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Abstract
In this paper, we propose an iterative algorithm for finding a common solution of a
system of generalized equilibrium problems and a fixed point problem of strictly
pseudo-contractive mapping in the setting of real Hilbert spaces. We prove the
strong convergence of the sequence generated by the proposed method to a
common solution of a system of generalized equilibrium problems and a hierarchical
fixed point problem. Preliminary numerical experiments are included to verify the
theoretical assertions of the proposed method. The iterative algorithm and results
presented in this paper generalize, unify, and improve the previously known results of
this area.
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1 Introduction
LetH be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖.
Let C be a nonempty closed convex subset of H . Recently, Ceng and Yao [] considered
the following systemof generalized equilibriumproblems,which involves finding (x∗, y∗) ∈
C ×C:

{
F(x∗,x) + 〈By∗,x – x∗〉 + 

μ
〈x∗ – y∗,x – x∗〉 ≥ ; ∀x ∈ C and μ > ,

F(y∗, y) + 〈Bx∗, y – y∗〉 + 
μ

〈y∗ – x∗, y – y∗〉 ≥ ; ∀y ∈ C and μ > ,
(.)

where Fi : C ×C → H is two bifunctions and Bi : C → H is a nonlinear mapping for each
i = , . The solution set of (.) is denoted by �.
If F = F = F , B = B = B, and x∗ = y∗, then problem (.) becomes the following gener-

alized equilibrium problem: Finding x ∈ C such that

F(x, y) + 〈Bx, y – x〉 ≥ , ∀y ∈ C, (.)

which was studied by Takahashi and Takahashi []. Inspired by the work of Takahashi
and Takahashi [], and Ceng et al. [], Ceng et al. [] introduced and analyzed an itera-
tive scheme for finding the approximate solutions of the generalized equilibrium problem
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(.), a system of general generalized equilibrium problems (.) and a fixed point problem
of a nonexpansive mapping in a Hilbert space. Under appropriate conditions, they proved
that the sequence converges strongly to a common solution of these three problems. Re-
cently, Ansari [] studied the existence of solutions of equilibrium problems in the setting
of metric spaces. Inspired by the method in [], Latif et al. [] introduced and analyzed
an iterative algorithm by the hybrid iterative method for finding a solution of the system
of generalized equilibrium problems with constraints of several problems: a generalized
mixed equilibrium problem, finitely many variational inclusions, and the common fixed
point problem of an asymptotically strict pseudo-contractive mapping in the intermedi-
ate sense and infinitely many nonexpansive mappings in a real Hilbert space. Under mild
conditions, they proved the weak convergence of this iterative algorithm.
If F = F = , then problem (.) reduces to the following general system of variational

inequalities, which involves finding (x∗, y∗) ∈ C ×C:

{
〈μBy∗ + x∗ – y∗,x – x∗〉 ≥ ; ∀x ∈ C and μ > ,
〈μBx∗ + y∗ – x∗,x – y∗〉 ≥ ; ∀x ∈ C and μ > ,

(.)

this problem was considered and investigated by Ceng et al. []. As pointed out in []
that the system of variational inequalities is used as a tool to study the Nash equilibrium
problem; see, for example, [–] and the references therein.
If F = F = , and B = B = B, then problem (.) reduces to finding (x∗, y∗) ∈ C × C

such that
{

〈μBy∗ + x∗ – y∗,x – x∗〉 ≥ ; ∀x ∈ C and μ > ,
〈μBx∗ + y∗ – x∗,x – y∗〉 ≥ ; ∀x ∈ C and μ > ,

(.)

which has been introduced and studied by Verma [, ].
If x∗ = y∗ andμ = μ, then problem (.) collapses to the classical variational inequality,

finding x∗ ∈ C such that

〈
Bx∗,x – x∗〉 ≥ , ∀x ∈ C.

The theory of variational inequalities emerged as a rapidly growing area of research be-
cause of its applications in nonlinear analysis, optimization, economics, game theory; see
for example [–]. For recent applications, numerical techniques, and physical formu-
lation, see [–].
The fixed point problem for the mapping T is to find x ∈ C such that

Tx = x. (.)

We denote by F(T) the set of solutions of (.). It is well known that F(T) is closed and
convex, and PF (T) is well defined (see []).
Let S : C → H be a nonexpansive mapping, that is, ‖Sx – Sy‖ ≤ ‖x – y‖ for all x, y ∈ C.

The hierarchical fixed point problem is to find x ∈ F(T) such that

〈x – Sx, y – x〉 ≥ , ∀y ∈ F(T). (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/235
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It is linked with some monotone variational inequalities and convex programming prob-
lems; see []. Various methods have been proposed to solve (.); see, for example, [–
]. By combining Korpelevich’s extragradient method and the viscosity approximation
method, Ceng et al. [] introduced and analyzed implicit and explicit iterative schemes
for computing a common element of the set of fixed points of a nonexpansivemapping and
the set of solutions of the variational inequality for an α-inverse strongly monotone map-
ping in a Hilbert space. Under suitable assumptions, they proved the strong convergence
of the sequences generated by the proposed schemes. In , Yao et al. [] introduced
the following strong convergence iterative algorithm to solve problem (.):

yn = βnSxn + ( – βn)xn,

xn+ = PC
[
αnf (xn) + ( – αn)Tyn

]
, ∀n≥ ,

(.)

where f : C → H is a contraction mapping and {αn} and {βn} are two sequences in (, ).
Under some certain restrictions on parameters, Yao et al. proved that the sequence {xn}
generated by (.) converges strongly to z ∈ F(T), which is the unique solution of the fol-
lowing variational inequality:

〈
(I – f )z, y – z

〉 ≥ , ∀y ∈ F(T). (.)

In , Ceng et al. [] investigated the following iterative method:

xn+ = PC
[
αnρU(xn) + (I – αnμF)

(
T(yn)

)]
, ∀n≥ , (.)

where U is a Lipschitzian mapping, and F is a Lipschitzian and strongly monotone map-
ping. They proved that under some approximate assumptions on the operators and pa-
rameters, the sequence {xn} generated by (.) converges strongly to the unique solution
of the variational inequality

〈
ρU(z) –μF(z),x – z

〉 ≥ , ∀x ∈ Fix(T). (.)

Very recently, Wang and Xu [] investigated an iterative method for a hierarchical fixed
point problem by

yn = βnSxn + ( – βn)xn,

xn+ = PC
[
αnρU(xn) + (I – αnμF)

(
T(yn)

)]
, ∀n≥ ,

(.)

where S : C → C is a nonexpansive mapping. They proved that under some approximate
assumptions on the operators and parameters, the sequence {xn} generated by (.) con-
verges strongly to the unique solution of the variational inequality (.). In , Ansari
et al. [] presented a hybrid iterative algorithm for computing a fixed point of a pseudo-
contractive mapping and for finding a solution of triple hierarchical variational inequality
in the setting of realHilbert space. Under very appropriate conditions, they proved that the
sequence generated by the proposed algorithm converges strongly to a fixed point which
is also a solution of this triple hierarchical variational inequality.

http://www.fixedpointtheoryandapplications.com/content/2014/1/235
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In this paper, motivated by the work of Ceng et al. [], Yao et al. [], Bnouhachem [,
] and by the recent work going in this direction, we give an iterative method for finding
the approximate element of the common set of solutions of (.) and (.) in real Hilbert
space. We establish a strong convergence theorem based on this method. In order to ver-
ify the theoretical assertions and to compare the numerical results between the system
of generalized equilibrium problems and the generalized equilibrium problems, an exam-
ple is given. Our results can be viewed as significant extensions of the previously known
results.

2 Preliminaries
We present some definitions which will be used in the sequel.

Definition . A mapping T : C → H is said to be k-Lipschitz continuous if there exists
a constant k >  such that

‖Tx – Ty‖ ≤ k‖x – y‖, ∀x, y ∈ C.

• If k = , then T is called nonexpansive.
• If k ∈ (, ), then T is called a contraction.

Definition . A mapping T : C →H is said to be
(a) strongly monotone if there exists an α >  such that

〈Tx – Ty,x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C;

(b) α-inverse strongly monotone if there exists an α >  such that

〈Tx – Ty,x – y〉 ≥ α‖Tx – Ty‖, ∀x, y ∈ C;

(c) a k-strict pseudo-contraction, if there exists a constant  ≤ k <  such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

Assumption . [] Let F : C×C →R be a bifunction satisfying the following assump-
tions:

(A) F(x,x) = , ∀x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤ , ∀x, y ∈ C;
(A) for each x, y, z ∈ C, limt→ F(tz + ( – t)x, y)≤ F(x, y);
(A) for each x ∈ C, y → F(x, y) is convex and lower semicontinuous.

We list some fundamental lemmas that are useful in the consequent analysis.

Lemma. [] Let C be a nonempty closed convex subset of H . Let F : C×C →R satisfies
(A)-(A). Assume that for r >  and ∀x ∈H , define a mapping Tr :H → C as follows:

Tr(x) =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/235
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Then the following hold:
(i) Tr is nonempty and single-valued;
(ii) Tr is firmly nonexpansive, i.e.,

∥∥Tr(x) – Tr(y)
∥∥ ≤ 〈

Tr(x) – Tr(y),x – y
〉
, ∀x, y ∈ H ;

(iii) F(Tr) = EP(F);
(iv) EP(F) is closed and convex.

Lemma . [] Let F,F : C × C → R be two bifunctions satisfying (A)-(A). For any
(x∗, y∗) ∈ C ×C, (x∗, y∗) is a solution of (.) if and only if x∗ is a fixed point of the mapping
Q : C → C defined by

Q(x) = TF
μ

[
TF

μ [x –μBx] –μBTF
μ [x –μBx]

]
, ∀x ∈ C, (.)

where y∗ = TF
μ [x

∗ –μBx∗],μi ∈ (, θi), and Bi : C → C is a θi-inverse strongly monotone
mapping for each i = , .

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H .
If T : C → C is a nonexpansive mapping with Fix(T) �= ∅, then the mapping I – T is

demiclosed at , i.e., if {xn} is a sequence in C that weakly converges to x, and if {(I –T)xn}
converges strongly to , then (I – T)x = .

Lemma . [] Let U : C → H be a τ -Lipschitzian mapping, and let F : C → H be a
k-Lipschitzian and η-strongly monotone mapping, then for  ≤ ρτ < μη, μF – ρU is μη-
ρτ -strongly monotone, i.e.,

〈
(μF – ρU)x – (μF – ρU)y,x – y

〉 ≥ (μη – ρτ )‖x – y‖, ∀x, y ∈ C.

Lemma. [] Let C be a nonempty closed convex subset of a realHilbert spaceH , and S :
C →H be a k-strict pseudo-contraction mapping. Define B : C →H by Bx = λSx+ ( – λ)x
for all x ∈ C. Then as λ ∈ [k, ), B is a nonexpansive mapping such that F(B) = F(S).

Lemma . [] Let H be a real Hilbert space, T : C → H be a k-Lipschitzian and
η-strongly monotone operator. Let  < μ < η

k , let W = I – λμT and μ(η – μk
 ) = τ , then

for  < λ <min{, 
τ
},W is a contraction with a constant  – λτ , that is,

‖Wx –Wy‖ ≤ ( – λτ )‖x – y‖, ∀x, y ∈ C.

Lemma . [] Let {xn}, {yn} be bounded sequences in a Banach space E and {βn} be a
sequence in [, ] with  < lim infn→∞ βn < lim supn→∞ βn < .
Suppose xn+ = βnxn + ( – βn)yn, ∀n ≥  and lim supn→∞(‖yn+ – yn‖ – ‖xn+ – xn‖) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . [] Assume {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – υn)an + δn,

http://www.fixedpointtheoryandapplications.com/content/2014/1/235
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where {υn} is a sequence in (, ) and δn is a sequence such that
()

∑∞
n= υn =∞;

() lim supn→∞ δn/υn ≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Lemma. [] Let C be a closed convex subset of H . Let {xn} be a bounded sequence in H .
Assume that

(i) the weak w-limit set ww(xn) ⊂ C where ww(xn) = {x : xni ⇀ x};
(ii) for each z ∈ C, limn→∞ ‖xn – z‖ exists.

Then {xn} is weakly convergent to a point in C.

Lemma . [] Let H be a real Hilbert space. Then the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H .

3 The proposedmethod and some properties
In this section, we suggest and analyze our method for finding the common solutions of
the system of the generalized equilibrium problem (.) and the hierarchical fixed point
problem (.). Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F,F : C ×C →R be two bifunctions satisfying (A)-(A). Let Bi : C →H be a θi-inverse
strongly monotone mapping for each i = , , and let S : C → H be a σ -strict pseudo-
contraction mapping such that � ∩ F(S) �= ∅. Let T : C → C be a k-Lipschitzian mapping
and be η-strongly monotone, and let f : C → C be a τ -Lipschitzian mapping.

Algorithm . For an arbitrarily given x ∈ C, let the iterative sequences {xn}, {yn}, and
{zn} be generated by

⎧⎪⎨
⎪⎩
zn = TF

μ [T
F
μ [xn –μBxn] –μBTF

μ [xn –μBxn]];
yn = βnSzn + ( – βn)zn;
xn+ = αnρf (xn) + γnxn + (( – γn)I – αnμT)(yn), ∀n≥ ,

(.)

where μi ∈ (, θi) for each i = , . Suppose the parameters satisfy  < μ < η
k ,  ≤ ρ <

ν/τ , where ν = μ(η – μk
 ). Also {γn}, {αn}, and {βn} are sequences in (, ) satisfying the

following conditions:
(a)  < lim infn→∞ γn < lim supn→∞ γn < ;
(b) limn→∞ αn =  and

∑∞
n= αn =∞;

(c) {βn} ⊂ [σ , ) and limn→∞ βn = β < .

If F = F = F , B = B = B, and μ = μ = r, then Algorithm . reduces to Algorithm .
for finding the common solutions of the generalized equilibrium problem (.) and the
hierarchical fixed point problem (.).

Algorithm . For an arbitrarily given x ∈ C arbitrarily, let the iterative sequences {un},
{xn}, {yn}, and {zn} be generated by

⎧⎪⎨
⎪⎩
F(zn, y) + 〈Bxn, y – zn〉 + 

r 〈y – zn, zn – xn〉 ≥ , ∀y ∈ C;
yn = βnSzn + ( – βn)zn;
xn+ = αnρf (xn) + γnxn + (( – γn)I – αnμT)(yn), ∀n≥ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/235
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Suppose that the parameters satisfy  < μ < η
k ,  ≤ ρτ < ν , where ν = –

√
 –μ(η –μk).

Also {γn}, {αn}, and {βn} are sequences in (, ) satisfying the following conditions:
(a)  < lim infn→∞ γn < lim supn→∞ γn < ;
(b) limn→∞ αn =  and

∑∞
n= αn =∞;

(c) {βn} ⊂ [σ , ) and limn→∞ βn = β < .

Remark . If ρ = μ = , γn = , and Szn = Sxn, we obtain an extension and improvement
of the method of Yao et al. [] and Wang and Xu [] for finding the approximate ele-
ment of the common set of solutions of a system of generalized equilibrium problem and
a hierarchical fixed point problem in a real Hilbert space.

Lemma . Let x∗ ∈ � ∩ F(S). Then {xn}, {zn}, and {yn} are bounded.

Proof Let x∗ ∈ � ∩ F(S), we have

x∗ = TF
μ

[
y∗ –μBy∗],

where

y∗ = TF
μ

[
x∗ –μBx∗].

We set vn = TF
μ [xn – μBxn]. Since B is a θ-inverse strongly monotone mapping, it

follows that

∥∥vn – y∗∥∥ =
∥∥TF

μ [xn –μBxn] – TF
μ

[
x∗ –μBx∗]∥∥

≤ ∥∥xn – x∗ –μ
(
Bxn – Bx∗)∥∥

≤ ∥∥xn – x∗∥∥ –μ(θ –μ)
∥∥Bxn – Bx∗∥∥

≤ ∥∥xn – x∗∥∥. (.)

Since Bi is a θi-inverse strongly monotone mapping for each i = , , we get

∥∥zn – x∗∥∥ =
∥∥TF

μ

[
TF

μ [xn –μBxn] –μBTF
μ [xn –μBxn]

]
– TF

μ

[
TF

μ

[
x∗ –μBx∗] –μBTF

μ

[
x∗ –μBx∗]]∥∥

≤ ∥∥TF
μ [xn –μBxn] –μBTF

μ [xn –μBxn]

–
(
TF

μ

[
x∗ –μBx∗] –μBTF

μ

[
x∗ –μBx∗])∥∥

=
∥∥TF

μ [xn –μBxn] – TF
μ

[
x∗ –μBx∗]

–μ
(
BTF

μ [xn –μBxn] – BTF
μ

[
x∗ –μBx∗])∥∥

≤ ∥∥TF
μ [xn –μBxn] – TF

μ

[
x∗ –μBx∗]∥∥

–μ(θ –μ)
∥∥BTF

μ [xn –μBxn] – BTF
μ

[
x∗ –μBx∗]∥∥

≤ ∥∥(xn –μBxn) –
(
x∗ –μBx∗)∥∥

–μ(θ –μ)
∥∥BTF

μ [xn –μBxn] – BTF
μ

[
x∗ –μBx∗]∥∥

≤ ∥∥xn – x∗∥∥ –μ(θ –μ)
∥∥Bxn – Bx∗∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/235
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–μ(θ –μ)
∥∥Bvn – By∗∥∥

≤ ∥∥xn – x∗∥∥. (.)

By Lemma . and the inequality above, it is easy to show that

∥∥yn – x∗∥∥ ≤ ∥∥zn – x∗∥∥ ≤ ∥∥xn – x∗∥∥. (.)

Next, we prove that the sequence {xn} is bounded. Since limn→∞ αn = , without loss of
generality we can assume that αn ≤min{ε, ε

τ
} for all n≥ , where  < ε < – lim supn→∞ γn.

From (.) and (.), we have

∥∥xn+ – x∗∥∥ ≤ ∥∥αnρf (xn) + γnxn +
(
( – γn)I – αnμT

)
(yn) – x∗∥∥

=
∥∥αn

(
ρf (xn) –μT

(
x∗)) + γn

(
xn – x∗) + (

( – γn)I – αnμT
)
(yn)

–
(
( – γn)I – αnμT

)(
x∗)∥∥

≤ αnρτ
∥∥xn – x∗∥∥ + αn

∥∥(ρf –μT)x∗∥∥ + γn
∥∥xn – x∗∥∥

+
∥∥(
( – γn)I – αnμT

)
(yn) –

(
( – γn)I – αnμT

)(
x∗)∥∥

= αnρτ
∥∥xn – x∗∥∥ + αn

∥∥(ρf –μT)x∗∥∥ + γn
∥∥xn – x∗∥∥

+ ( – γn)
∥∥∥∥
(
I –

αnμ

( – γn)
T

)
(yn) –

(
I –

αnμ

( – γn)
T

)(
x∗)∥∥∥∥

≤ αnρτ
∥∥xn – x∗∥∥ + αn

∥∥(ρf –μT)x∗∥∥ + γn
∥∥xn – x∗∥∥

+ ( – γn – αnν)
∥∥yn – x∗∥∥

≤ αnρτ
∥∥xn – x∗∥∥ + αn

∥∥(ρf –μT)x∗∥∥ + γn
∥∥xn – x∗∥∥

+ ( – γn – αnν)
∥∥xn – x∗∥∥

= αnρτ
∥∥xn – x∗∥∥ + αn

∥∥(ρf –μT)x∗∥∥ + ( – αnν)
∥∥xn – x∗∥∥

=
(
 – αn(ν – ρτ )

)∥∥xn – x∗∥∥ + αn
∥∥(ρf –μT)x∗∥∥

≤ max

{∥∥xn – x∗∥∥, 
ν – ρτ

(∥∥(ρf –μT)x∗∥∥)}
,

where the third inequality follows from Lemma . and the fourth inequality follows from
(.). By induction on n, we obtain ‖xn – x∗‖ ≤ max{‖xn – x∗‖, 

ν–ρτ
(‖(ρf – μT)x∗‖)}, for

n≥  and x ∈ C. Hence {xn} is bounded, and consequently we deduce that {zn}, {vn}, {yn},
{S(zn)}, {T(yn)}, and {f (xn)} are bounded. �

Lemma . Let x∗ ∈ � ∩ F(S) and {xn} be the sequence generated by Algorithm .. Then
we have:
(a) limn→∞ ‖xn+ – xn‖ = .
(b) The weak w-limit set ww(xn) ⊂ F(S) (ww(xn) = {x : xni ⇀ x}).

Proof Next, we estimate

‖zn – zn–‖ =
∥∥TF

μ

[
TF

μ [xn –μBxn] –μBTF
μ [xn –μBxn]

]
– TF

μ

[
TF

μ [xn– –μBxn–] –μBTF
μ [xn– –μBxn–]

]∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/235
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≤ ∥∥TF
μ [xn –μBxn] –μBTF

μ [xn –μBxn]

–
(
TF

μ [xn– –μBxn–] –μBTF
μ [xn– –μBxn–]

)∥∥

=
∥∥TF

μ [xn –μBxn] – TF
μ [xn– –μBxn–]

–μ
(
BTF

μ [xn –μBxn] – BTF
μ [xn– –μBxn–]

)∥∥

≤ ∥∥TF
μ [xn –μBxn] – TF

μ [xn– –μBxn–]
∥∥

–μ(θ –μ)
∥∥BTF

μ [xn –μBxn] – BTF
μ [xn– –μBxn–]

∥∥

≤ ∥∥TF
μ [xn –μBxn] – TF

μ [xn– –μBxn–]
∥∥

≤ ∥∥(xn – xn–) –μ(Bxn – Bxn–)
∥∥

≤ ‖xn – xn–‖ –μ(θ –μ)‖Bxn – Bxn–‖

≤ ‖xn – xn–‖. (.)

From (.) and (.), we have

‖yn – yn–‖ ≤ ∥∥βnSzn + ( – βn)zn –
(
βn–Szn– + ( – βn–)zn–

)∥∥
=

∥∥βn(Szn – Szn–) + (βn – βn–)Szn–

+ ( – βn)(zn – zn–) + (βn– – βn)zn–
∥∥

≤ ‖zn – zn–‖ + |βn – βn–|‖Szn– – zn–‖
≤ ‖xn– – xn‖ + |βn – βn–|‖Szn– – zn–‖. (.)

We define wn = xn+–γnxn
–γn

, which implies that xn+ = ( – γn)wn + γnxn. It follows from (.)
that

‖wn+ –wn‖ ≤ αn+

 – γn+

∥∥ρf (xn+) –μT(yn+)
∥∥

+
αn

 – γn

∥∥ρf (xn) –μT(yn)
∥∥ + ‖yn+ – yn‖

≤ αn+

 – γn+

∥∥ρf (xn+) –μT(yn+)
∥∥

+
αn

 – γn

∥∥ρf (xn) –μT(yn)
∥∥ + ‖xn+ – xn‖

+ |βn+ – βn|‖Szn – zn‖. (.)

Since limn→∞ αn = , limn→∞ βn = β , and lim infn→∞ γn < lim supn→∞ γn < , we get

lim sup
n→∞

(‖wn+ –wn‖ – ‖xn+ – xn‖
) ≤ .

By Lemma ., we have limn→∞ ‖wn – xn‖ = . Since ‖xn+ – xn‖ = ( – γn)‖wn – xn‖, we
obtain

lim
n→∞‖xn+ – xn‖ = .
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Next, we estimate

‖xn – yn‖ ≤ ‖xn+ – xn‖ + ‖xn+ – yn‖
≤ ‖xn+ – xn‖ + ‖xn+ – yn‖
≤ ‖xn+ – xn‖ + αn

∥∥ρf (xn) –μT(yn)
∥∥ + γn‖xn – yn‖,

which implies

( – γn)‖xn – yn‖ ≤ ‖xn+ – xn‖ + αn
∥∥ρf (xn) –μT(yn)

∥∥.
Since limn→∞ αn =  and lim infn→∞ γn < lim supn→∞ γn < , we have

lim
n→∞‖xn – yn‖ = . (.)

Next, we show that limn→∞ ‖zn – xn‖ = . Since x∗ ∈ � ∩ F(S) by using Lemma ., (.),
and (.), we obtain

∥∥xn+ – x∗∥∥ =
∥∥γn

(
xn – x∗) + ( – γn)

(
yn – x∗) + αn

(
ρf (xn) –μT(yn)

)∥∥

≤ ∥∥γn
(
xn – x∗) + ( – γn)

(
yn – x∗)∥∥ + αn

〈
ρf (xn) –μT(yn),xn+ – x∗〉

≤ γn
∥∥xn – x∗∥∥ + ( – γn)

∥∥yn – x∗∥∥ + αn
〈
ρf (xn) –μT(yn),xn+ – x∗〉

≤ γn
∥∥xn – x∗∥∥ + ( – γn)

∥∥zn – x∗∥∥ + αn
〈
ρf (xn) –μT(yn),xn+ – x∗〉

≤ γn
∥∥xn – x∗∥∥ + ( – γn)

{∥∥xn – x∗∥∥ –μ(θ –μ)
∥∥Bxn – Bx∗∥∥

–μ(θ –μ)
∥∥Bvn – By∗∥∥} + αn

〈
ρf (xn) –μT(yn),xn+ – x∗〉

=
∥∥xn – x∗∥∥ – ( – γn)

{
μ(θ –μ)

∥∥Bxn – Bx∗∥∥

+μ(θ –μ)
∥∥Bvn – By∗∥∥}

+ αn
〈
ρf (xn) –μT(yn),xn+ – x∗〉, (.)

which implies that

( – γn)
{
μ(θ –μ)

∥∥Bxn – Bx∗∥∥ +μ(θ –μ)
∥∥Bvn – By∗∥∥}

≤ ∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥ + αn

〈
ρf (xn) –μT(yn),xn+ – x∗〉

≤ (∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn+ – xn‖ + αn

〈
ρf (xn) –μT(yn),xn+ – x∗〉.

Since lim supn→∞ γn < , θ –μ > , θ –μ > , limn→∞ ‖xn+ – xn‖ =  and αn → , we
obtain

lim
n→∞

∥∥Bxn – Bx∗∥∥ = 

and

lim
n→∞

∥∥Bvn – By∗∥∥ = .
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Since TF
μ is firmly nonexpansive, we have

∥∥vn – y∗∥∥ =
∥∥TF

μ [xn –μBxn] – TF
μ

[
x∗ –μBx∗]∥∥

≤ 〈
vn – y∗, (xn –μBxn) –

(
x∗ –μBx∗)〉

=


{∥∥vn – y∗∥∥ +

∥∥xn – x∗ –μ
(
Bxn – Bx∗)∥∥

–
∥∥xn – x∗ –μ

(
Bxn – Bx∗) – (

vn – y∗)∥∥}
≤ 


{∥∥vn – y∗∥∥ +

∥∥xn – x∗∥∥ –μ(θ –μ)
∥∥Bxn – Bx∗∥∥

–
∥∥xn – x∗ –μ

(
Bxn – Bx∗) – (

vn – y∗)∥∥}
≤ 


{∥∥vn – y∗∥∥ +

∥∥xn – x∗∥∥

–
∥∥xn – vn –μ

(
Bxn – Bx∗) – (

x∗ – y∗)∥∥}
=



{∥∥vn – y∗∥∥ +

∥∥xn – x∗∥∥ –
∥∥xn – vn –

(
x∗ – y∗)∥∥

+ μ
〈
xn – vn –

(
x∗ – y∗),Bxn – Bx∗〉 –μ


∥∥Bxn – Bx∗∥∥}

≤ 

{∥∥vn – y∗∥∥ +

∥∥xn – x∗∥∥ –
∥∥xn – vn –

(
x∗ – y∗)∥∥

+ μ
∥∥xn – vn –

(
x∗ – y∗)∥∥∥∥Bxn – Bx∗∥∥}

.

Hence, we get

∥∥vn – y∗∥∥ ≤ ∥∥xn – x∗∥∥ –
∥∥xn – vn –

(
x∗ – y∗)∥∥

+ μ
∥∥xn – vn –

(
x∗ – y∗)∥∥∥∥Bxn – Bx∗∥∥. (.)

On the other hand, from (.) and Lemma .(ii), we obtain

∥∥zn – x∗∥∥ =
∥∥TF

μ [vn –μBvn] – TF
μ

[
y∗ –μBy∗]∥∥

≤ 〈
zn – x∗, (vn –μBvn) –

(
y∗ –μBy∗)〉

=


{∥∥zn – x∗∥∥ +

∥∥vn – y∗ –μ
(
Bvn – By∗)∥∥

–
∥∥vn – y∗ –μ

(
Bvn – By∗) – (

zn – x∗)∥∥}
=



{∥∥zn – x∗∥∥ +

∥∥vn – y∗∥∥ – μ
〈
vn – y∗,Bvn – By∗〉

+μ

∥∥Bvn – By∗∥∥ –

∥∥vn – y∗ –μ
(
Bvn – By∗) – (

zn – x∗)∥∥}
≤ 


{∥∥zn – x∗∥∥ +

∥∥vn – y∗∥∥ –μ(θ –μ)
∥∥Bvn – By∗∥∥

–
∥∥vn – y∗ –μ

(
Bvn – By∗) – (

zn – x∗)∥∥}
≤ 


{∥∥zn – x∗∥∥ +

∥∥vn – y∗∥∥

–
∥∥vn – zn –μ

(
Bvn – By∗) + (

x∗ – y∗)∥∥}

http://www.fixedpointtheoryandapplications.com/content/2014/1/235
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≤ 

{∥∥zn – x∗∥∥ +

∥∥vn – y∗∥∥ –
∥∥vn – zn +

(
x∗ – y∗)∥∥

+ μ
〈
vn – zn +

(
x∗ – y∗),Bvn – By∗〉}

≤ 

{∥∥zn – x∗∥∥ +

∥∥vn – y∗∥∥ –
∥∥vn – zn +

(
x∗ – y∗)∥∥

+ μ
∥∥vn – zn +

(
x∗ – y∗)∥∥∥∥Bvn – By∗∥∥}

,

which implies that

∥∥zn – x∗∥∥ ≤ ∥∥vn – y∗∥∥ –
∥∥vn – zn +

(
x∗ – y∗)∥∥

+ μ
∥∥vn – zn +

(
x∗ – y∗)∥∥∥∥Bvn – By∗∥∥

≤ ∥∥xn – x∗∥∥ –
∥∥xn – vn –

(
x∗ – y∗)∥∥

+ μ
∥∥xn – vn –

(
x∗ – y∗)∥∥∥∥Bxn – Bx∗∥∥

–
∥∥vn – zn +

(
x∗ – y∗)∥∥ + μ

∥∥vn – zn +
(
x∗ – y∗)∥∥∥∥Bvn – By∗∥∥,

where the last inequality follows from (.). From (.) and the above inequality, we have

∥∥xn+ – x∗∥∥ ≤ γn
∥∥xn – x∗∥∥ + ( – γn)

∥∥zn – x∗∥∥ + αn
〈
ρf (xn) –μT(yn),xn+

〉
≤ γn

∥∥xn – x∗∥∥ + αn
〈
ρf (xn) –μT(yn),xn+

〉
+ ( – γn)

∥∥xn – x∗∥∥

+ ( – γn)
(
–
∥∥xn – vn –

(
x∗ – y∗)∥∥

+ μ
∥∥xn – vn –

(
x∗ – y∗)∥∥∥∥Bxn – Bx∗∥∥)

+ ( – γn)
(
–
∥∥vn – zn +

(
x∗ – y∗)∥∥

+ μ
∥∥vn – zn +

(
x∗ – y∗)∥∥∥∥Bvn – By∗∥∥)

=
∥∥xn – x∗∥∥ + αn

〈
ρf (xn) –μT(yn),xn+

〉
+ ( – γn)

(
–
∥∥xn – vn –

(
x∗ – y∗)∥∥

+ μ
∥∥xn – vn –

(
x∗ – y∗)∥∥∥∥Bxn – Bx∗∥∥)

+ ( – γn)
(
–
∥∥vn – zn +

(
x∗ – y∗)∥∥

+ μ
∥∥vn – zn +

(
x∗ – y∗)∥∥∥∥Bvn – By∗∥∥)

,

which implies that

( – γn)
(∥∥xn – vn –

(
x∗ – y∗)∥∥ +

∥∥vn – zn +
(
x∗ – y∗)∥∥)

≤ αn
〈
ρf (xn) –μT(yn),xn+

〉
+

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn+ – xn‖

+ ( – γn)μ
∥∥xn – vn –

(
x∗ – y∗)∥∥∥∥Bxn – Bx∗∥∥

+ ( – γn)μ
∥∥vn – zn +

(
x∗ – y∗)∥∥∥∥Bvn – By∗∥∥.

Since limn→∞ ‖xn+ –xn‖ = , limn→∞ αn → ,  < lim infγn < lim supγn < , limn→∞ ‖B ×
xn – Bx∗‖ = , limn→∞ ‖Bvn – By∗‖ = , we obtain

lim
n→∞

∥∥xn – vn –
(
x∗ – y∗)∥∥ =  and lim

n→∞
∥∥vn – zn +

(
x∗ – y∗)∥∥ = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/235


Bnouhachem Fixed Point Theory and Applications 2014, 2014:235 Page 13 of 21
http://www.fixedpointtheoryandapplications.com/content/2014/1/235

Since

‖xn – zn‖ ≤ ∥∥xn – vn –
(
x∗ – y∗)∥∥ +

∥∥vn – zn +
(
x∗ – y∗)∥∥,

we get

lim
n→∞‖xn – zn‖ = . (.)

It follows from (.) and (.) that

lim
n→∞‖yn – zn‖ = . (.)

We define a mapping W : C → H by Wx = βSx + ( – β)x with σ ≤ β < . It follows from
Lemma . thatW is a nonexpansive mapping and F(W ) = F(S). Note that

‖Wzn – zn‖ ≤ ‖Wzn – yn‖ + ‖zn – yn‖
≤ |βn – β|‖Szn – zn‖ + ‖zn – yn‖.

Since limn→∞ βn = β and limn→∞ ‖yn – zn‖ = , we obtain

lim
n→∞‖Wzn – zn‖ = .

Since {xn} is bounded andwithout loss of generality we can assume that xn ⇀ x∗ ∈ C, from
(.), it is easy to observe that zn ⇀ x∗. It follows from Lemma . that x∗ ∈ F(W ) = F(S).
Therefore ww(xn) ⊂ F(S). �

Theorem . The sequence {xn} generated by Algorithm . converges strongly to z, which
is the unique solution of the variational inequality

〈
ρf (z) –μT(z),x – z

〉 ≤ , ∀x ∈ � ∩ F(S). (.)

Proof Since {xn} is bounded xn ⇀ w and from Lemma ., we have w ∈ F(S). Next, we
show that w ∈ �. Since limn→∞ ‖xn – zn‖ =  and there exists a subsequence {xnk } of {xn}
such that xnk → w, it is easy to observe that znk → w. For any x, y ∈ C, using (.), we have

∥∥Q(x) –Q(y)
∥∥ =

∥∥TF
μ

[
TF

μ [x –μBx] –μBTF
μ [x –μBx]

]
– TF

μ

[
TF

μ [y –μBy] –μBTF
μ [y –μBy]

]∥∥

≤ ∥∥(
TF

μ [x –μBx] – TF
μ [y –μBy]

)
–μ

(
BTF

μ [x –μBx] – BTF
μ [y –μBy]

)∥∥

≤ ∥∥TF
μ [x –μBx] – TF

μ [y –μBy]
∥∥

–μ(θ –μ)
∥∥BTF

μ [x –μBx] – BTF
μ [y –μBy]

∥∥

≤ ∥∥TF
μ [x –μBx] – TF

μ [y –μBy]
∥∥

≤ ∥∥(x –μBx) – (y –μBy)
∥∥
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≤ ‖x – y‖ –μ(θ –μ)‖Bx – By‖

≤ ‖x – y‖.

This implies that Q : C → C is nonexpansive. On the other hand

∥∥zn –Q(zn)
∥∥ =

∥∥TF
μ

[
TF

μ [xn –μBxn] –μBTF
μ [xn –μBxn]

]
–Q(zn)

∥∥

=
∥∥Q(xn) –Q(zn)

∥∥

≤ ‖xn – zn‖.

Since limn→∞ ‖xn – zn‖ =  (see (.)), we have limn→∞ ‖zn –Q(zn)‖ = . It follows from
Lemma . that w =Q(w), which implies from Lemma . that w ∈ �. Thus we have

w ∈ � ∩ F(S).

Since  ≤ ρτ < μη, from Lemma ., the operator μT – ρf is μη-ρτ -strongly monotone,
and we get the uniqueness of the solution of the variational inequality (.) and denote it
by z ∈ � ∩ F(S).
Next, we claim that lim supn→∞〈ρf (z) –μT(z),xn – z〉 ≤ . Since {xn} is bounded, there

exists a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
ρf (z) –μT(z),xn – z

〉
= lim sup

k→∞

〈
ρf (z) –μT(z),xnk – z

〉
=

〈
ρf (z) –μT(z),w – z

〉 ≤ .

Next, we show that xn → z. We have

‖xn+ – z‖ =
〈
αnρf (xn) + γnxn +

(
( – γn)I – αnμT

)
(yn) – z,xn+ – z

〉
= αn

〈
ρf (xn) –μT(z),xn+ – z

〉
+ γn〈xn – z,xn+ – z〉

+
〈(
( – γn)I – αnμT

)
(yn) –

(
( – γn)I – αnμT

)
(z),xn+ – z

〉
≤ αn

〈
ρ
(
f (xn) – f (z)

)
,xn+ – z

〉
+ αn

〈
ρf (z) –μT(z),xn+ – z

〉
+ γn‖xn – z‖‖xn+ – z‖ + ( – γn – αnν)‖yn – z‖‖xn+ – z‖

≤ αnρτ‖xn – z‖‖xn+ – z‖ + αn
〈
ρf (z) –μT(z),xn+ – z

〉
+ γn‖xn – z‖‖xn+ – z‖ + ( – γn – αnν)‖xn – z‖‖xn+ – z‖

=
(
 – αn(ν – ρτ )

)‖xn – z‖‖xn+ – z‖ + αn
〈
ρf (z) –μT(z),xn+ – z

〉
≤  – αn(ν – ρτ )


(‖xn – z‖ + ‖xn+ – z‖)

+ αn
〈
ρf (z) –μT(z),xn+ – z

〉
≤  – αn(ν – ρτ )


‖xn – z‖ + 


‖xn+ – z‖

+ αn
〈
ρf (z) –μT(z),xn+ – z

〉
, (.)
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which implies that

‖xn+ – z‖ ≤ (
 – αn(ν – ρτ )

)‖xn – z‖ + αn
〈
ρf (z) –μT(z),xn+ – z

〉
.

Let υn = αn(ν – ρτ ) and δn = αn〈ρf (z) –μT(z),xn+ – z〉.
We have

∞∑
n=

αn =∞

and

lim sup
n→∞

{


ν – ρτ

〈
ρf (z) –μT(z),xn+ – z

〉} ≤ .

It follows that

∞∑
n=

υn =∞ and lim sup
n→∞

δn

υn
≤ .

Thus all the conditions of Lemma . are satisfied. Hence we deduce that xn → z. This
completes the proof. �

4 Applications
To verify the theoretical assertions, we consider the following example.

Example . Let αn = 
n , βn = 

n , and γn = n–
n .

It is easy to show that the sequence {γn} satisfies condition (a).
We have

lim
n→∞αn =




lim
n→∞


n
= 

and

∞∑
n=

αn =



∞∑
n=


n
=∞.

The sequence {αn} satisfies condition (b).
Let R be the set of real numbers, B = B = , and let the mapping T :R →R be defined

by

T(x) =
x + 


, ∀x ∈R,

let the mapping S :R→ R be defined by

S(x) =
x

, ∀x ∈R,

http://www.fixedpointtheoryandapplications.com/content/2014/1/235


Bnouhachem Fixed Point Theory and Applications 2014, 2014:235 Page 16 of 21
http://www.fixedpointtheoryandapplications.com/content/2014/1/235

let the mapping f :R →R be defined by

f (x) =
x


, ∀x ∈ R.

It is easy to show that T is a -Lipschitzian mapping and 
 -strongly monotone, S is a

-strict pseudo-contraction mapping and f is 
 -Lipschitzian. Let the mapping F : R ×

R →R be defined by

F(x, y) = –x + xy + y, ∀(x, y) ∈ R×R.

By the definition of F, we have

 ≤ F(un, y) +


μ
〈y – un,un – xn〉

= –un + uny + y +


μ
(y – un)(un – xn).

Then

 ≤ μ
(
–un + uny + y

)
+

(
yun – yxn – un + unxn

)
= μy + (μun + un – xn)y – μun – un + unxn.

Let A(y) = μy + (μun + un – xn)y – μun – un + unxn. A(y) is a quadratic function of
y with coefficients a = μ, b = μun + un – xn, c = –μun – un + unxn. We determine the
discriminant � of A as follows:

� = b – ac

= (μun + un – xn) – μ
(
–μun – un + unxn

)
= μ

u

n + μun + un – μunxn – unxn + xn

= xn +
(
μ

 + μ + 
)
un – xnun(μ + )

=
(
xn – un(μ + )

).
We have A(y) ≥ , ∀y ∈R. If it has at most one solution in R, then � = , we obtain

un =
xn

 + μ
. (.)

Let the mapping F :R×R →R be defined by

F(x, y) = –x + xy + y, ∀(x, y) ∈R×R.

By the definition of F, we have

 ≤ F(un, y) +

μ

〈y – un,un – xn〉

= –un + uny + y +

μ

(y – un)(un – xn).
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Then

 ≤ μ
(
–un + uny + y

)
+

(
yun – yxn – un + unxn

)
= μy + (μun + un – xn)y – μun – un + unxn.

Let B(y) = μy + (μun + un – xn)y – μun – un + unxn. B(y) is a quadratic function of y
with coefficients a = μ, b = μun + un – xn, c = –μun – un + unxn. We determine the
discriminant � of B as follows:

� = b – ac

= (μun + un – xn) – μ
(
–μun – un + unxn

)
= un + μun + unμ


 – xnun – xnunμ + xn

= (un + unμ) – xn(un + unμ) + xn

= (un + unμ – xn).

We have B(y)≥ , ∀y ∈R. If it has at most one solution in R, then � = , we obtain

un =
xn

 + μ
. (.)

For every n≥ , from (.) and (.), we rewrite (.) as follows:

⎧⎪⎨
⎪⎩
zn = xn

(+μ)(+μ)
;

yn = zn
n + ( – 

n )zn;
xn+ = ( ρ

n +
n–
n )xn + (n+)yn

n –μ
yn+
n .

In all tests we take ρ = 
 and μ = 

 . In our example η = 
 , k = , τ = 

 . It is easy to show
that the parameters satisfy  < μ < η

k ,  ≤ ρτ < ν , where ν = μ(η – μk
 ). All codes were

written inMatlab, the values of {zn}, {yn}, and {xn}with different n are reported in Tables 
and .

Remark . Tables  and , and Figures  and  show that the sequences {zn}, {yn}, and
{xn} converge to , where {} = � ∩ F(S). Also Tables  and  show that the convergence
of Algorithm . is faster than Algorithm ..

Table 1 The values of {zn}, {yn}, and {xn} with initial value x1 = 10

Algorithm 3.1 Algorithm 3.2 with F = F1 Algorithm 3.2 with F = F2
zn yn xn zn yn xn zn yn xn

n = 1 0.714286 0.238095 10.000000 2.857143 0.952381 10.000000 2.500000 0.833333 10.000000
n = 2 0.174115 0.159605 3.470684 0.908574 0.832860 3.937156 0.839002 0.769085 3.859410
n = 3 0.078010 0.076084 1.799806 0.497992 0.485696 2.365460 0.472515 0.460848 2.295072
n = 4 0.040919 0.040493 1.022977 0.303544 0.300382 1.517720 0.293530 0.290472 1.467648
n = 5 0.023015 0.022893 0.605373 0.193853 0.192819 1.001573 0.190192 0.189177 0.968249
n = 6 0.013425 0.013383 0.365708 0.126958 0.126566 0.671062 0.126044 0.125655 0.649610
n = 7 0.007982 0.007966 0.223090 0.084379 0.084215 0.453535 0.084628 0.084464 0.440068
n = 8 0.004782 0.004776 0.136314 0.056557 0.056483 0.307922 0.057242 0.057167 0.299676
n = 9 0.002859 0.002856 0.082755 0.038063 0.038028 0.209346 0.038845 0.038809 0.204446
n = 10 0.001685 0.001684 0.049394 0.025624 0.025607 0.142095 0.026353 0.026336 0.139297
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Table 2 The values of {zn}, {yn}, and {xn} with initial value x1 = –10

Algorithm 3.1 Algorithm 3.2 with F = F1 Algorithm 3.2 with F = F2
zn yn xn zn yn xn zn yn xn

n = 1 –0.714286 –0.238095 –10.000000 –2.857143 –0.952381 –10.000000 –2.500000 –0.833333 –10.000000
n = 2 –0.177527 –0.162733 –3.538711 –0.924273 –0.847250 –4.005183 –0.853791 –0.782642 –3.927438
n = 3 –0.081028 –0.079027 –1.869430 –0.513819 –0.501132 –2.440639 –0.487908 –0.475861 –2.369839
n = 4 –0.043427 –0.042974 –1.085664 –0.317798 –0.314488 –1.588992 –0.307701 –0.304496 –1.538505
n = 5 –0.025092 –0.024958 –0.659998 –0.206325 –0.205225 –1.066013 –0.202795 –0.201714 –1.032413
n = 6 –0.015158 –0.015111 –0.412926 –0.137783 –0.137358 –0.728280 –0.137124 –0.136701 –0.706715
n = 7 –0.009444 –0.009426 –0.263964 –0.093772 –0.093590 –0.504027 –0.094344 –0.094161 –0.490588
n = 8 –0.006031 –0.006023 –0.171898 –0.064738 –0.064654 –0.352462 –0.065776 –0.065690 –0.344356
n = 9 –0.003937 –0.003934 –0.113970 –0.045226 –0.045185 –0.248745 –0.046372 –0.046330 –0.244064
n = 10 –0.002627 –0.002626 –0.077009 –0.031937 –0.031916 –0.177107 –0.033029 –0.033007 –0.174582

Figure 1 The convergence of {zn}, {yn}, and {xn} with initial value x1 = 10 for Algorithm 3.1 and
Algorithm 3.2 with F = F1 and with F = F2.
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Figure 2 The convergence of {zn}, {yn}, and {xn} with initial value x1 = –10 for Algorithm 3.1 and
Algorithm 3.2 with F = F1 and with F = F2.

5 Conclusions
In this paper, we suggest and analyze an iterative method for finding the approximate el-
ement of the common set of solutions of (.) and (.) in real Hilbert space, which can
be viewed as a refinement and improvement of some existing methods for solving equilib-
riumproblem, and a hierarchical fixed point problem. Strong convergence of the proposed
method is proved under mild assumptions. Furthermore, some preliminary numerical re-
sults are reported to verify the theoretical assertions of the proposed method and show
that our algorithm for the system of generalized equilibrium problems is more attractive
in practice than our algorithm for the generalized equilibrium problems.
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