
OpenSesame: An open-source, graphical experiment builder
for the social sciences

Sebastiaan Mathôt & Daniel Schreij & Jan Theeuwes

Published online: 16 November 2011
The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract In the present article, we introduce OpenSesame,
a graphical experiment builder for the social sciences.
OpenSesame is free, open-source, and cross-platform. It
features a comprehensive and intuitive graphical user
interface and supports Python scripting for complex tasks.
Additional functionality, such as support for eyetrackers,
input devices, and video playback, is available through
plug-ins. OpenSesame can be used in combination with
existing software for creating experiments.

Keywords Software . Stimulus presentation . Experiment
builder . Python . Graphical user interface

Introduction

A little over 20 years ago, Schneider (1988) estimated that
it took a professional programmer approximately 160 h to
implement a new experimental paradigm. Fortunately,
things have changed since then. Advances in both software
and hardware have made it possible for unskilled program-
mers to develop their experiments rapidly, using any of the
available “point-and-click” software packages (for a com-
parison, see Stahl, 2006). Scientists who prefer program-
ming over the use of a graphical interface also benefit from
the power of modern, high-level programming languages,
which have substantially improved the readability and
reduced the amount of code required to perform most tasks.

Another important development is the increased
availability of high-quality, free experimental software.
Currently, there are at least eight free software packages
that are viable tools for creating experiments (see
Table 1). However, these packages occupy a relatively
small niche, mostly because they do not offer the type of
fully graphical interface that many users have come to
expect. Therefore, researchers who are most comfortable
in a graphical environment generally use proprietary
software.

In the present article, we introduce OpenSesame, a new
experiment builder. OpenSesame is unique in that it is free,
cross-platform, and arguably, offers the most intuitive and
comprehensive graphical user interface (GUI) currently
available. For complex tasks, which cannot be performed
through the GUI, OpenSesame supports Python scripting (Van
Rossum&Drake, 2011). Awide range of experiments can be
created, including psychophysical experiments, speeded
response time tasks, eye-tracking studies, and questionnaires.

In the first section of the present article, we provide a
nontechnical description of the functionality offered by
OpenSesame. In the second section, we describe how Open-
Sesame compares with, and can be used in combination with,
existing software. The third section deals with timing
considerations and is followed by the fourth section, in which
the results of a benchmark experiment are described.

OpenSesame is freely available for download from
http://www.cogsci.nl/opensesame. Documentation, a step-
by-step tutorial, example experiments, and plug-ins can be
found in the documentation area at http://osdoc.cogsci.nl/.
The version of OpenSesame reviewed in the present article
is 0.24. At the time of writing, OpenSesame has been
downloaded more than 10,000 times (nonunique downloads
from cogsci.nl and via bit-torrent), and there is an active
support forum.

S. Mathôt (*) :D. Schreij : J. Theeuwes
Department of Cognitive Psychology, Vrije Universiteit,
Van der Boechorststraat 1,
1081 HVAmsterdam, The Netherlands
e-mail: s.mathot@vu.nl

Behav Res (2012) 44:314–324
DOI 10.3758/s13428-011-0168-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81544288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cogsci.nl/opensesame
http://osdoc.cogsci.nl/

Usage and functionality

System requirements

OpenSesame does not impose strict system requirements.
Installation packages are available for Windows XP/Vista/7
and Ubuntu/Debian Linux. OpenSesame has been exten-
sively tested on those platforms. At the time of writing,
packages for Mac OS are also available but have been
labeled “experimental” pending further testing. On other
platforms, users will need to manually install the software
on which OpenSesame depends and run OpenSesame from
the source code. Instructions for running OpenSesame from
source are provided online.

The processing power required to run OpenSesame
depends strongly on the type of experiment. For a typical
experiment, consisting of a sequence of static stimulus
displays followed by response collection, the requirements
are very modest, and any relatively modern computer
system will suffice (we have successfully run OpenSesame
on a low-end netbook; 2-GB Ram, 1.66-GHz Intel Atom
N270). When using complex stimuli, such as high-
definition video, the user will need to evaluate for him- or
herself whether the computer system is up to the task.

The graphical user interface

After starting OpenSesame, the user is presented with a
GUI (see Fig. 1). The structure of the experiment is
depicted graphically as a tree structure in the overview
area (Fig. 1b). An experiment consists of a collection of
items, which are self-contained parts of the experiment (i.e.,
conceptually distinct units). Items can be added to the
experiment by dragging them from the item toolbar
(Fig. 1a) onto the overview area. Items can be edited by
selecting them in the overview area, after which the
appropriate controls appear in the tab area (Fig. 1c).

There are 10 core items that provide the basic function-
ality for creating an experiment (see Table 2 for an
overview; functionality can be extended as described in
the Usage and functionality: Plug-ins section). Examples of
items are the sketchpad, which handles the presentation of a
single stimulus display, and the keyboard_response, which
handles the collection of a single keyboard press. Two
special items are the loop and the sequence, which control
the structure of the experiment. A sequence item sequen-
tially calls a number of other items. A loop item repeatedly
calls a single other item, while varying the values of
independent variables. By combining items in various

Table 1 An overview of software for creating experiments

Name GUI Free Scripting Platform Reference/Vendor

DirectRT Yes No Custom Windows Reviewed in Stahl (2006)

DMDX No Yes* Custom Windows Forster & Forster (2003)

E-Prime Yes No E-Basic Windows Reviewed in Stahl (2006)

Experiment Builder Yes No Python Windows SR Research, Missisauga, ON, Canada

Inquisit Yes No Custom Windows Reviewed in Stahl (2006)

MATLAB Psychophysics Toolbox No Yes** MATLAB Windows, Mac OS, Linux Brainard (1997)

MEL No*** No Custom IBM PC Schneider (1988)

PEBL No Yes Custom Windows, Mac OS, Linux Mueller (2010)

Presentation Yes No Custom Windows Neurobehavioral Systems, Albany, CA

PsychoPy Yes Yes Python Windows, Mac OS, Linux Peirce (2007)

PsyScope Yes Yes Custom Mac OS Cohen, MacWhinney, Flatt, & Provost (1993)

PsyToolkit No Yes Custom Linux Stoet (2010)

PyEPL No Yes Python Mac OS, Linux Geller et al. (2007)

SuperLab Yes No Custom Windows Reviewed in Stahl (2006)

Tscope No Yes C/C++ Windows**** Stevens, Lammertyn, Verbruggen,
& Vandierendonck (2006)

Vision Egg No Yes Python Windows, Mac OS, Linux Straw (2008)

* Source-code is not available

** Depends on MATLAB (The MathWorks, 1998), a proprietary software package, for full functionality. Offers limited support for Octave
(Eaton, 2002), an open-source MATLAB clone

*** Uses a form-based interface

**** Offers limited support for Mac OS and Linux

Behav Res (2012) 44:314–324 315

ways, arbitrary experimental paradigms can be constructed
(Fig. 1d).

Variables and conditional (“if”) statements

One of the biggest challenges when designing a GUI is to
offer sufficient flexibility. In OpenSesame, this flexibility is
achieved through the support of variables and conditional
(“if”) statements.

Variables can be built in (e.g., subject_nr), set by items
(e.g., response_time, which is set by keyboard_response
items), or specified by the user in loop items (see Fig. 2a).
These variables can be used throughout the GUI, by
entering [variable_name] in places where you would
normally encounter a static value. For example, if the user
has defined a variable called SOA, this variable can be used
to control the duration of a sketchpad item (i.e., a stimulus
display) by entering [SOA] in the duration field (Fig. 2b).
Analogously, feedback of the average response times can
be given by adding the text “Your average response time
was [avg_rt]msg” to a feedback item (Fig. 2c).

Particularly powerful is the possibility of combining the
what-you-see-is-what-you-get sketchpad drawing tool
(shown in Fig. 2b, c) with the use of variables. The
drawing tool automatically generates a simple script that
defines the elements in the sketchpad. By replacing the
static coordinates, colors, sizes, and so forth with variables,

the user can create a flexible stimulus display in an intuitive
way. For example, if you insert an image (from the file
fork_left.png) in the center of the display, OpenSesame will
generate the following line of script (taken from the
affordances_orientation example experiment, available
online):

draw image 0 0 "fork_left.png" scale=1 center=1

show_if="always"

By right clicking on the object, you are given the
possibility of editing this line. The static values can be
replaced by variables, and thus the presented image, as well
as the image's size, can be made variable (this will result in
the object being hidden from the drawing tool, with the
message that the sketchpad contains a variably defined
object):

draw image 0 0 "[object]_[orientation].png" scale=[scale]

center=1 show_if="always"

Conditional statements, commonly referred to as “if” state-
ments, can be used to add even more flexibility to the GUI.
Every item from a sequence item has a “Run if” parameter that
is evaluated before the item is called. This can be used, for
example, to show a green or red fixation dot, depending on
whether the preceding response was correct (using the correct

Fig. 1 The OpenSesame graphical user interface on start-up. a The
item toolbar contains icons that can be dragged into the overview area.
b The overview area represents the experiment as a tree-structure. c
The tab area contains tabs for editing items and getting context-

sensitive help. By clicking on an item in the overview area, a tab with
the appropriate controls opens. By clicking on one of the blue “help”
buttons, a context-sensitive help tab opens. d The structure of an
example experiment shown in the overview area

316 Behav Res (2012) 44:314–324

variable, which is automatically set by response items; see
Fig. 2d). Analogously, in sketchpad and feedback items,

conditional statements can be used to control which elements
are actually shown, by setting the “Show if” parameter.

Fig. 2 Using variables and conditional (“if”) statements. a Indepen-
dent variables can be defined in a loop item. b By entering [SOA] in
the duration field of a sketchpad item, the variable SOA is used to
control the presentation duration of the sketchpad. This assumes that
SOA has been defined elsewhere in the experiment. c By using
[avg_rt] and [acc] as part of the text in a feedback item, appropriate
feedback can be given to the user. The variables avg_rt and acc are set

automatically by the various response items (e.g., keyboard_response).
d Conditional statements can be used to control which items from a
sequence will be called. By entering [correct]=1 in the “Run if…”
field of “green_fixation,” the item will be called only if the variable
correct has been set to 1. The variable correct is set automatically by
the various response items

Table 2 An overview of the 10 core items

Name Type Description

loop Structure Repeatedly runs a single other item. Controls independent variables.

sequence Structure Runs multiple other items in sequences. Supports basic conditional statements (“Run if …”).

sketchpad Stimulus presentation Provides a canvas for presentation of visual stimuli.

feedback Stimulus presentation Provides feedback to participants.

sampler Stimulus presentation Plays a sound from file.

synth Stimulus presentation Provides basic sound synthesis.

keyboard_response Response collection Collects keyboard responses.

mouse_response Response collection Collects mouse responses.

logger Data logging Writes variables to file.

inline_script Inline scripting Executes arbitrary Python code.

Behav Res (2012) 44:314–324 317

Data output format

Usually, data logging will be handled by the logger item.
Every time that a logger item is called, a single row of data
is written to the output file. The output file is a plain-text
comma-separated spreadsheet (.csv), in which each row
typically corresponds to a trial and each column corre-
sponds to a variable. This format is compatible with all
commonly used spreadsheet software.

Alternatively or in addition, users can write arbitrary
messages to the output file, using Python code in inline_script
items. In this case, the format of the output file is determined
by the user.

Python inline coding

Despite the flexibility of the GUI, there will sometimes be
situations that require a full-fledged programming lan-
guage. For this reason, OpenSesame supports Python
scripting (Van Rossum & Drake, 2011). Python is a
powerful programming language that is widely used in the
scientific community and the computing world in general
(the seventh most widely used programming language,
according to Tiobe.com, 2011).

To use Python scripting, you add an inline_script
item to the experiment. Rather than the knobs, buttons,
and input fields that you will see when editing other items,
the inline_script item offers an embedded programming
editor. You can use the OpenSesame Python modules,
which offer simple routines for handling display presen-
tation, sound generation, response collection, and so forth.
Alternatively, you can interact directly with the selected
back-end (see the Usage and functionality: The back-end
layer section). The latter option is mostly useful for
advanced users who are familiar with one of the back-ends
(i.e., PsychoPy [Peirce, 2007], PyGame, and/ or OpenGL) or
if the native OpenSesame modules do not offer the desired
functionality.

File format and the file pool

External files, such as images, sound files, and videos,
are stored in the file pool (Fig. 3). Optionally, Open-
Sesame also copies participant data files to the file pool
after an experiment has finished. The file pool is saved
along with the experiment in a single .opensesame.tar.gz
file. This extension is somewhat ungainly but accurately
reflects that the file is a .tar.gz archive, which can be
opened in most archiving tools (e.g., WinRar or File-
Roller). Therefore, in the unlikely event that OpenSesame
fails to open the experiment, you can still access the
experiment script and any files that have been stored in the
file pool.

Plug-ins

OpenSesame can be extended through plug-ins. Plug-ins
offer graphical controls, appear in the item toolbar, and can
be dragged into the experiment just like the built-in items.
Therefore, from the perspective of the user, there is little
difference between using a plug-in and using any of the 10
core items.

Plug-ins offer arbitrary functionality, such as support for
specific devices or handling particular tasks that would
otherwise have to be implemented through Python inline
code. Currently, there are plug-ins available that support the
Eyelink series of eyetrackers (SR Research, Mississauga,
ON, Canada), the Mantra object tracker (Mathôt &
Theeuwes, 2011), the Serial Response Box (Psychology
Software Tools, Sharpsburg, PA), input devices connected
to the parallel port, and video playback.

The back-end layer

OpenSesame consists of three distinct layers. The top layer
handles the GUI and offers the functionality needed to
create an experiment. The middle layer handles the
execution of an experiment. The bottom, or back-end, layer
handles the interaction with the display, sound, and input
devices.

There are many different Python libraries available that
could, in principle, be used in the back-end layer. Some,
such as PyGame, Pyglet, and PyOpenGL, are general

Fig. 3 The file pool. All files that are used in the experiment, such as
images, sounds, and videos, are stored in the file pool. The file pool is
saved along with the experiment, allowing for maximum portability

318 Behav Res (2012) 44:314–324

purpose, mostly oriented toward development of games.
Others, such as PsychoPy (Peirce, 2007), VisionEgg (Straw,
2008), and PyEPL (Geller, Schleifer, Sederberg, Jacobs, &
Kahana, 2007), have been developed specifically for
creating psychological experiments.

OpenSesame is back-end independent, in the sense that
different libraries can be used in the back-end layer. New
back-ends can be created and added, much like plug-ins.
Currently, there are three back-ends available: the legacy
back-end, which uses PyGame; the psycho back-end, which
uses PsychoPy (Peirce, 2007); and the opengl back-end,
which uses PyGame in combination with PyOpenGL (see
Table 3).

From the perspective of the GUI user, there is little
noticeable difference between the back-ends (although
there may be small differences in anti-aliasing and font
rendering). A red square will always be a red square,
regardless of which library is used to draw it.
Nevertheless, there are compelling reasons for having
different back-ends to choose from. The first is that not
all back-ends may be equally well supported on all
platforms. Second, back-ends may differ in their timing
properties (see the Benchmark experiment section).
Third, each back-end offers unique functionality that the
user can exploit when writing Python inline code. For
example, if the psycho back-end is enabled, you can use
the PsychoPy routines for creating visual stimuli. More
generally, users can select the back-end that they are most
familiar with and best suits their own approach to creating
experiments.

Comparison with and interoperability with existing
software

Table 1 provides a list of the most popular software for
creating experiments. There are already many software
packages to choose from, yet the functionality offered by
OpenSesame is unique. In this section, we will focus on
two packages with which OpenSesame arguably has the
most in common: E-Prime (Psychology Software Tools,
Sharpsburg, PA) and PsychoPy (Peirce, 2007).

E-Prime has been built on the legacy of the Micro
Experimental Library (MEL; Schneider, 1988). Largely
because it was one of the first programs to offer a

graphical environment for creating experiments, E-Prime
has, in our experience, become the de facto standard in
many psychological labs around the world. There are at
least four important differences between E-Prime and
OpenSesame. The most obvious difference is that Open-
Sesame is free and open-source, whereas E-Prime is
nonfree and proprietary. Because of the open character of
OpenSesame and the availability of a plug-in framework,
it is easy for third parties to add and modify functionality.
Second, OpenSesame is cross-platform, whereas E-Prime
is exclusively available for Windows. A final, crucial
difference is the language that is used for inline coding.
Whereas E-Prime uses E-Basic, a dialect of the well-
known BASIC language, OpenSesame uses Python (see
the Usage and functionality: Python inline coding sec-
tion). The advantage of using Python over E-Basic is the
availability of a large number of libraries, many of which
are oriented toward the scientific community (e.g., Jones,
Oliphant, & Peterson, 2001).

PsychoPy is an open-source project that has gained
considerable momentum as a comprehensive and well-
maintained Python library for creating psychological
experiments (Peirce, 2007). Like OpenSesame, Psy-
choPy is cross-platform and open-source. And like
OpenSesame, PsychoPy offers both a GUI (the “builder
view”) and a set of Python libraries. However, there are
substantial differences between the graphical interfaces
offered by both packages. In the builder view of
PsychoPy, the temporal progression of the experiment is
shown, but the spatial arrangement of the stimuli is not
readily apparent. In OpenSesame, the temporal progres-
sion is shown as well (in the overview area; see Fig. 1b,
d), but in addition, the user can get a visual preview of
the stimulus arrangements through the sketchpad item
(Fig. 1c). Depending, of course, on the prior experience
and personal preference of the user, such a preview can
be very helpful. OpenSesame also offers a number of
advanced features, which are not available in the
PsychoPy builder view, such as integrated drawing tools,
a more advanced sound synthesizer, and GUI support for
widely used devices such as the Serial Response Box
(Psychology Software Tools, Sharpsburg, PA) and the
Eyelink series of eyetrackers (SR Research, Mississauga,
ON, Canada). More generally, OpenSesame and PsychoPy
differ in their target audience and core functionality.

Table 3 An overview of Open-
Sesame back-ends Back-End Name Hardware Accelerated Underlying Technology

legacy No PyGame in non-OpenGL mode

opengl Yes PyGame in OpenGL mode

psycho Yes PsychoPy in Pyglet window mode (Peirce, 2007)

Behav Res (2012) 44:314–324 319

Although PsychoPy provides a GUI, the focus is on the
specialized set of Python libraries, which offer high-level
routines for creating complex visual stimuli, particularly
those that are frequently used in psychophysical experi-
ments (e.g., Gabor patches and random dot patterns). For
this reason, PsychoPy will appeal mostly to people who
prefer to code their experiments, such as MATLAB users
who are looking for a viable open-source alternative. In
contrast, OpenSesame offers only basic Python libraries but
has a comprehensive GUI and will, therefore, appeal to
users who are mostly at home in a graphical environment.
As was discussed previously (see the Usage: The back-end
layer section), OpenSesame and PsychoPy can be used in
combination. This allows users to get “the best of both
worlds” by combining the OpenSesame GUI with the
PsychoPy Python libraries.

Timing

What is “millisecond precision timing”?

A common and valid question that applies to all
experiment-building software is whether the timing is
sufficiently precise. In our view, the best measure of a
system's timing precision is the interval between the
timestamp of a stimulus' presentation and the timestamp
of a response, given the fastest possible responder that is
not directly part of the system itself. Put more simply, the
lowest possible response time is a good indication of a
system's timing precision. The reason for this is that any
inaccuracies in the timing of display presentation and
response collection will add to the lowest possible response
time. Perhaps even more importantly, the lowest possible
response time should be consistent, so that any delay is
fixed and does not constitute a source of noise (see also the
Benchmark experiment section).

However, even when a system has “millisecond preci-
sion timing” in this sense, as most modern systems do,
there are other factors that should be taken into account.
First, many psychological labs, including our own, often
use garden variety keyboards as input devices. Such
keyboards have been designed to keep up with typing,
and not to record responses with millisecond precision. As
such, keyboards have been reported to have a relatively
high and variable latency of up to 20 ms (however, it is
debatable whether this constitutes a significant source of
noise, when the much larger variability in human response
times is considered; for a discussion, see Damian, 2010).

Computer monitors also have a number of peculiar
properties. Rather than being refreshed instantaneously,
monitors are refreshed line by line from the top down and,
for each line, pixel by pixel from left to right. On CRT

(nonflat screen) monitors, there is only a single active pixel
at any given time, so pixels are “fading out” most of the
time (which is why you can observe a flickering at low
refresh rates). On TFT (flat screen) monitors, pixels remain
active, so a refresh resembles a “flood fill” from top to
bottom (which is why you do not observe flickering on a
TFT monitor). Most researchers are aware that it is best to
synchronize the presentation of a new display with the
moment that the monitor starts refreshing from the top
(synchronization to vertical refresh, or v-sync). However,
even if this is done, displays do not appear instantaneously.
With a refresh rate of 100 Hz, a stimulus presented at the
top of the display will appear up to 10 ms before a stimulus
presented at the bottom of the display. Another conse-
quence of the monitor's refresh cycle is that displays cannot
be presented at arbitrary points in time. Again, with a
refresh rate of 100 Hz, the interval between two stimulus
displays is always a multiple of 10 ms. Attempting to use
different intervals will lead to dropped frames or aberrant
timing.

The prepare–run strategy

Psychological experiments typically consist of short inter-
vals, called trials, during which a participant perceives
stimuli and performs a task. Timing should be controlled
during a trial, but some unpredictable variation in the
duration of the interval between trials is acceptable (cf.
Schneider, 1988). Therefore, the best strategy for experi-
mental software is to perform time-consuming tasks before
a trial and to keep the operations that need to be performed
during a trial to a bare minimum.

OpenSesame implements this strategy by calling each
element from a sequence item twice. During the prepare
phase, items are given time to prepare—for example, by
generating a sound in the case of a synth item, or by
creating an “offline canvas” in the case of a sketchpad.
During the run phase, items simply execute a very limited
number of trivial functions, such as showing a previously
constructed canvas. This strategy substantially reduces the
risk of timing glitches. The prepare–run strategy is
implemented at the level of sequence items, which will
typically contain the time-critical parts of an experiment. If
a sequence is called multiple times by a loop, the loop as a
whole is not prepared. Doing so would quickly lead to
excessive memory usage and potentially cause, rather than
prevent, timing issues.

Testing your own system

The timing properties of OpenSesame, or any other
experiment builder, depend on the computer setup that is
used. Therefore, OpenSesame comes with a basic test

320 Behav Res (2012) 44:314–324

experiment (test_suite) that allows you to run a number of
checks. Most importantly, the test experiment checks whether
the reported interval between two presented sketchpads
matches the specified interval. The same test allows you to
verify that synchronization to the vertical refresh is enabled
(see the Timing: What is “millisecond precision timing”?
section). If not, “tearing,” in the form of horizontal lines
running through the display, will be readily apparent.

Benchmark experiment

Even though the included test experiment allows you to run
some useful checks (see the Timing: Testing your own
system section), it is important to note that this form of
testing relies on the computer's self-report. And this can be
misleading. Specifically, the computer may report that a
display has been presented when, in fact, it has only been
queued and will be presented some time later. The aim of
the present experiment was, therefore, to check timing
precision more rigorously and to provide a list of bench-
marks that allow the reader to evaluate whether Open-
Sesame is sufficiently precise to be useful in his or her
experimental setting.

We used an artificial responder that responds, for all
intents and purposes, instantaneously to an increase in
light intensity. We measured the response times to a
white display. Both inaccuracies in the reported time of
display presentation (assuming that inaccuracies are
always such that the display is presented after the

reported time, and never before) and inaccuracies in the
reported time of the response (assuming that inaccura-
cies are always such that the reported time of the
response is after the actual response) add to the lowest
possible response time. The lowest possible response
time can therefore be used as a measure of the
combined timing precision of display presentation and
response collection.

Method

Two different test systems were used (the system
specifications are listed in Table 4). A black display
was presented for 100 ms, followed by a white display.
Automated responses to the white display were collected
using a modified button-box that responds to an increase
in light intensity (i.e., the presentation of the white
display) through a photo-resistor. This photo-resistor was
attached to the top-left of the monitor. To ensure that we
obtained realistic results (i.e., not tweaked to optimize
performance), the test experiment was created entirely
using the GUI, and no Python inline code was used. The
serial response box plug-in was used to interface with the
button-box.

The experiment was run under Windows XP (Systems 1
and 2) and Ubuntu Linux 10.04 (System 2). The following
combinations of resolution and refresh rate were tested:
1,680 × 1,050 at 120 Hz (System 1); 1,280 × 1,024 at 85
Gz (System 2); 1,024 × 768 at 60 Hz (System 2). A color
depth of 32 bits was used in all cases. All three currently

Table 4 Results of the benchmark experiment

Operating System Test
System

Display Mode Back-End Average Response
Time (ms)

Standard Deviation of
Response Time (ms)

Sync to Vertical
Refresh Enabled

Windows XP System 1 * 1,680×1,050 @
120 Hz

psycho 3.28 0.53 Yes

legacy 11.94 2.45 Yes

System 2 ** 1,024×768 @
60 Hz

psycho 3.18 0.53 Yes

legacy 16.01 2.59 Yes

1,280×1,024 @
85 Hz

psycho 3.02 0.53 Yes

legacy 9.24 1.37 Yes

Ubuntu Linux
10.04 LTS ***

1,024×768 @
60 Hz

psycho 1.56 0.41 Yes

opengl 1.45 0.51 Yes

legacy 3.59 4.30 No

1,280×1,024 @
85 Hz

psycho 1.55 0.44 Yes

opengl 1.87 0.55 Yes

legacy 3.33 2.48 No

* Computer: Intel Core 2 DUO E8400, 3Ghz, 2Gb; graphics adapter: ATI Radeon EA H4350 (discrete); monitor: Samsung 2233RZ, TFT, 22 in

** Computer: Intel Core 2 DUO E8400, 3Ghz, 2Gb; graphics adapter: Intel GMA 4500, Intel Q45/Q43 Express chipset (integrated); monitor:
Llyama vision master pro 454, CRT, 17 in

*** Running Gnome 2.30 with the Metacity window manager. The compositing layer (i.e., “Compiz” or “Desktop Effects”) was disabled

Behav Res (2012) 44:314–324 321

available back-ends were tested: legacy, opengl (Linux
only), and psycho (see the Usage and functionality: The
back-end layer section). For each test, 1,000 responses were

collected. During the test, we checked visually for
“tearing,” which indicates that the synchronization to the
vertical refresh is not enabled.

Fig. 4 Results of the bench-
mark experiment. The automat-
ed response times are shown as
a Tukey box plot conform Rob-
bins (2004). The central line
reflects the median value. The
rectangle shows the interquartile
range (the 25th percentile to the
75th percentile). The whiskers
reflect the minimum and maxi-
mum values that fall within 1.5
times the interquartile range.
Dots correspond to individual
observations that fall outside of
1.5 times the interquartile range

322 Behav Res (2012) 44:314–324

Results and discussion

The results of the experiment are shown in Fig. 4 and, in
more detail, in Table 4. No further statistics were
performed, since the data are essentially descriptive.
Synchronization to the vertical refresh was enabled in all
cases except for the legacy back-end on Ubuntu Linux
10.04. The results clearly show that for time-critical
experiments, it is advisable to use one of the hardware
accelerated back-ends, either psycho or opengl. With these,
the response times are consistently below 4 ms on
Windows XP and 2 ms on Ubuntu Linux 10.04. This
negligible delay should be acceptable in even the most
time-critical experiments.

As an aside, the results do not show any evidence that
display mode has an impact on performance (preparing a
large canvas obviously takes more time, but this cost is
hidden in the prepare phase, as is discussed in the Timing:
The prepare–run strategy section). This means that there is
no reason to choose a low resolution, color depth, or refresh
rate, unless many of the drawing operations are performed
“on the fly,” rather than prepared beforehand.

Discussion

In the present article, we have introduced OpenSesame, a
graphical, open-source experiment builder for the social
sciences. OpenSesame complements existing experiment-
building software in a number of ways.

First, OpenSesame offers the kind of fully graphical
environment that, until now, was offered only by proprie-
tary, nonfree software.

Second, OpenSesame is extensible through plug-ins (see
the Usage and functionality: Plug-ins section). Among
other things, this means that support for external devices
can be added and, once a plug-in has been created, this
novel functionality will integrate seamlessly with the user
interface. Currently available plug-ins offer support for the
Eyelink series of eyetrackers (SR Research, Mississauga,
ON, Canada), the Mantra object tracker (Mathot &
Theeuwes, 2011), the Serial Response Box (Psychology
Software Tools, Sharpsburg, PA), input devices connected
to the parallel port, and video playback.

Third, OpenSesame supports Python scripting (see the
Usage and functionality: Python inline coding section).
Even though the aim of OpenSesame is to have a flexible
user interface that allows you to create complex experi-
mental paradigms in a graphical way, there will sometimes
be occasions where there is a need for a full programming
language. Python (Van Rossum & Drake, 2011) is a widely
used language and has excellent support for scientific
applications in general (Jones et al., 2001) and for the

design of psychological experiments in particular (Geller et
al., 2007; Peirce, 2007; Straw, 2008).

Fourth, OpenSesame aims for interoperability with existing
software. Specifically, this means that OpenSesame can use
different back-ends to handle display and input operations (see
the Usage and functionality: The back-end layer section). If, for
example, you want to use the PsychoPy (Peirce, 2007) routines
for creating visual stimuli, you can select the psycho back-end.
When this back-end is selected, all display and input operations
will be handled by PsychoPy, and you will be able to use the
PsychoPy routines in your experiment. Other back-ends can be
created and added in much the same way as plug-ins.

Fifth, OpenSesame is cross-platform (see the Usage and
functionality: System requirements section). This is partic-
ularly useful in environments where different operating
systems are being used. For example, our own lab contains
a mixture of Windows XP, Mac OS, and Linux computers.
With OpenSesame, experiments are fully portable between
operating systems.

In summary, OpenSesame is a new graphical experiment
builder for the social sciences. OpenSesame is unique in
that it makes creating psychological experiments easy and
accessible for everyone. And perhaps even fun.

Author Note We would like to thank Per Sederberg for his code
contributions (opengl back-end and advanced_delay plug-in), Jarik den
Hartog and Cor Stoof for their technical support, the NeuroDebian team
(Michael Hanke and Yaroslav Halchenko) for their expertise in Debian
packaging, and Lotje van der Linden for her ideas and help with the
tutorial. This research was funded by Netherlands Organization for
Scientific Research Grant 463-06-014 to Jan Theeuwes.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision,
10, 433–436.

Cohen, J. D., MacWhinney, B., Flatt, M., & Provost, J. (1993).
PsyScope: An interactive graphic system for designing and
controlling experiments in the psychology laboratory using
Macintosh computers. Behavior Research Methods, Instruments,
& Computers, 25, 257–271.

Damian, M. F. (2010). Does variability in human performance
outweigh imprecision in response devices such as computer
keyboards? Behavior Research Methods, 42, 205–2011.

Eaton, J. W. (2002). GNU Octave manual. Bristol, U.K.: Network
Theory Ltd.

Forster, K. I., & Forster, J. C. (2003). DMDX: A windows display
program with millisecond accuracy. Behavior Research Methods,
Instruments, & Computers, 35, 116–124.

Geller, A. S., Schleifer, I. K., Sederberg, P. B., Jacobs, J., & Kahana,
M. J. (2007). PyEPL: A cross-platform experiment-programming
library. Behavior Research Methods, 39, 950–958.

Behav Res (2012) 44:314–324 323

Jones, E., Oliphant, T., & Peterson, P. (2001). Scipy: Open
source scientific tools for Python. Retrieved from http://www.
scipy.org/

Mathôt, S., & Theeuwes, J. (2011). Mantra: An open method for
object and movement tracking. Behavior Research Methods.
doi:10.3758/s13428-011-0105-9

The MathWorks. (1998). MATLAB user's guide. Natick, MA: Author
Mueller, S. T. (2010). The PEBL manual. Retrieved from http://pebl.

sourceforge.net/
Peirce, J. W. (2007). PsychoPy: Psychophysics software in Python.

Journal of Neuroscience Methods, 162, 8–13.
Robbins, N. B. (2004). Creating more effective graphs (1st ed.).

Hoboken, NJ: Wiley-Interscience.
Schneider, W. (1988). Micro experimental laboratory: An integrated

system for IBM PC compatibles. Behavior Research Methods,
Instruments, & Computers, 20, 206–217.

Stahl, C. (2006). Software for generating psychological experiments.
Experimental Psychology, 53, 218–232.

Stevens,M., Lammertyn, J., Verbruggen, F., &Vandierendonck, A. (2006).
Tscope: A C library for programming cognitive experiments on the
MS Windows platform. Behavior Research Methods, 38, 280–286.

Stoet, G. (2010). PsyToolkit: A software package for programming
psychological experiments using Linux. Behavior Research
Methods, 42, 1096–1104.

Straw, A. D. (2008). Vision Egg: An open-source library for
realtime visual stimulus generation. Frontiers in Neuroinfor-
matics, 2(4), 1–10.

Tiobe.com. (2011, May). Most popular programming languages.
Retrieved from http://www.tiobe.com/index.php/content/paperinfo/
tpci/index.html

Van Rossum, G., & Drake, F. L. (2011). Python language reference
manual. Bristol, U.K.: Network Theory Ltd.

324 Behav Res (2012) 44:314–324

http://www.scipy.org/
http://www.scipy.org/
http://dx.doi.org/10.3758/s13428-011-0105-9
http://pebl.sourceforge.net/
http://pebl.sourceforge.net/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

	OpenSesame: An open-source, graphical experiment builder for the social sciences
	Abstract
	Introduction
	Usage and functionality
	System requirements
	The graphical user interface
	Variables and conditional (“if”) statements
	Data output format
	Python inline coding
	File format and the file pool
	Plug-ins
	The back-end layer

	Comparison with and interoperability with existing software
	Timing
	What is “millisecond precision timing”?
	The prepare–run strategy
	Testing your own system

	Benchmark experiment
	Method
	Results and discussion

	Discussion
	References

