
Chapter 8
Power Take-Off Systems for WECs

Amélie Têtu

8.1 Introduction, Importance and Challenges

The power take-off (PTO) of a wave energy converter is defined as the mechanism
with which the absorbed energy by the primary converter is transformed into
useable electricity. The primary converter can for example be an enclosed chamber
for an oscillating water column or a point absorber buoy. The PTO system is of
great importance as it affects not only directly how efficiently the absorbed wave
power is converted into electricity, but also contributes to the mass, the size and the
structural dynamics of the wave energy converter.

By having this direct influence on the wave energy converter, the PTO system
has a direct impact on the levelised cost of energy (LCoE) [1]. The PTO system has
a direct effect on the efficiency of power conversion; hence, it has a direct impact on
the annual energy production. The PTO system affects directly the capital cost of a
device by accounting for typically between 20–30 % of the total capital cost [2].
The reliability of the PTO system affects the availability (the energy production)
and the operation and maintenance cost.1 The influence of the PTO on the LCoE is
schematized in Fig. 8.1. A study made by the Partnership for Wave Energy in
Denmark investigated the influence of the PTO system for four different wave
energy converters [3]. The impact of the PTO efficiency and the reduction in cost of
the PTO system on the LCoE were the PTO variables studied; Fig. 8.2 shows the
results.
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For both an increase in efficiency and a reduction in cost of the PTO, a decrease
of the LCoE is observed. Even though an increase in PTO efficiency has a bigger
effect on the LCoE, both parameters have a significant impact on the LCoE showing
the importance of the PTO system in a wave energy converter.

But the task of designing a cost-efficient PTO system is definitively not an easy
one. The main challenge comes from the intrinsic properties of the energy resource.
Ocean energy presents high variability. As shown in Fig. 8.3, the surface elevation
varies irregularly in time and can induces high amplitude displacements, acceler-
ations and forces on a body in a very short period of time. At other instants, the
waves present low amplitude displacements, accelerations and forces. Those two
extreme regimes present different dynamic load patterns and in both cases, the PTO
system should be as efficient as possible.

Fig. 8.1 Economic variables defining the levelised cost of energy for wave energy converters.
The PTO system has a direct impact on the capital cost, the operation cost and the annual energy
production of the device [1]

Fig. 8.2 Influence of a the PTO efficiency and b the relative reduction (in %) in the cost of the
PTO system on the relative LCoE for different wave energy converters

204 A. Têtu



Fig. 8.3 Surface elevation as a function of time

WECs are placed in very harsh environment, leading to a high wear-rate and are
difficult to access due to their location and/or unfavourably weather conditions. As
for the rest of the device, the PTO system should be robust, reliable and should
require as little maintenance as possible.

As opposed to the wind energy sector, there is no industrial standard device for wave
energy conversion and this diversity is transferred to the PTO system. Many different
types of PTO systems have been investigated, and the type of PTO system used in a wave
energy converter is often correlated with its type. For example, oscillating water column
type of device utilised an air turbine coupled to the electrical generator, while point
absorber type of converter can use different PTO systems depending on their configuration
and may require cascaded conversion mechanisms. This variety means that PTO systems
are still at the development stage with little experience gained for large scale devices. To
add to the difficulties, PTO systems are difficult to test at small scale as friction becomes
an issue. They can first be tested at a larger scale where costs are significantly increased.

The PTO system is a crucial component of a wave energy converter. As pre-
viously mentioned, it is also difficult to design due to the variability of the energy
source, the environment in which it is placed and scaling issues. This chapter aims
first at giving an overview of the different types of PTO systems. The concept of
control and its importance for PTO systems will then be introduced.

8.2 Types of Power Take-Off System

8.2.1 Overview

As mentioned earlier, many different types of PTO systems exist, and the type of
PTO chosen for a particular wave energy converter is often strongly correlated with
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the type of converter. The different main paths for wave energy to electricity
conversion are schematised in Fig. 8.4.

A systematic comparison of the different types of PTO is a difficult task to
accomplish as limited data is available and one particular device can be bound to
only two types of systems. The types of PTO systems can be categorized into five
main categories and are described in the following sections.

8.2.2 Air Turbines

Air turbines as a mean for converting wave power into mechanical power are
mostly used in oscillating water column (see Chap. 2). The idea is to drive a turbine
with the oscillating air pressure in an enclosed chamber as a consequence of the
oscillating water level, induced by the ocean waves (see Fig. 8.5). The main
challenge comes from the bidirectional nature of the flow. Non-returning valves to
rectify the air flow combined with a conventional turbine is one solution. However,
this configuration is complicated, has high maintenance cost and for prototype
size the valves become too large to be a viable option. Another solution is to use a
self-rectifying air turbine that converts an alternating air flow into a unidirectional
rotation.

Fig. 8.4 Different paths for wave energy to electricity conversion
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Several types of self-rectifying turbines have been proposed in the last 40 years,
and new ideas are still being pursued to find an efficient reliable PTO system for the
OWC systems, the main ones being:

• Wells type turbines
• Impulse turbines
• Denniss-Auld turbines

Wells type turbine was the first self-rectifying turbine to be developed and is
named after its inventor A.A. Wells. It consists of a symmetrical rotor composed of
many aerofoil blades positioned around a hub with the normal of their chords
planes aligned with the axis of rotation (see Fig. 8.6a). When the rotor is in
movement, the rotational speed induces an apparent flow angle a, which in turn
creates a lift force perpendicular to the apparent flow direction and a drag force
parallel to the apparent flow direction (see Fig. 8.6b). Those forces can be
decomposed into axial (Fx) and tangential force (Fh). For some given value a, the

Fig. 8.5 Schematic of a
wave energy converter where
an air turbine is employed

Fig. 8.6 Illustration of a self-rectifying Wells turbine (taken from [37])
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direction of the tangential force is independent of the sign of a, and the rotor will
rotate in a single direction regardless of the direction of the air flow.

The Wells turbine is the simplest of all the self-rectifying turbines and probably
the most economical option for wave energy conversion. The Azores Pico Plant [4]
and the LIMPET in Islay, U.K., [5] are both equipped with this type of turbine. One
major drawback of the Wells turbines is that they are not self-starting: the rotor has
to be initially accelerated by an external source of energy.

To overcome the drawbacks of the Wells turbine, the so called impulse turbine
was developed. The idea is to redirect the air flow by using guide vanes in order to
directly transfer the kinetic energy of the air flow into the tangential force com-
ponent on the rotor blades, as depicted in Fig. 8.7. The guide vanes can either be
fixed or pitched. The pitching mechanism can either be self-controlled by the air
flow or controlled by another active mechanism, for example hydraulic actuator [6].
This extra feature increases the amount of moving parts of the turbine and therefor
decreases the reliability and increases the operation and maintenance cost of the
turbine. On the other hand, the pitching mechanism increases considerably the
efficiency of the turbine, cf. Fig. 8.8.

Fig. 8.7 Schematic of the cross-section at the aerofoils level of an impulse turbine (taken from [7])
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An impulse turbine with self-pitch-controlled guide vanes was tested at the
NIOT plant in India and showed a threefold increase in total efficiency with respect
to the previously installed Wells turbine [7].

The Denniss-Auld self-rectifying turbine is based on the Wells turbines con-
figuration where the aerofoils blades can rotate around their neutral position in order
to achieve optimal angle of incident flow (see Fig. 8.9). The rotation of the blades is
controlled by measuring the pressure in the chamber. This type of turbine was
installed in the MK1 OWC full-scale prototype deployed in New South Wales,
Australia in 2005 [8].

Table 8.1 summarises the technological advantages and inconvenients for the
self-rectifying air turbines mentioned above.

Fig. 8.8 Comparison of efficiency for different self-rectifying air turbines under irregular flow
conditions (taken from [38])

Fig. 8.9 a Schematic of an aerofoil and b illustration of the aerofoil pitching sequence in
oscillating flow for a Denniss-Auld turbine (taken from [39])
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8.2.3 Hydraulic Converters

When the energy capture mechanism is based on the movement of a body in
response to the interaction with the waves, as is the case for some point absorbers
and attenuators, conventional rotary electrical machines are not directly compatible.
Hydraulic converter is often the solution chosen to interface the wave energy
converter with the electrical generator since they are well suited to absorb energy
when dealing with large forces at low frequencies. In this particular case, the energy
path is usually reversed with respect to traditional hydraulic system. The movement
of the body is feeding energy into a hydraulic motor, which in turn translates the
energy to an electrical generator.

A schematic of a hydraulic PTO system for wave energy conversion is depicted
in Fig. 8.10. A point absorber connected to an hydraulic cylinder moves up and
down with respect to an actuator, forcing fluid through controlled hydraulic man-
ifolds to a hydraulic motor, which in turn drives the electric generator.
Accumulators are also added to the system so as to smoothen the supply of high
pressure fluid in the system by either providing or accumulating hydraulic energy
when necessary. For wave energy conversion, radial piston motor is often favoured
as it is well suited for high loads, low velocity applications.

Table 8.1 Advantages and inconvenients for different self-rectifying turbine employed in wave
energy conversion

Turbine type Advantages Inconvenients

Wells turbine ∙ Technologically simple ∙ Narrow flow range at which the
turbine operates at useful
efficiencies

∙ Poor starting characteristics

∙ High operational speed and
consequent noise

∙ High axial thrust

Impulse
turbines

∙ Good starting characteristics ∙ Large number of movable parts
for the self-pitching
configuration

∙ Low operational speed

∙ Wide range of flow coefficients at
which the turbine operates at useful
efficiencies

Denniss-Auld
turbines

∙ Low operational speed ∙ Large number of movable parts

∙ Wide range of flow coefficients at
which the turbine operates at useful
efficiencies
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Many issues arise when choosing a hydraulic PTO system for wave energy
conversion. Fluid containment of the hydraulic system has to be addressed with
regards to performance and environmental impacts. The use of biodegradable
transformer oil has been reported to address the environmental issue [9]. Efficiency
of the whole system is also of importance. Due to the variability of the energy
resource, hydraulic systems often include several hydraulic gas accumulators that
can store the absorbed peak loads and smoothen the wave energy conversion from
the motor. Digital displacement motors [10], based on radial piston motor, were
developed in order to increase the part-load efficiency of hydraulic motor and
facilitate their controllability [11]. Hydraulic systems are composed of many
moving parts, and the seals of the piston will wear over time which can increase
drastically the maintenance cost. This has to be kept in mind while designing a
hydraulic PTO system. Another issue to address is the protection of the PTO system
in the event of extreme conditions, where the hydraulic actuator exceeds its design
travel and damage the system. One solution is to include mechanical limit to the
stroke [12] or to use radial hydraulic piston [13].

8.2.4 Hydro Turbines

Hydro turbines are employed in overtopping devices or hydraulic pump systems
using seawater as fluid. In overtopping type of devices, the water reaching over a
ramp accumulates in a basin, and its potential energy is converted using low-head
turbines and generators (see Fig. 8.11).

Fig. 8.10 Example of a hydraulic PTO system for wave energy conversion (taken from [40])
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Hydro turbines have the benefit of being a mature technology that has been used
for many decades for power generation. Kaplan turbines were used in the Wave
Dragon device [14] and the Danish Wave Power system [15]. A Kaplan turbine is a
reaction turbine that comprises a rotating element called a runner fully immersed in
water, enclosed within a pressure casing (see Fig. 8.12). The turbine is equipped
with adjustable (or fixed) guide vanes regulating the flow of water to the turbine
runner. The blades of the runner are also adjustable from an almost flat profile for
low flow conditions to a heavily pitched profile for high flow conditions.

Hydro turbines can operate at efficiency values of an excess of 90 % and require
low maintenance. For wave energy conversion, the bottleneck resides in the energy
extraction from the waves being able to deliver sufficient head and flow for the
Kaplan turbine generator unit to be economical.

Fig. 8.11 Illustration of the
working principle of a floating
overtopping wave energy
converter (taken from [14])

Fig. 8.12 Schematic of a
cross-section view of a
Kaplan turbine (top) and
bottom view of the runner
(bottom) (taken from [41])
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8.2.5 Direct Mechanical Drive Systems

A direct mechanical drive PTO system consists on translating the mechanical
energy of an oscillating body subjected to waves into electricity by means of an
extra mechanical system driving a rotary electrical generator. This type of PTO
system is illustrated in Fig. 8.13. For example, the mechanical conversion system
can comprise gear box, pulleys and cables. Flywheel can be integrated in a rotation
based system so as to accumulate or release energy and thereby smooth out power
variations [16].

One advantage of that type of PTO system is that only up to three energy
conversions are necessary, resulting in high efficiency. On the other hand, the direct
mechanical drive system undergoes uncountable load cycles, and reliability of this
type of system still needs to be proven.

8.2.6 Direct Electrical Drive Systems

Direct electrical drive PTO systems refer to systems for which the mechanical
energy captured by the primary converter is directly coupled to the moving part of a
linear electrical generator [17, 18]. Development of permanent magnets and
advances in the field of power electronics have rendered this solution attractive.
Figure 8.14 illustrates a direct electrical drive PTO system. A translator on which
alternating polarity magnets are mounted is coupled to a buoy. The ocean waves
induce a heaving motion to this system with respect to a relatively stationary stator
equipped with coils, inducing electrical current in the stator.

Fig. 8.13 Illustration of a
direct mechanical drive PTO
system
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As the wave motion is directly converted to electricity in direct electrical drive
PTO systems, rectification is necessary before conversion into a sinusoidal fixed
voltage and frequency waveform for grid connection. This can be done either
passively or actively [19]. Careful design of the mounting structure is also neces-
sary in order to maintain fine air gaps between the translator and the stator.

8.2.7 Alternative PTO Systems

Other types of PTO system for wave energy conversion are investigated. One
alternative makes use of dielectric elastomer [20, 21]. The principle is to coat with
electrodes a membrane of dielectric elastomer. The mechanical energy from the
waves deforms the membrane, reducing the capacitance and thereby increasing the
electrical potentials of charges residing in the electrodes. Although promising
simulation results have been shown, the technology is still far from mature.

8.3 Control Strategy of Power Take-Off System

8.3.1 Introduction

Ocean waves have a broad frequency band that changes with time and season, and
present extreme events. On the other hand, wave energy converters are often
designed with an oscillator having a narrow frequency range, i.e. their efficiency in
absorbing wave energy peaks near their natural frequency (x0) [22]. This is rep-
resented schematically in Fig. 8.15.

Fig. 8.14 A schematic of a
direct linear drive system for
wave energy conversion
(taken from [40])
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In order to render the wave energy converter more efficient by increasing the overlap
between the (changing) ocean wave spectrum and the response of the converter, some
tuning is necessary. The process of adapting the wave energy converter to behave as in
resonance over a broad band of frequencies is referred to as control. The physical
characteristics of the wave energy converter, like size, mass and shape, are often difficult
to vary according to the incoming waves, but the behaviour of the converter can be
adjusted by acting on the stiffness and/or the damping of the system.2 These variables are
accessible through the PTO system of a wave energy converter. By controlling the
behaviour of wave energy converters through their PTO system, one can increase the
efficiency of the system and hence its cost-effectiveness. Furthermore, in the event of
extreme conditions, the wave energy converter should automatically switch to safe
operation mode in order to insure its survivability. This implies a controlled system where
the forces exerted on the system are monitored regularly. However necessary, control of
the PTO system of wave energy converters introduces complexity to the system, which in
turn lowers the reliability of the system and increases maintenance cost. The influence of
the control strategy on the structural fatigue also needs to be considered [23]. Careful
design of the control strategy is imperative in order to ensure cost-effective converters.

8.3.2 Types of Control Strategy

Control can be achieved on different time scales. Some of the device properties can be
adjusted according to the current wave conditions, or sea state, over a period of some
minutes to hours (also referred to as slow tuning). Furthermore, to allow for the irreg-
ularity of the incoming waves, the device properties should also be adapted according to
the incoming wave for achieving best response, and this is referred to as fast tuning or
wave-to-wave tuning.

For an unconstrained point absorber in sinusoidal wave, two conditions need to
be fulfilled in order to achieve optimum control, or in other words optimum energy
absorption [24]:

Fig. 8.15 Representation of
the wave spectrum (solid line)
compared to the power
response of a narrow
spectrum wave absorber

2For a deeper understanding of the hydrodynamics of wave energy converters, the reader is
referred to Chap. 6 of this book.
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(1) The velocity of the oscillator is in phase with the dynamic pressure of the
incoming wave.

(2) The amplitude of the motion of the oscillator at the resonance condition needs
to be adjusted so that the amplitude of the incident wave is twice the amplitude
of the radiated wave from the oscillator.

The first condition corresponds to adjusting the phase of the velocity with the
phase of the incoming wave and is, therefore, often referred to as phase control.

According to the second condition, the amplitude of the motion of the oscillator
has to be adjusted by damping in order to achieve maximum energy conversion
efficiency. If the damping is set too low, the oscillator will move too much with
regards to the wave and little power will be extracted. In the same way, if the
damping is too high, the amplitude of the motion will be limited, resulting in low
power extraction. Hence, appropriate damping on the PTO system is fundamental.

There are many different control strategies, cf. [25]. Some of the main common
ones are briefly detailed in the following.

8.3.2.1 Passive Loading Control

The damping coefficient is defined as the ratio of the force to velocity for linear motions,
or torque to angular velocity for rotating motions. The damping coefficient is frequency
dependent and can be either determined numerically or derived from experimental tank
testing. This control strategy corresponds to adjusting the damping coefficient provided
by the PTO system for a given sea state condition. For example, for rotating motion the
PTO system will provide a given counter torque for a certain angular velocity of the
shaft. The force-velocity (torque-angular velocity) relationship can be linear, as well as
exponential or even having more advanced features (see Fig. 8.16). This technique can
also be used to limit the range of movement of a device in order to avoid damaging the
device in extreme wave conditions.

Fig. 8.16 Various types of
linear and non-linear passive
loading
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8.3.2.2 Latching Control

Latching control is a non-linear control strategy that consists of stalling the device when
its velocity is zero and releasing it when the excitation force has a given phase that
maximises energy absorption [26], as illustrated in Fig. 8.17. This type of control
requires a PTO system that can react quickly to a given control command, like for
example a hydraulic PTO system [25], and has been shown to increase significantly the
absorbed energy of different devices in irregular wave conditions [27–30]. The main
drawback of this strategy is that it requires the knowledge of the future wave profile in
order to know when to fix and release the device, and accurate algorithms for wave
prediction of wave algorithms are a challenge in itself. Latching can also lead to very
large forces and it becomes less effective for two bodies system.

8.3.2.3 Reactive Loading Control

One consequence of optimum control is that some energy is returned into the sea
for a small fraction of the oscillation cycle [31]; for this reason optimum control is
also known as reactive control. Reactive loading control can be used to widen the
frequency band of the wave energy converter around the natural frequency [25].

Any wave energy converter has inertia, which consists of the intrinsic inertia of
the converter plus the inertia of the adjacent water. A wave energy converter is also
often associated with a stiffness term. When pushing a body down in the water and
releasing it, the body will come back to its original position after some oscillations
in the same way as a mass spring system in the presence of friction would behave.
Inertia is the resistance to acceleration, and stiffness is the resistance to deflection.
Intuitively, those two variables should be minimised. Reactive loading control
strategy aims at maximising the energy absorption at all frequencies by dynamically
adjusting the spring constant (stiffness), the inertia and the damping of the
oscillator.

Fig. 8.17 Illustration of the
latching control where a
heaving body is kept at a fixed
vertical position for a certain
time interval in order to
achieve phase control
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Even though this strategy can enhance wave energy absorption [32, 33] as
illustrated in Fig. 8.18, it leads to reversible and very complex PTO mechanisms.
Many different suboptimal control strategies have been proposed for wave energy
conversion to simplify the problem [34–36].

8.4 Conclusion

This chapter introduced what a PTO system of a wave energy converter is,
described the different types of PTO systems and presented the concept of control,
with the overall objective of showing how crucial this subsystem is. The efficiency
of the PTO system directly affects the annual energy production of the machine,
and the choice of components has a direct influence on the cost of the whole
converter and the maintenance cost of the system. An efficient, maintenance-free
and reliable PTO system is fundamental in order to reach the goal of
cost-effectiveness for wave energy conversion.
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