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Abstract
Background: Corporeal machine interfaces (CMIs) are one of a few available options for
restoring communication and environmental control to those with severe motor impairments.
Cognitive processes detectable solely with functional imaging technologies such as near-infrared
spectroscopy (NIRS) can potentially provide interfaces requiring less user training than
conventional electroencephalography-based CMIs. We hypothesized that visually-cued emotional
induction tasks can elicit forehead hemodynamic activity that can be harnessed for a CMI.

Methods: Data were collected from ten able-bodied participants as they performed trials of
positively and negatively-emotional induction tasks. A genetic algorithm was employed to select the
optimal signal features, classifier, task valence (positive or negative emotional value of the stimulus),
recording site, and signal analysis interval length for each participant. We compared the
performance of Linear Discriminant Analysis and Support Vector Machine classifiers. The latency
of the NIRS hemodynamic response was estimated as the time required for classification accuracy
to stabilize.

Results: Baseline and activation sequences were classified offline with accuracies upwards of
75.0%. Feature selection identified common time-domain discriminatory features across
participants. Classification performance varied with the length of the input signal, and optimal signal
length was found to be feature-dependent. Statistically significant increases in classification accuracy
from baseline rates were observed as early as 2.5 s from initial stimulus presentation.

Conclusion: NIRS signals during affective states were shown to be distinguishable from baseline
states with classification accuracies significantly above chance levels. Further research with NIRS
for corporeal machine interfaces is warranted.

Background
Access technologies currently available for locked-in indi-
viduals are largely limited to corporeal machine interfaces
(CMIs), particularly brain-computer interfaces (BCIs)
based on electroencephalography (EEG) [1]. EEG has

been popular in BCI research owing to its high temporal
resolution and non-invasiveness. However, EEG has
drawbacks including, but not limited to, its steep learning
curve [2], and susceptibility to electrical interference from
environmental and physiological sources [3]. Conse-
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quently, research efforts have been made towards investi-
gating alternative modalities for brain-computer
interfacing. Studies have identified a correlation between
cerebral hemodynamic changes - in the form of localized
increases in blood flow and oxygen consumption - and
electric brain activity [4]. Weiskopf et al. reported on the
first BCI based on the blood oxygen level-dependent
(BOLD) response measured by functional magnetic reso-
nance imaging (fMRI) [5]. With real-time fMRI feedback,
individuals can learn to voluntarily elicit activation in a
variety of cortical and subcortical areas [6-8]. Clinical
application of a fMRI-BCI is currently impractical due to
prohibitive costs and technological limitations [9]. An
alternative approach is to measure cerebral and corporeal
hemodynamics with near-infrared spectroscopy (NIRS).
NIRS is suitable for measuring functional activation in
cortical regions 1-3 cm beneath the scalp. The dominant
chromophores in the NIR range are oxygenated (HbO)
and deoxygenated hemoglobin (Hb), both of which are
biologically relevant markers for brain function. Further-
more, water and biological tissue are weak absorbers of
light at NIR wavelengths (700-1000 nm) [10]. These fac-
tors combine to create an "optical window" through
which changes in tissue oxygenation can be monitored. A
NIRS instrument consists of light sources by which a tis-
sue volume of interest is irradiated, and detectors that
receive light after its interaction with tissue. As a general
rule of thumb, light penetration depth is approximately
one-half of the distance between a source and a detector
[11]. Regardless of penetration distance however, extracer-
ebral blood flow in the superficial tissue typically contrib-
utes significantly to NIRS measurements [12].

NIR light undergoes absorption as it penetrates biological
tissue; measurements from NIRS instruments yield a
response associated with brain activity attributed to this
interaction effect. The slow hemodynamic response man-
ifests itself as a small increase in Hb after the onset of neu-
ral activity, subsequently followed by a large but delayed
increase in HbO peaking at approximately 10 s [13,14]
after activation and a corresponding decrease in Hb [15].
Changes in the concentrations of oxygenated (Δ[HbO])
and deoxygenated hemoglobin (Δ[Hb]) can be calculated
from changes in detected light intensity using the modi-
fied Beer-Lambert Law [11].

Unlike other functional imaging methods, NIRS does not
restrict range of motion and has been used to monitor cor-
tical activation in real-world settings [16-18]. NIRS is
immune to electrical interference from environmental
sources as well as ocular and muscle artifacts [19]. Further-
more, NIRS measurement systems are commercially avail-
able at a comparable cost to EEG systems.

Studies on NIRS-BCIs to date have focused on classifying
mean amplitude changes in the hemodynamic response
induced by mental tasks with well-established psycho-
physiological bases. Using a 20-channel commercial NIRS
measurement system, Sitaram et al. [20] performed
offline classification of left-handed/right-handed motor
imagery data using amplitude changes in [O2Hb] and
[HHb] as the class discriminatory features. A maximum
accuracy of 89% was achieved using a Hidden Markov
Model (HMM). Coyle et al. [21] performed evaluations of
a single-channel NIRS system. Able-bodied individuals
controlled a binary switch by modulating changes in
[O2Hb] over the motor cortex and achieved 50-85% accu-
racy in online trials. Naito et al. [22] investigated the use
of high-level cognitive tasks for BCI. Measurements were
recorded over the prefrontal cortex with a single-channel,
single-wavelength NIRS system. Seventeen locked-in indi-
viduals were requested to perform different mental tasks
corresponding to 'yes' and 'no' in response to a series of
questions. An average offline classification accuracy of
80% was achieved in 40% of the locked-in participants
using a non-linear discriminant classifier.

The ultimate goal of a corporeal machine interface is to
translate functional intent into a corresponding action. A
large body of evidence supports the view that the prefron-
tal cortex (PFC) plays a central role in cognitive control,
the ability to translate thought into action to accomplish
a given objective [23]. In particular, functional NIRS
(fNIRS) studies have found that changes in affective state
generated by emotional induction tasks can elicit activa-
tion in the PFC [24-26]. Valenced images have been
shown to stimulate changes in prefrontal hemodynamics
detectable with NIRS [24]. If emotional induction tasks
can consistently generate distinct patterns in the NIRS
hemodynamic response, they may be useful in an NIRS
corporeal machine interface as a preference detector. In
particular, one might be able to use NIRS with nonverbal
individuals to distinguish between naturally occurring
positive and negative emotional responses to sequentially
presented visual stimuli.

Our primary objective was to ascertain the feasibility of
using visually-cued emotional induction tasks as a corpo-
real machine interface mechanism. Several aspects of sig-
nal analysis and classification were addressed in realizing
this objective, namely 1) artifact removal; 2) feature selec-
tion; and 3) classifier selection. The effects of various
parameters on classification performance were explored
by performing feature selection searches over different
task valences, recording sites, and signal analysis window
lengths. To our knowledge, this is the first time that fea-
ture selection has been used to optimize NIRS signal clas-
sification rates. To examine whether or not NIRS data can
be represented as linearly separable feature subsets, we
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compared the offline performance of Linear Discriminant
Analysis (LDA) and Support Vector Machines (SVM).
Lastly, classification performance was employed as a
measure to quantify the latency of the prefrontal hemody-
namic response to emotional induction tasks. Note that
we use the term corporeal interface to acknowledge that
NIRS measurements typically encompass both cortical
and superficial tissue blood flow contributions.

Methods
Ten individuals (5 females, mean age 28.4 ± 6.4 years)
participated in the study. Participants had normal or cor-
rected-to-normal vision, and no known indication of the
following: 1) degenerative disorders; 2) cardiovascular
disorders; 3) metabolic disorders; 4) trauma-induced
brain injury; 5) respiratory conditions; 6) drug and alco-
hol-related conditions; and 7) psychiatric disorders. The
aforementioned disorders are known to cause impaired
mental function, which may compromise the integrity of
collected data. The study was approved by Bloorview Kids
Rehab and the University of Toronto Research Ethics
Boards. Written consent was obtained from all partici-
pants.

Instrumentation
NIRS measurements were collected with an ISS Imagent
(Champaign, IL) functional brain imaging system. Fre-
quency-modulated light at two wavelengths (690 nm and
830 nm) was delivered to the scalp via two-fibre optic
bundles ("source pairs") and collected via different fibre-
optic bundles ("detectors"). Sources and detectors were
held in place with a soft helmet designed to measure over

the prefrontal cortex behind the forehead. Its frame, fabri-
cated from a 0.16 cm thick low-density polyethylene, con-
sisted of an adjustable circumference band with a flexible
probe overlaying the forehead. Fibres were affixed to the
helmet through holes punched in the probe; holes were
situated 1.5 cm apart, creating a uniformly spaced grid.

Each side of the prefrontal cortex was interrogated with
four pairs of sources and a detector arranged as depicted
in Figure 1 for a total of 16 source-detector channels. The
arrangement was placed over each participant's frontal
lobe with the most anterior row of sources positioned
along the PF1-PF2 line (International 10/20 Electrode sys-
tem [27]). One recording site was formed between each
source pair and its adjacent detector. A multiplexer con-
trolled the sequencing of sources such that no two sources
were on simultaneously. The time needed to cycle once
through all 16 sources was 32 ms, corresponding to a sam-
pling rate of 31.25 Hz.

Source-detector separation distances were fixed at 2.1 cm
after preliminary testing on a subset of participants. We
quantified the similarity between NIRS signals recorded
over 2.1 cm and 3.0 cm, a commonly employed separa-
tion distance for fNIRS studies. Signal pairs recorded over
the two distances exhibited high correlation values, and it
was visually verified that attenuated, but measurable,
changes in light attenuation were discernible in signals
recorded over 2.1 cm.

Respiration was simultaneously recorded using a piezoe-
lectric respiratory effort belt secured around the partici-

NIRS probe arrangementFigure 1
NIRS probe arrangement. (a) Sources and detectors were placed symmetrically about the midline in a grid formation, with 
the inferior row of source pairs positioned along the PF1-PF2 line (International 10/20 Electrode System). (b) Each source pair 
and its adjacent detector formed one recording site for a total of 8 sites, denoted L1-L4 and R1-R4.
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pant's chest. Data from this auxiliary transducer were
sampled at 60 Hz.

Protocol
Participants performed trials of an emotional induction
task. In a trial, the participant was instructed to rehearse
an emotion that he/she associates with the contents of
each image for the duration of its presentation. Data col-
lection took place in a dimly lit room. The participant sat
in a chair placed approximately 1 m from a LCD monitor
and was asked to relax and restrict head movement. A trial
consisted of a baseline sequence, a task sequence, and a
rest sequence (Fig. 2). Each trial began with a 30 s baseline
sequence, during which the participant was instructed to
relax and focus his/her gaze on a fixation dot presented at
the centre of the screen. The participant then performed
the task as prompted on the screen for 10 s. The trial then
concluded with a 20 s rest sequence to allow for any acti-
vation-induced hemodynamic response to subside. Dur-
ing this post-task rest period, the participant was again
instructed to focus on the fixation dot on the screen. Trials
were self-paced so that the participant could take short
breaks as required.

The participant performed the above emotion induction
task in response to 2 stimuli: a pair of valenced images
from the International Affective Picture system (IAPS)
[28]. Prior to data collection, the participant attended a
screening session where he/she performed 5 instances of
the emotional induction task for each picture from a stim-
ulus pool of 10 IAPS images. The pool was comprised of
5 images rated for high arousal and positive valence
(valence = 7.52 ± 1.53, arousal = 6.37 ± 2.33) and 5
images rated for high arousal and negative valence
(valence = 2.94 ± 1.71, arousal = 6.52 ± 2.13). The selected
images were IAPS items 8501, 8499, 8080, 8190, 8341,
6313, 1525, 8485, 9622, and 1930. After converting raw
light intensity data to changes in attenuation (optical den-
sity), each image was ranked based on its relative ability
to consistently generate changes in optical density across
multiple recording sites. From this preliminary analysis, a
positive/negative-valence pairing was selected for the clas-
sification problem. At the beginning of the session, the

participant viewed a self-paced slideshow of images to be
presented and was instructed to familiarize himself/her-
self with each image's contents. The participant completed
6 practice trials to acquaint himself or herself with the
task. He/she then performed 30 trials of the emotional
induction task for each image of the positive/negative-
valence pair in 10 6-trial blocks. Images were presented in
randomized order. To alleviate fatigue, halfway through
the session a 10-minute break was imposed where the par-
ticipant was asked to vacate the testing area.

Artifact removal
Concentration changes in oxygenated and deoxygenated
hemoglobin, denoted respectively as Δ[HbO] and Δ[Hb],
were calculated at each of the 8 recording sites from
changes in detected light attenuation using the modified
Beer-Lambert Law before undergoing artifact removal.
The modified Beer-Lambert law states that changes in
optical density (ΔOD) can be calculated from a measured
change in light attenuation before and after a test condi-
tion:

where IB and IA represent light intensity measured under
mean baseline and activation conditions, respectively, for
the problem of interest. ΔOD is proportional to the
extinction coefficient for molar concentrations of the
light-absorbing compound (), the concentration of the
compound (c), and optical path length. The optical path
length is expressed as a product of source-detector dis-
tance r and a multiplier known as the differential path-
length factor (DPF), which is a function of the extinction
coefficient of the scattering medium [29].

Total changes in light attenuation are expressed as a linear
sum of contributions from each absorbing compound.
Since the primary absorbers of NIR light in cerebral tissue
are HbO and Hb, (1) can be expanded as:

where ODλ equals optical density at wavelength λ, 

and  are the extinction coefficients for HbO and Hb at

λ, and DPFλ is the differential pathlength factor for the

adult human head at λ. It follows that Δ[HbO] and Δ[Hb]
can be determined by calculating changes in optical den-

sity at two wavelengths, λ1 and λ2. Solving the system of

equations obtains Δ[HbO] and Δ[Hb]:

Δ ΔOD
IB
I A

cr DPF= =log ( ),† (1)

Δ Δ ΔOD HbO Hb r DPFHbO Hb
λ λ λ λ= +{ [ ] [ ]} ( ),† † (2)

†HbO
λ

†Hb
λ

Sequence of events in a trialFigure 2
Sequence of events in a trial. Sequence of events in a 
trial. The visual cue is presented for 10 s starting from t = 30 
s.
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We used literature values for DPF [29] and  at the relevant
wavelengths [30] to calculate Δ[HbO] and Δ[Hb]. At a
sampling rate of 31.25 Hz, 1875 delta concentration val-
ues were obtained for each of HbO and Hb during one 60
s trial of the emotional induction task.

Adaptive noise cancellation has been shown to be effec-
tive in removing artifacts from EEG and fMRI brain
recordings [31,32]. Some research groups have employed
the technique to remove physiological artifacts from NIRS
recordings [33,34]. We used a least-mean squares (LMS)
adaptive filter to remove respiratory artifacts from the
hemodynamic signals. Each respiratory signal was first
resampled at 31.25 Hz and synchronized to its corre-
sponding hemodynamic signal via a b-spline curve regis-
tration procedure [35]. We implemented landmark-based
registration based on the alignment of local maxima and
minima found in each pair of signals. To facilitate land-
mark estimation in the hemodynamic signal, signal com-
ponents over the frequency range of interest were isolated;
as such, Δ[HbO] and Δ[Hb] signals were filtered using a
0.4-1 Hz bandpass filter prior to registration. The respira-
tory signal was then registered to the filtered hemody-
namic signal. An adaptive filter with 200 taps was used,
and the step size was set to 0.001. Both values were empir-
ically determined. It was noted that at a 31.25 Hz sam-
pling rate 200 taps corresponds to 6.4 s (approximately 2
breaths), which is sufficiently long for modelling the char-
acteristics of the respiratory signal.

Systemic low-frequency oscillations in the hemodynamic
signal believed to arise from regional cerebral blood flow
[36] are centered around 0.1 Hz [37]. We filtered out these
vasomotion effects using a 3rd order Butterworth filter
with a 0.05-0.15 Hz passband. Arterial pulsatility due to
systole and diastole are visibly manifested as a series of
periodic spikes superimposed over the slowly evolving
hemodynamic response. A 30-point moving average filter,
which corresponds to data spanning over approximately 1
s, was applied to reduce cardiac effects prior to feature
extraction.

Feature selection and classification
Δ[HbO] and Δ[Hb] signals were segmented into baseline
and activation intervals to form two sets of 60 (30 base-
line, 30 activation) trials for each stimulus. The transition
point between the baseline and activation intervals was
set as the time of initial stimulus presentation. Six time-
domain and seven time-frequency domain features for
classification were calculated for Δ[HbO] and Δ[Hb] sig-
nals for each trial over each recording site:

1. Mean: average signal value.

2. Variance: measure of signal spread.

3. ZC: Zero Crossings; number of instances where the
signal crossed the zero line.

4. RMS: Root Mean Squared; measure of average signal
magnitude.

5. Skewness: measure of the asymmetry of signal val-
ues around its mean relative to a normal distribution.

6. Kurtosis: measure of the degree of peakedness of a
distribution of signal values relative to a normal distri-
bution.

7. Ea: percentage of total signal energy contributed by
the approximation signal from a 6-level wavelet
decomposition (Daubechies 4) of the time-domain
signal.

8. EdX: percentage total signal energy contributed by
each detail signal from a 6-level wavelet decomposi-
tion (Daubechies 4) of the time-domain signal. Six
percentages were extracted, one for each level of
decomposition (X = 1,...,6). Given the length of the
signal input, the nominal maximum number of levels
for a wavelet decomposition using a Daubechies 4
wavelet is six.

208 candidate features (13 features × 2 signals × 8 sites)
were thus calculated for each participant. Research groups
to date have primarily focused on classifying NIRS data
using mean changes in hemoglobin concentration as a
discriminatory feature [20,21]. In the present study, a
large number of candidate features were introduced to the
classification problem in an attempt to better characterize
the space of possible features (i.e. search space), which
contains a number of irrelevant or redundant features for
classification. Feature subsets were selected for the classi-
fication task. Given the number of trials collected (60),
only a two-dimensional feature space was justified. Fea-
ture selection was conducted for each participant using all

Δ
Δ Δ

[ ]
( / ) ( / )
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combinations of the following performance parameters
for each of the two classifiers of interest:

1. Task Valence (Positive/Negative): We hypothesized
that classification performance correlates positively
with subjective evaluation of task difficulty. If a partic-
ipant finds it easier to perform one of the emotional
induction tasks over the other - that is, associate emo-
tions more strongly with one of the visual cues in the
pairing - the data from the task may yield higher clas-
sification rates.

2. Recording Sites (Right Prefrontal/Left Prefrontal):
We hypothesized that task valence correlates with
optimal recording site according to the valence
hypothesis, which posits that positive emotions are
left-lateralized and that negative emotions are right-
lateralized [38].

3. Analysis interval (15 s/20 s): We hypothesized that
the optimal analysis interval is feature-dependent. We
selected time intervals over which signal differences
between baseline and activation states were expected
to be observed given that the hemodynamic response
peaks about 10 s from the start of the task [13,14].
Therefore, we compared classifier performance using
features calculated over analysis time intervals of 15 s
and 20 s.

All combinations of classifiers, task valences, recording
sites, and analysis interval lengths generated 16 possible
feature selection problems.

When appropriately configured, random search algo-
rithms such as genetic algorithms (GAs) allow for the eval-
uation of a search space more efficiently than most other
heuristic search methods [39] and perform well on noisy
search spaces containing local minima [40]. Feature selec-
tion was thus performed using a standard GA with a rank-
based parent selection strategy, a scattered crossover oper-
ator, and a uniform mutation operator (Genetic Algo-
rithm and Direct Search Toolbox, MATLAB).

For each of the 16 problems, 20 runs of the GA were per-
formed with the following parameter settings: 1) popula-
tion size = 100; 2) number of generations = 30; 3)
probability of crossover = 0.6; and 4) probability of muta-
tion = 0.01. Parameter values were selected on the basis of
results from several preliminary runs, and align with typi-
cal values used in literature [41]. We selected the feature
set most frequently converged upon by the GA across the
20 runs. In the event of a tie, the feature set with the higher
mean fitness value was selected. The fitness value of each
candidate feature subset was defined by its 5-fold cross-
validation classification accuracy. A Gaussian radial basis

function kernel with unity scaling factor and penalty term
was selected for the SVM classifier (Bioinformatics Tool-
box, MATLAB).

Ten (10) runs of 5-fold cross-validation were then per-
formed using the optimal feature set selected for each of
the 16 problems. Fifty (50) accuracy measures (classifica-
tion rates) were obtained after 10 runs of 5-fold cross-val-
idation, from which a mean classification rate was
calculated. We report the maximum classification rate
obtained for each participant, along with corresponding
feature set and performance parameter settings.

Quantifying response latency
Classification accuracy was used to quantify when
changes from a baseline state can be detected. Using the
optimal feature set for each participant, mean classifica-
tion rates were calculated via 10 runs of 5-fold cross-vali-
dation, over a range of analysis interval lengths. The
baseline rate was arbitrarily defined as the mean classifica-
tion accuracy calculated with an analysis interval of size
ΔT = 1.0 s. The size of the interval was increased in 0.1 s
increments from the transition point to a maximum of ΔT
= 20.0 s. The minimum analysis interval length was set
based on the number of points required for a 1-level
wavelet decomposition using a Daubechies 4 wavelet.

Next, we checked for statistically significant differences
between the set of classification accuracies calculated at
ΔT = 1.0 s and each set of classification accuracies calcu-
lated at ΔT = (1.0 + t) s, where t ranged from 0.1 to 19.0.
These results were used to determine a range of analysis
interval lengths over which statistically significant activa-
tion was detected (Fig. 3):

1. Mean classification accuracy was plotted as a func-
tion of analysis interval size. The accuracies were loess
smoothed using a span equal to 20% of the number of
data points. Hypothesis test outcome H was also plot-
ted as a function of analysis interval size. H(ΔT) = 1
indicates that a statistically significant difference from
baseline accuracy (p < 0.05, corrected resampled t-test)
was detected at analysis interval ΔT.

2. The vector of smoothed accuracies was searched for
its maximum value (i.e. maximum classification rate),
and its corresponding analysis interval length (ΔTmax)
was noted.

3. To quantify the range of analysis interval lengths
with statistically significant activation, two iterative
searches were performed forwards and backwards
from ΔTmax. The mean classification rate at ΔT = v s
(0.1 ≤ v ≤ 20) was deemed significantly different from
the baseline rate if H = 1 for > 50% of the original
Page 6 of 14
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(unsmoothed) data points in the range ΔT = v ± 0.5 s.
A search was terminated when the aforementioned
condition was violated and the termination point
marked as a boundary of the range of analysis interval
lengths with significant activation.

Results
Feature selection
The feature set and combination of performance parame-
ters that yielded the highest mean classification accuracy
for each participant were identified. Table 1 summarizes
the results for GA-based feature selection. Features were
selected across a range of recording sites, which is not
entirely unexpected given NIRS' limited spatial sensitivity.
Though [Hb] is thought to be a more reliable indicator of
functional activation [42], the GA selected features
derived from Δ[HbO] and Δ[Hb] signals with equal fre-
quency. This implies that among other physiological phe-
nomenon, Δ[HbO] captures valuable information directly
correlated with experimentally derived activations and
should not be discarded.

Regardless of the classifier of interest, time-domain fea-
tures, i.e. either one of skewness or mean of Δ[HbO] and
Δ[Hb], were consistently selected by the GA as part of the
optimal feature pair across and within participants. The
aforementioned time-domain features were frequently
selected for each participant across the 16 feature selection
problems. The GA occasionally selected time-frequency
features, and even then, only alongside a time domain fea-
ture; it thus appears that time frequency features merely
provided information that supplemented the discrimina-
tory time domain features. Time-domain features alone
may be sufficient for online implementation of a NIRS
corporeal machine interface.

No performance parameters had a significant effect on
inter-subject classification accuracy. Average accuracies
did not differ between LDA and SVM classifiers (p ≥ 0.05,
corrected resampled t-test [43]). Interestingly, optimal
classification accuracy was achieved for 8 of the 10 partic-
ipants with an LDA-trained classifier, which is advanta-
geous for its computational speed and ease of
implementation.

Quantifying response latencyFigure 3
Quantifying response latency. Quantifying response latency. (a) Representative plots of classification rate vs. analysis time 
interval (top) and hypothesis outcome (H = 1 denotes significant difference from baseline rate) vs. analysis time interval (bot-
tom). (b) Maximum mean classification rate is identified by a solid line. (c) Range of analysis intervals with significant activation 
demarcated by the dashed lines.
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Table 1: Results for GA-based feature selection.

Participant No. Common features Selected Across
Performance Parameter Sets1

Optimal Parameter Set

Symbol2 Feature Pair Classification Accuracy3

1 Mean, Skewness LDA-L-20- MeanHbOL1
MeanHbOL4

75.00 ± 10.83%

2 Mean, Skewness LDA-L-20+ MeanHbOL3
MeanHbOL4

89.67 ± 7.82%

3 Mean, Skewness LDA-L-20+ MeanHbOL1
MeanHbOL4

96.67 ± 5.32%

4 Kurtosis, Skewness LDA-L-15- KurtosisHbOL4
SkewnessHbOL3

75.33 ± 12.59%

5 Kurtosis, Skewness LDA-L-15- KurtosisHbOL3
SkewnessHbL2

88.00 ± 7.93%

6 Kurtosis, Skewness SVM-L-20- SkewnessHbOL1
SkewnessHbOL2

75.83 ± 10.55%

7 Mean SVM-L-20+ MeanHbL4
VarianceHbL2

94.67 ± 5.77%

8 Mean, Skewness, Ea6 LDA-R-20+ MeanHbR3
ZCHbOR3

89.00 ± 8.82%

9 Mean, Skewness LDA-R-15+ EaHbR3
SkewnessHbR3

83.83 ± 9.88%

10 Mean, Skewness, Ea LDA-R-20+ Ed6HbOR3
MeanHbOR3

78.00 ± 9.78%

1Found in ≥25% feature pairs across performance parameter sets
2Symbol defining classification scheme consists of 4 parts: Classifier (LDA/SVM) - Recording Side (L/R) - Analysis Time Interval (15/20) - Stimulus 
Valence (+/-)
310 randomized trials, 5-fold cross-validation

Classification results across participants ranked by accuracyFigure 4
Classification results across participants ranked by accuracy. Classification results across participants ranked by accu-
racy. Black squares denote lowest accuracy obtained across 16 feature selection problems. X-axis labels indicate optimal fea-
ture set (label defining optimal feature set consists of 4 parts: Classifier - Recording Side - Analysis Time Interval - Stimulus 
Valence). Error bars denote standard deviation.
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Results indicate that the optimal analysis time-scale varies
with the choice of signal features. A 20 s analysis interval
was selected for all participants classified using a 2-feature
vector containing at least one feature representing signal
mean. Discriminatory information may be present in the
NIRS hemodynamic signal for a prolonged period after its
peak latency since the hemodynamic response needs
more than 10 s to return to baseline [44,45]. In contrast,
a 15 s analysis interval was selected for 3 of 4 participants
classified using signal skewness as a primary feature.

Classification
Maximum percent correct classification (PCCmax) rates
across participants ranged from 75.0%-96.7%. Several
trends become apparent after participant results were
ranked by accuracy (Fig. 4). The four highest classification
accuracies were produced using mean changes in [HbO]
and [Hb] as discriminatory features. Additionally, six of
the top seven performers achieved optimal accuracy in
response to positively-valenced stimuli. This suggests that
the time course of hemodynamic activity generated by
emotional induction tasks may be influenced by valence.

A comparison across participants provided insight into
why classification rates may vary. Figure 5 illustrates the
trial-averaged hemodynamic response at site L4 for Partic-

ipants 1 through 3. The GA selected a common feature
(MeanHbOL4) and identical parameters (classifier, record-
ing sites, analysis interval length) for all three individuals.
Participants 1 and 3 shared identical features and param-
eters with the exception of stimulus valence, and achieved
the lowest and highest classification accuracies, respec-
tively.

Participant 3 (PCCmax = 96.67%) generated a consistent
response using both valenced stimuli. A decrease in
Δ[HbO] was observed for the duration of the emotional
induction task (t = 30 - 40 s), which corroborates with pre-
vious study findings on sustained attention [17]. We see a
small increase in Δ[Hb] shortly after stimulus presenta-
tion consistent with the temporal profile of the NIRS
hemodynamic response [15]. These trends were also
present in Participant 2's data (PCCmax = 89.67%),
although there is a longer latency before Δ[HbO] ceases to
decrease. In the case of Participant 1 ((PCCmax = 75.00%),
hemodynamic activity was only visible in the signals gen-
erated by the negatively-valenced task. The trial-averaged
Δ[HbO] and Δ[Hb] signals also contained larger fluctua-
tions that obfuscated longer time-scale trends. Combining
the findings described above, we propose that classifica-
tion rates are limited by: 1) one's ability to consistently

Trial-averaged Δ[HbO] and Δ[Hb] data from Participants 1 - 3Figure 5
Trial-averaged Δ[HbO] and Δ[Hb] data from Participants 1 - 3. Trial-averaged Δ[HbO] (red) and Δ[Hb] (blue) data 
over t = 10 - 50 s from Participants 1 - 3 performing positively and negatively-valenced emotional induction tasks. Note differ-
ent coupling trends between and within participants.

a) b)

d) f)

c)
Participant 3, Site L4, Positive

e)
Participant 3, Site L4, Negative

Participant 1, Site L4, Positive

Participant 1, Site L4, Negative

Participant 2, Site L4, Positive

Participant 2, Site L4, Negative
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perform the emotional induction task; and 2) the hemo-
dynamic response's rate of change.

Response latency
From visual inspection of trial-averaged hemodynamic
signals, it is apparent that response latency varies among
individuals. Figure 6 summarizes optimal analysis inter-
val lengths across participants. Each horizontal bar repre-
sents the analysis interval range for which significant
activation was detected for a participant.

We begin by defining values of interest: 1) ΔTstart, the
smallest value of ΔT for which significant activation is
detected; 2) ΔTmax, the value of ΔT corresponding to PCC-

max over all analysis interval lengths tested; and 3) ΔTend,
the largest value of ΔT for which significant activation is
detected. ΔTstart and ΔTend define the activation window.

The average time for onset of activation was 12.4 s across
participants for whom significant activation was detected.

Significant activation was not detected for Participants 6
and 9 and hence their data are not included in this aver-
age. It was earlier noted that the optimal feature pair
selected for each participant included one of skewness or
mean, which we define as a "primary discriminatory fea-
ture". Activation windows can be characterized by the pri-
mary discriminatory feature employed for classification:

• Mean (n = 6) Classification rates improved with
increased ΔT. ΔTmax for all individuals was 20.0 s, the
largest interval size considered in our analysis. These
observations agree with results from the feature selec-
tion procedure. Participants with higher classification
rates had shorter onset times prior to significant acti-
vation. Values of ΔTstart varied but generally exhibited
an inverse relationship with PCCmax, ranging from 2.5
s (Participant 7, PCCmax = 95.50%) to 19.7 s (Partici-
pant 10, PCCmax = 78.00%).

Response latency analysis results across participants ranked by classification accuracyFigure 6
Response latency analysis results across participants ranked by classification accuracy. Response latency analysis 
results across participants ranked by classification accuracy. Range of analysis interval sizes (ΔT) where statistically significant 
increases in classification rates were detected from baseline classification rates is indicated in gray. ΔTmax, the analysis interval 
size corresponding to PCCmax, is indicated as a black square.

Maximum

Classification

Accuracy

95.50 ± 5.64%

94.67 ± 4.69%

89.67 ± 7.82%

89.00 ± 9.29%

88.67 ± 10.21%

84.17 ± 10.68%

78.00 ± 9.93%1

78.17 ± 12.01%

73.67 ± 14.52%

76.67 ± 10.10%

Analysis Windows of Significant Activation

1The number of possible decomposition levels increases with �T.  In lieu of Ed6, the lowest decomposition level

available for each value of �T was used to calculate classification accuracy
Page 10 of 14
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• Skewness (n = 4) Classification rates also improved
with ΔT but peaked before ΔT reached 20.0 s. With the
exception of one individual - for whom significant
activation was not detected - ΔTmax ranged from 14.7 s
to 15.7 s. This suggests an analysis interval of ΔT = 15
s is nearly optimal for a feature set that includes skew-
ness. For each of these participants, we identified a
short range of analysis interval lengths surrounding
ΔTmax where significant activation was detected. Acti-
vation window sizes ranged from 0.0 s to 4.7 s. Differ-
ences between PCCmax and baseline rates did not reach
significance.

Discussion
We have established that distinct patterns of hemody-
namic activity generated by a visually-cued emotional
induction task can be detected using NIRS and classified
offline with accuracies significantly exceeding chance lev-
els. Classification rates were comparable with values
reported in previous NIRS-BCI studies. Six of the ten par-
ticipants reached mean classification rates that exceeded
the 70% threshold (p < 0.05) suggested by the scientific
community as sufficient for communication and device
control [46]. It is conceivable that this number may have
been higher if more trials were collected; however, data set
size was inherently limited by the repetitive nature of the
protocol and the mental demand of the task on the partic-
ipant.

The onset time for a detectable hemodynamic response
varied across individuals. Regardless of the types of fea-
tures used for the classification task, a significant increase
in mean classification accuracy was detected for the
majority of participants 10 - 15 s after presentation of the
visual stimulus. These latencies are in line with values pre-
viously reported in NIRS literature [13,14].

Neurological and psychological factors
Participants generally found the emotional induction task
straightforward to perform, and based on the experiences
drawn from their involvement in the study, felt that such
a paradigm can potentially be implemented in a user-
friendly online corporeal machine interface.

Nevertheless, there are several factors that likely impacted
data consistency within and across participants. Despite
implementing preventative measures in the protocol to
mitigate fatigue, four participants cited various aspects of
the study as physically tiring. Incorporation of on-line
feedback into the experiment may help maintain the par-
ticipant's concentration and improve performance by pro-
viding a clear goal to the task. While one can argue that the
benefits of neurofeedback are negligible over a single ses-
sion, neurofeedback training is essential for operant con-
ditioning of the EEG [47] and fMRI-BOLD responses

[7,8]. A participant may also begin the emotional induc-
tion task at a different time for each trial, further contrib-
uting to data inconsistencies. Possible causes include
anticipatory effects [48] and loss of focus due to fatigue
[49].

Some participants found the task easier to perform over
time, whereas others found it increasingly difficult to con-
centrate as he or she repeatedly viewed the same pair of
images. This may be attributed to the unique mental strat-
egy each individual cultivated for performing the emo-
tional induction task. Individual strategies ranged from
using the image as a visual cue to focus on a more general
emotion, to focusing on a salient component in the
image. The PFC is involved in maintaining attentional
demand [50], and variations in intensity and latency of
hemodynamic activity across individuals might be caused
by the different levels of attentional demand required for
different strategies. Another possible explanation is that
each participant's response to a stimulus was motivated
by a different variation of endogenous salience, thereby
eliciting different patterns of PFC activity. The image
either functioned as a "primary inducer" conveying some
intrinsic value, or acted as a secondary inducer that trig-
gered the recall of a related memory or event [51]. The lat-
ter, commonly referred to as self-referential processing
[52], is accompanied by a more intense emotional
response provided the stimulus contains personal rele-
vance. Notably, the medial prefrontal cortex (mPFC) has
been implicated in self-referential processing [52]; how-
ever, because participants were not provided with specific
instructions on how to perform the emotional induction
task, we cannot draw conclusive inferences about mPFC
activity and self-referential processing.

The fact that results from feature selection did not suggest
a correlation between stimulus valence and lateralization
of brain activity may be due to optode placement.
Optodes were located more medially than in several neu-
roimaging studies on emotional processing that have
reported hemispheric specialization in the lateral PFC
[53,54]. In a metaanalysis of emotional activation studies,
it was found that the mPFC is systematically activated by
emotional stimuli regardless of valence [55]. This suggests
that the mPFC plays a general, rather than specific, role in
emotional processing primarily mediated by arousal. It
corroborates with our observation that a participant gen-
erally achieved higher classification rates using a stimulus
he/she subjectively perceived as being more emotionally
arousing. Five out of six participants who stated a prefer-
ence for one image in the positive-negative valence picture
pair achieved optimal classification accuracy using his or
her preferred stimulus. To ascertain the effects of self-rele-
vance in future studies, it would be beneficial to incorpo-
Page 11 of 14
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rate self-assessment of valence/arousal by each participant
for each image.

Anatomical considerations
Because the NIRS method measures venous, arterial and
tissue oxygenation, it is more sensitive to localized con-
centration changes in skin microvasculature than underly-
ing tissue volumes [56]. Combined with the choice of a
short source-to-detector separation distance, one may
argue that our findings are based solely on oxygenation
saturation of the extracranial layer, and are not indicative
of functional activation in the cortex. We disagree that this
is a limitation of the protocol. In a subset of study partic-
ipants, we confirmed that hemoglobin concentration
changes detected over a 2.1 cm spacing are highly corre-
lated with adjacent measurements acquired over a 3.0 cm
spacing, which is commonly used in fNIRS studies. It
could also be argued that given the objectives of our study,
the physiological origin of the detected hemodynamic
response is secondary in importance to the ability to con-
sistently generate a response.

Furthermore, scalp and skull thicknesses vary around the
head of an individual [57]. This contributes to variations
in signal strength over different recording sites, and is a
possible reason why we did not observe any trends in the
site locations selected by the GA. The thickness of the
extracranial layer dictates the minimum source to detector
separation required to probe the cerebral cortex, and ide-
ally, would be optimized for each individual. These
dimensions are unknown unless an MRI scan is procured.

Limitations
Although NIRS offers advantages over conventional EEG
interfaces, it introduces instrumentation challenges
unique to the technology. Hemodynamic signals are
resistant to motion artifacts provided that optodes can be
mounted firmly to the skin. However, it is a non-trivial
task to secure optical fibres to the head, and design solu-
tions must achieve a balance between stability of the opti-
cal fibres, versatility to accommodate a range of head
sizes, and comfort. New methods are continuously being
developed and a number of solutions have been imple-
mented to date [58]. Secondly, melanin is a known source
of attenuation for optical throughput over the NIR range
[58]. While absorption and coupling issues caused by hair
can be circumvented by measuring over hair-free regions
such as the forehead, signal strength and penetration
depth remain affected by skin colour.

The long latency of the hemodynamic response severely
limits the information transfer rate of a NIRS corporeal
machine interface. However, in addition to the hemody-
namic response, frequency-domain NIRS measurements
may yield a second "fast optical response" directly corre-

lated with neuronal firing. The fast optical response is
believed to be caused by changes in light scattering prop-
erties of neuronal membranes synonymous with activated
cerebral tissue [15] and is elicited milliseconds after tissue
stimulation [10]. Not all researchers are convinced that
the fast optical response can be detected non-invasively
owing to the fact that the signal is dominated by other
physiological artifacts [36,59], and simulation results sug-
gest that the magnitude of the fast optical response is
below the noise level of presently available NIRS systems
[60]. If commercial systems that reliably capture the fast
optical response become available, NIRS corporeal
machine interfaces that respond as quickly as conven-
tional EEG interfaces can be developed.

A priori knowledge of the latency of the hemodynamic
response, which has been shown to vary across individu-
als, may be used to address the above shortcoming. For
instance, if the optimal parameters and analysis interval
length for signal classification were known for a user, the
knowledge can be utilized to customize a corporeal
machine interface, thus maximizing his or her abilities
and improving response times. Since we could only col-
lect a limited number of trials per participant within an
experimental session, we did not have sufficient sample
sizes to create completely disjoint data subsets for feature
selection and classifier development. While our results
may be therefore be optimistic, i.e., akin to "training accu-
racies", they are nonetheless on par with those reported
for NIRS-BCIs using different mental tasks. Practically, a
long data collection session (> 2 hours) only yields a
modestly-sized data set per participant, given the non-triv-
ial time periods for the cyclic generation and dissipation
of hemodynamic responses. Thus collecting large data
sets, while necessary, will remain a practical challenge for
NIRS-based corporeal machine interfaces in future stud-
ies.

In our analyses, we attempted to suppress non-cortical
contributions by low pass iltering. This is an inherent lim-
itation as we do not have direct knowledge of the contam-
inant frequencies. Therefore, the signals we have classified
are inevitably comprised of a combination of cortical and
systemic blood flow. Other studies have suggested the
simultaneous acquisition of deep and shallow signals
using an optode arrangement consisting of multiple
source-detector separations [61,62]. In this way, systemic
effects recorded in the shallow signal can be directly atten-
uated in the deep (cortical) signal.

Future directions
The reliability of the proposed paradigm should be veri-
fied with simultaneous acquisition of fMRI and NIRS
data, which would allow for accurate localization of exter-
nally recorded signals with respect to underlying anat-
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omy. Qualitative amplitude correspondence of NIRS
signals to the fMRI-BOLD response can provide insight
into which types of emotional induction tasks are best
suited for corporeal machine interfaces and their underly-
ing psychophysiological bases.

As an extension to user customization in corporeal
machine interfaces, it would also be desirable to investi-
gate the effects of varying the time window for visual stim-
ulus presentation. Like the analysis interval length for
signal classification, this parameter could conceivably be
optimized such that hemodynamic activity is generated
reliably with less effort. Additional types of stimuli for the
emotion induction paradigm should be investigated.
Somatosensory and auditory stimuli are suitable alterna-
tives for those with visual deficits, as well as multimedia
stimuli such as film or music.

Conclusion
This study ascertained the feasibility of NIRS as a platform
for a corporeal machine interface. We demonstrated that
an emotional induction task in neurologically healthy
individuals can elicit measurable hemodynamic
responses in the prefrontal cortex. Classification accura-
cies up to 96.7% were obtained after feature subset selec-
tion while varying several performance parameters of
interest. Results from the feature selection procedure indi-
cate that mean and skewness parameters are the best dis-
criminatory measures between resting and activation
states induced by our task of interest. Relationships were
also identified between a number of parameters, namely,
feature subset and analysis interval length, and stimulus
valence and classification accuracy. Lastly, classification
accuracy was used to quantify the latency of the hemody-
namic response within participants, with significant
increases in accuracy from baseline occurring as early as
2.5 s from initial presentation of the stimulus.
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