.org/10.1007/JHEP08(2012)061
http://arxiv.org/abs/1205.1062
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1062
http://dx.doi.org/10.1007/s00220-014-1983-3
http://arxiv.org/abs/1207.2181
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.2181


J
H
E
P
0
2
(
2
0
1
5
)
0
6
8

[38] C. Klare and A. Zaffaroni, Extended Supersymmetry on Curved Spaces, JHEP 10 (2013) 218

[arXiv:1308.1102] [INSPIRE].

[39] C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories,

Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].

[40] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super

conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

[41] A. Belin, L.-Y. Hung, A. Maloney, S. Matsuura, R.C. Myers et al., Holographic Charged

Renyi Entropies, JHEP 12 (2013) 059 [arXiv:1310.4180] [INSPIRE].

[42] H. Casini and M. Huerta, Entanglement entropy for the n-sphere, Phys. Lett. B 694 (2010)

167 [arXiv:1007.1813] [INSPIRE].

[43] I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Renyi Entropies for Free Field

Theories, JHEP 04 (2012) 074 [arXiv:1111.6290] [INSPIRE].

[44] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement

entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

[45] L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic Calculations of Renyi

Entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].

[46] D.V. Fursaev, Entanglement Renyi Entropies in Conformal Field Theories and Holography,

JHEP 05 (2012) 080 [arXiv:1201.1702] [INSPIRE].

[47] D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the

presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [INSPIRE].

[48] G. Papadopoulos and P.K. Townsend, Compactification of D = 11 supergravity on spaces of

exceptional holonomy, Phys. Lett. B 357 (1995) 300 [hep-th/9506150] [INSPIRE].

[49] A.C. Cadavid, A. Ceresole, R. D’Auria and S. Ferrara, Eleven-dimensional supergravity

compactified on Calabi-Yau threefolds, Phys. Lett. B 357 (1995) 76 [hep-th/9506144]

[INSPIRE].

[50] K. Behrndt, A.H. Chamseddine and W.A. Sabra, BPS black holes in N = 2 five-dimensional

AdS supergravity, Phys. Lett. B 442 (1998) 97 [hep-th/9807187] [INSPIRE].
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