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Abstract Everyday we face all kinds of risks, and insurance is in the business of
providing us a means to transfer or share these risks, usually to eliminate or reduce
the resulting financial burden, in exchange for a predetermined price or tariff. Ac-
tuaries are considered professional experts in the economic assessment of uncertain
events, and equipped with many statistical tools for analytics, they help formulate a
fair and reasonable tariff associated with these risks. An important part of the process
of establishing fair insurance tariffs is risk classification, which involves the grouping
of risks into various classes that share a homogeneous set of characteristics allowing
the actuary to reasonably price discriminate. This article is a survey paper on the sta-
tistical tools for risk classification used in insurance. Because of recent availability
of more complex data in the industry together with the technology to analyze these
data, we additionally discuss modern techniques that have recently emerged in the
statistics discipline and can be used for risk classification. While several of the il-
lustrations discussed in the paper focus on general, or non-life, insurance, several of
the principles we examine can be similarly applied to life insurance. Furthermore,
we also distinguish between a priori and a posteriori ratemaking. The former is a
process which forms the basis for ratemaking when a policyholder is new and in-
sufficient information may be available. The latter process uses additional historical
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information about policyholder claims when this becomes available. In effect, the re-
sulting a posteriori premium allows one to correct and adjust the previous a priori
premium making the price discrimination even more fair and reasonable.

Keywords Actuarial science · Regression and credibility models · Bonus–Malus
systems

1 Introduction

Facing risks, or unexpected events, is part of our everyday life. A wide range of sit-
uations can be enumerated to illustrate this statement. Rain on your wedding day,
a traffic jam when you are already late for an appointment or a black fly in your
Chardonnay are examples of pernicious scenarios that simply cause some annoying
irritation, but which may also be classified as risks. On the other hand, risks result-
ing into more tragic disaster such as a fire, an accident or unemployment, illustrate
examples that can have a huge impact on one’s economic and personal situation.

Many of us are aware of these risks we face everyday, especially those with pos-
sible huge economic impact. There is some level of risk aversion in all of us in the
sense that to avoid being affected when these risks occur, we look for possible ways
to transfer some or all of these risks to other economic agents in the market willing
to assume them. In light of this risk aversion brought the birth of a whole sector of
activities that we find today willing to provide us the needed protection: the business
of insurance. Risk compensation by grouping similar, independent risks forms the
basis of actuarial practice: “The contributions of the many to the misfortunes of the
few” as the motto of Lloyd’s of London says.

The discipline of actuarial science deals with uncertain events where clearly the
concepts of probability and statistics provide for an indispensable instrument in the
measurement and management of risks. An important aspect of the business of insur-
ance is the determination of the price, typically called premium but preferably called
tariff in this paper, to pay in exchange for the transfer of risks; it is the job of the ac-
tuary to evaluate a fair price given the nature of the risk. In this article, we provide for
a survey and discussion of contemporary statistical techniques that can be practically
implemented for pricing risks through ratemaking based on risk classification.

1.1 Ratemaking and risk classification

Clearly then within the actuarial profession, a major challenge can be found in the
measurement and construction of a fair tariff structure. This is the objective of a
ratemaking process. Pricing risks based upon certain specific characteristics has a
long history in actuarial science, e.g. McClenahan (2001) observed that 18th century
fire insurance rates for dwellings in the United States were based upon roof type
and basic construction. Premium rates for marine insurance, believed to be the oldest
form of insurance, are based on characteristics of the design and built-in protection
of each ship and several ships vary in design.

Indeed, in light of the heterogeneity within an insurance portfolio, an insurance
company should not apply the same premium for all insured risks in the portfolio.
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Otherwise the so-called concept of adverse selection could undermine the solvency
of the company and possibly lead to the collapse of the insurance market. On one
hand, ‘good’ risks, with low risk profiles, could pay too much and eventually, prefer
to leave the company. On the other hand, ‘bad’ risks may find a uniform tariff to be in
their favor and therefore, prefer to stay with the company. This could lead to a spiral
effect where the insurer could end up with a disproportionate number of ‘bad’ risks in
its portfolio and to remain solvent, it may have to keep increasing its premium rates.
Therefore, it is important for the insurer to optimally group the risks in the portfo-
lio so that those insureds with similar risk profile pay the same reasonable premium
rate. Such is the idea behind risk classification within the ratemaking process. A risk
classification system should not only allow insurers to price discriminate their prod-
ucts in a fair and equitable manner, but should also be constructed based on a sound
statistical basis.

To construct a tariff structure that reflects the various risk profiles in a portfolio
within a reasonable and statistically sound basis, actuaries usually rely on regres-
sion techniques. Such techniques allow for the inclusion of various explanatory (also
called classifying or rating) variables so that the actuary is able to construct risk
classes with more or less similar risk profiles. For non-life (also called: property and
casualty or general) insurance, typical response variables in these regression models
are the number of claims (or claim frequency) per unit of exposure on the one hand,
and the corresponding amount of loss, given a claim (or claim severity) on the other
hand. A formal discussion of these actuarial terminologies will follow in Sect. 2.1.
That section also explains how regression models for claims frequency and severity
allow us to estimate the price of risk.

Different classifying variables impacting either frequency or severity (or both) can
be found in all forms of insurance. For example, in automobile insurance, a non-life
product, it is typical to find the following classifying variables used: age-gender-
marital status, use of the car, geography (location of garage) and other factors such as
whether the vehicle is a sports car or not. The cost of claims may be influenced among
others by factors such as the use of the car (more driving implies more exposure to
claims, driving conditions: time of day, weather, area), driving ability (experience
and training, reaction time, eyesight and hearing, condition of the car, driving style),
interaction with the claims mechanism and the extent of damages (crashworthiness
of the car where certain brands are able to withstand severity of accidents better than
others, use of safety devices). See Finger (2001) for further discussion. In fire insur-
ance, studies have shown that restaurants have a higher frequency of accidents than
stores; the presence of a sprinkler system, the value of the building and contents be-
ing insured all can impact the amount of damage in the event of a fire. For workers’
compensation, a form of insurance that provides protection for injuries in the course
of employment, statistics show significant difference in claims for various sectors of
employment, e.g. manufacturing versus education, with employees in manufacturing
firms indicating larger claims frequencies. While several characteristics may impact
both frequency and severity, some affect severity but not frequency, and vice versa. To
illustrate, the presence of a sprinkler system may not affect the frequency of claims
but clearly affects the severity. Finally, risk classification systems are also found in
life insurance. During the underwriting process for the purchase of life insurance, the
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insurer collects information on the applicant’s risk factors (e.g. age, gender, smoking
habits, occupation, any dangerous hobbies, and personal and family health history)
through a questionnaire and possibly, a medical examination. The information is then
used to classify policyholders into risk classes and to price their policies accordingly.
See Dickson et al. (2009) for a discussion. However, risk classification for life insur-
ance products is beyond the scope of this article.

In the construction of a risk classification system, the statistical considerations,
often referred to as the actuarial criteria, are but one of several, but of utmost impor-
tance, criteria for selecting classifying or rating variables. This survey paper focuses
on these criteria. Here, we ensure that the classifying variable must be considered
to: (1) be accurate in the sense that it has a direct impact on costs, (2) meet homo-
geneity requirement in the sense that the resulting expected costs within a class are
reasonably similar, (3) be statistically credible and reliable. Other considerations for
the selection of variables are practical or operational implementation, “social accept-
ability”, and legal considerations. To illustrate for example, the use of “gender”, even
if statistically sound, as a classifying variable may be restricted for certain forms of
insurance because sex discrimination is prohibited according to some constitutions.
For further discussion of these criteria, we refer the reader to Finger (2001).

1.2 A priori and a posteriori ratemaking

When the explanatory variables used as rating factors express a priori correctly mea-
surable information about the policyholder (or, for instance, the vehicle or the insured
building), the system is said to be an a priori classification scheme. A discussion of a
priori rating will follow in Sect. 2. However, an a priori system is unable to identify
all the possible important factors because some of them are either unmeasurable or
unobservable. Take the case for example of automobile insurance where the insurer
is unable to detect the driver’s aggressiveness behind the wheel or the quickness of
his reflexes to avoid a possible accident. Thus, tariff cells within an a priori rating
system will never be completely homogeneous. For that reason, an a posteriori or an
experience rating system is necessary to allow for the re-evaluation of the premium
by taking into account the history of claims of the insured as it becomes available.
The statistical philosophy behind this is that the best (or optimal in some sense) pre-
dictor for the future number of claims that an insured will report is conditionally
based on the number of claims reported in the past. The actuarial credibility systems
discussed in Sects. 3.1 and 3.2 are examples of a posteriori rating systems that take
into account the history of claims as it emerges for an individual risk. Commercial
versions of these experience rating schemes are more widely known in practice as
Bonus–Malus scales. Rating schemes according to these Bonus–Malus scales is the
topic of Sect. 3.3.

1.3 Statistical techniques for risk classification

Since the early development of constructing a priori and a posteriori rating schemes,
ordinary regression techniques based on the assumption of Normal data has been the
standard norm in practice. See, for example, Lemaire (1985). Several papers based
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on this technique have appeared in the actuarial literature, but actuaries have real-
ized that insurance data usually violate the assumption of the Normal distribution.
Recent advances in statistical modeling, spurred both by the availability of more data
and computing technologies to analyze these data, have emerged. The applications
of these up-to-date statistical techniques in the analysis of insurance data have pro-
vided avenues for further developing skills for actuarial modeling. This article high-
lights some of these advances in the literature and those that are slowly crawling up
in practice. Within the context of a priori ratemaking, for example, it is becoming
a standard norm in practice to use Generalized Linear Models (GLMs) where data
is modeled within the class of exponential dispersion distributions. Other advances,
which include Generalized Additive Models (GAMs), regression models based on
generalized count distributions and heavy-tailed regression models for claims sever-
ity, can be used in the context of a priori ratemaking. These topics are discussed in
Sect. 2.

In Sect. 3, we emphasize our discussion on risk classification and a posteriori
ratemaking. Several of the statistical models discussed in this section cover topics that
are lesser known in practice, for example, models for clustered data (panel data and
multilevel data) are discussed. In addition, we also consider the two types of model
estimation: likelihood-based and Bayesian estimation methods. The latter method
has the advantage of allowing the analyst to construct a full predictive distribution
of quantities of interest. In our discussion of Bonus–Malus schemes, some concepts
of Markov chains necessarily appear because of the possible transition through the
various Bonus–Malus scales.

We present numerous examples based on real-life actuarial data throughout the
paper to illustrate several of the methodologies. These illustrations can help practi-
tioners implement these techniques in practice. Denuit et al. (2007) provides for an
excellent and comprehensive reference on several aspects of a priori and a posteriori
risk classification, with an emphasis on claim frequency. Frees (2010) is a useful ref-
erence that contains several case-studies to illustrate statistical regression models for
insurance rating.

2 Regression models for a priori risk classification

Regression techniques are indispensable tools for the pricing actuary. Here in this
section, we focus on two types of response variables that are important in pricing
for short term insurance contracts: the number of claims (or claim frequency) per
unit of exposure and the amount of claim given a claim occurs (or claim severity). In
Sect. 2.1 definitions follow of actuarial concepts relevant in ratemaking (e.g. expo-
sure, frequency and severity). It is also explained how risk classification models for
both frequency and severity are combined to calculate a so-called pure premium. Sec-
tion 2.2 presents current industry practice for risk classification based on generalized
linear models. More advanced statistical methods are illustrated in Sect. 2.3.

2.1 Frequency, severity and pure premium for cross-sectional data

Some actuarial concepts, crucial for ratemaking, are discussed below. See McClena-
han (2001) and Frees (2010) for further details. The basic rating unit underlying an
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insurance premium is called a unit of exposure. In our examples from automobile in-
surance, earned exposure is used and this refers to the fraction of the year for which
premium is paid and therefore coverage is provided. Another example is workers
compensation where company payroll is typically used as exposure base. When an
insured demands for a payment under the terms and conditions of an insurance con-
tract, this is referred to as a claim. Claim frequency refers to the number of times a
claim is made during a (calendar) year and is expressed in terms of frequency per ex-
posure unit. The amounts paid to a claimant under the terms of an insurance contract
are called losses and severity is the term used for the amount of loss per claim.

Insurers typically keep track of frequency and severity data in separate files. In
the policyholder file, underwriting information is registered about the insured (e.g.
age, gender, policy information such as coverage, deductibles and limitations) and
additional information may be kept about the claims event. In the claims file, infor-
mation is recorded about the claims filed to the insurer together with the amounts
and payments made. With a priori rating each individual risk is priced based on the
history of frequency and severity observed usually from a cross-sectional data set.
Cross-sectional means that the data base contains information from N policyholders,
but the time series structure of the data is ignored.

Typically from these files, we find that for each insured i the observable responses
are:

• Ni : the number of claims and the total period of exposure Ei during which these
claims were observed; and

• Cij the loss corresponding to each claim made (with j = 1, . . . ,Ni ).

The set {Cij } is empty when Ni = 0. The so-called aggregate loss Li is defined as
Li := Ci1 +· · ·+CiNi

and refers to the total amount of claims paid during the period
of observation. The data available then to the insurer for a priori rating typically have
one of the following formats:

(1) {Ni,Ei,Ci1, . . . ,CiNi
}, thus the vector of individual losses Ci := (Ci1, . . . ,

CiNi
)′ is registered;

(2) {Ni,Ei,Li}, only aggregate losses are available.

Our ultimate goal is to price the risk using a priori measurable characteristics. To
achieve that, the frequency and severity data will be combined into a pure premium
Pi defined as

Pi = Li

Ei

= Ni

Ei

× Li

Ni

(1)

= Fi × Si, (2)

with Fi , the claim frequency per unit of exposure and Si , the severity. Depending on
the format of the available data, regression models for Fi and the individual losses
{Ci1, . . . ,CiNi

} (format (1)) or Fi and the severity Si (format (2)) will be specified.
Ultimately, policy i is priced by applying a premium principle π(·) to the random
variable Pi . In this paper, we essentially focus on the expected value principle, which



Statistical concepts of a priori and a posteriori risk classification 193

leads us to the net premium:

π(Pi) = E[Pi] = E[Fi] × E[Cij ] with format (1), or (3)

π(Pi) = E[Pi] = E[Fi] × E[Si] with format (2), (4)

under the (traditional) assumption of (for format (1)) independent and identically
distributed individual losses {Cij } and independence between claim frequency and
losses, and (for format (2)) independence between claim frequency and severity.
Here, the term ‘net premium’ is often referred to that portion of the premium that
considers only the benefits to be paid under the terms of the contract. Typically, insur-
ers add a ‘risk loading’ to cover other items: administrative expenses, profits, margins
for contingencies. If a ‘risk loading’ is added to the net premium, the term ‘contract
premium’ or ‘gross premium’ would be used. Other premium calculation principles
may be used, but these are beyond the scope of this paper. See, for example, Kaas et
al. (2008).

2.2 Current practice: generalized linear models (GLMs)

GLMs are nowadays standard industry practice for pricing risks and this topic has
been an addition to the syllabus for actuarial examinations in several countries. The
paper by Haberman and Renshaw (1996) provides an overview of its applications in
actuarial science. Additional discussion of GLMs with an actuarial bent can be found
in de Jong and Heller (2008), Frees (2010) and Kaas et al. (2008). The early formu-
lation of GLMs in the statistics literature can be found in Nelder and Wedderburn
(1972).

GLMs extend the framework of ordinary (normal) linear models to the class of
distributions derived from the exponential. A whole variety of possible outcome mea-
sures such as counts, binary and skewed data that are relevant in actuarial science, can
be modeled within this framework. The canonical specification of densities from the
exponential family can be expressed as

f (y) = exp

[
yθ − ψ(θ)

φ
+ c(y,φ)

]
, (5)

where ψ(·) and c(·, ·) are known functions, θ and φ are the natural and scale parame-
ters, respectively. Members belonging to this family include, but not limited to, the
Normal, Poisson, Binomial and the Gamma distributions. Let Y1, . . . , Yn be indepen-
dent random variables with a distribution from this family. The following well-known
relations hold for these distributions:

μi = E[Yi] = ψ ′(θi) and Var[Yi] = φψ ′′(θi) = φV (μi), (6)

where the derivatives are with respect to θ and V (·) is referred to as the variance
function. This function captures the relationship, if any exists, between the mean and
variance of Y .
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2.2.1 Claim frequency models

When the actuary is interested in risk classification systems for claim frequencies,
the following two GLMs are of special interest: Poisson regression and Negative
Binomial (NB) regression. Both distributions belong to the framework specified in (5)
and (6) (see e.g. Kaas et al. 2008 for a proof).

Poisson distribution Ratemaking with a Poisson regression model—as an archetype
of GLM—is illustrated here with a case-study from automobile insurance. This ex-
ample will be reconsidered in Illustrations 2.2–2.6.

Illustration 2.1 (Poisson distribution for claim counts) Claim counts are modeled
for an automobile insurance data set with 159,947 policies. The response variable
is the total number of claims registered for each insured vehicle in the data set.
Next to a set of explanatory variables, an exposure variable is available which re-
flects the period during which premiums are paid and the claim counts are regis-
tered. In this example, the exposure period is expressed in years. Total exposure is
101,914 years. The data are overdispersed: the empirical variance exceeds the em-
pirical mean (exposure taken into account). Table 1 illustrates the fit of the Poisson
distribution to the ‘raw’ data (i.e. no regression taken into account). Under these as-

sumptions Pr(Ni = ni) = exp (−λi)λ
ni
i

ni ! and λi = ei exp(β0) with ei the exposure and
ni the claim counts registered for policyholder i. We reconsider these data again in
Illustrations 2.2, 2.3, 2.4, 2.5 and 2.6 where the fit of other count distributions as well
as the construction of regression models for risk classification are discussed.

Negative Binomial distribution A generalization of the Poisson distribution, formu-
lated as a continuous mixture, is the NB distribution. A mixture model is a common
method to deal with heterogeneity and the overdispersion resulting from it, which is
often apparent in actuarial data on claim counts. This approach will be re-introduced
in the discussion of a posteriori ratemaking in Sect. 3, where random effects are used

Table 1 Empirical distribution and Poisson fit for claim frequencies from the Illustration 2.1 data

Number of Claims Observed Frequency Fitted Frequency

0 145,683 145,141

1 12,910 13,902

2 1,234 863

3 107 39

4 12 1.4

5 1 0.04

Mean 0.1546 −2 log Lik. 101,668

Variance 0.1628 AIC 101,670
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to deal with neglected or unobservable covariates at various levels. The NB distribu-
tion is constructed as

Pr(Y = y|θ) =
∫ ∞

0

exp(−λ)λy

y! f (λ|θ) dλ, (7)

with λ varying stochastically according to a �(τ, τ/μ)-distribution.1 This yields to
the NB distribution of the form

Pr(Y = y|μ,τ) = �(y + τ)

y!�(τ)

(
τ

μ + τ

)τ(
μ

μ + τ

)y

. (8)

Under (8), E[Y ] = μ and Var[Y ] = μ + μ2

τ
, thus overdispersion is clearly present. It

can be shown that the NB distribution belongs to the exponential family and as such
is an example of a GLM.

Illustration 2.2 (Negative binomial distribution for claim counts) The data from Il-
lustration 2.1 are reconsidered. We extend the analysis by fitting the NB distribution
to the raw data. As demonstrated in Table 2, the NB distribution provides for an im-
proved fit of the empirical distribution of the claim frequencies.

Risk classification Including risk factors in the Poisson or NB distribution allows
one to build classification systems for the frequency component of the data. This is
done with regression techniques. The expressions given below are for cross-sectional
data with sample size m.

– Poisson regression: specify a log–linear structure for the mean, namely λi =
exp(x′

iβ), then

log L(β) =
m∑

i=1

{
nix

′
iβ − exp(x′

iβ) − log(ni !)
}; (9)

Table 2 Empirical distribution and Poisson and NB fit for claim frequencies from the Illustration 2.1 data

Number of Claims Observed Frequency Poisson Frequency NB Frequency

0 145,683 145,141 145,690

1 12,910 13,902 12,899

2 1,234 863 1,225

3 107 39 119

4 12 1.4 12

>4 1 0.04 1

−2 log Lik. 101,668 101,314

AIC 101,670 101,318

1X ∼ �(α,β) means fX(x) = βα

�(α)
xα−1e−βx .
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– NB regression: for the specification in (8) E[Y ] = μ and regression models can
be built through μi = exp(x′

iβ). Or Ni ∼ Poi(λiθ) with λi = exp (x′
iβ) and θ ∼

�(τ/μ, τ/μ), which leads to

Pr[Ni = ni] = �(α + ni)

�(α)ni !
(

α

λi + α

)α(
λi

λi + α

)ni

, (10)

with α := τ/μ. Both approaches are similar.

Using these expressions, maximum-likelihood and Bayesian estimation are
straightforward. The advantage of using Bayesian statistics is that one can simulate
from the posterior distribution of Ni , conditional on the risk characteristics. Besides
the expected value, other summary measures can be calculated for this posterior dis-
tribution. This enables the application of a whole range of premium principles.

Illustration 2.3 (Regression models for claim counts) Using covariate information
a risk classification system is built for the data from Illustration 2.1. The risk vari-
ables used in the construction of this a priori model are enumerated in Table 3. Their
categorization is in Table 14. Corresponding parameter estimates are in Table 14 at
the end of this article. Selected risk profiles and their corresponding a priori premium
(i.e. E[Ni]) are in Table 4. Exposure for these profiles is assumed to be one full year.
A description of these profiles are given following the table below. Note that the
variables ‘Age of insured’ and ‘Driving experience’ may be strongly correlated and,
for reasons of multicollinearity, it may not be possible to retain both variables in the
same regression model. In this example however, both had a significant effect on the
response and, for a particular age, insureds with driving experiences between 0 and
age-18 years could be observed.

– Low: a 45 years old male driver with a driving experience of 19 years and a
NCD = 40. He’s driving a 1,166 cc Toyota Corolla that is 22 years old. He only
has a theft cover. The car is for private use.

Table 3 List of explanatory variables used for the data in Illustration 2.1

Covariate Description

Vehicle Age The age of the vehicle in years.

Cubic Capacity Vehicle capacity for cars and motors.

Tonnage Vehicle capacity for trucks.

Private 1 if vehicle is used for private purpose, 0 otherwise.

CompCov 1 if cover is comprehensive, 0 otherwise.

SexIns 1 if driver is female, 0 if male.

AgeIns Age of the insured.

Experience Driving experience of the insured.

NCD 1 if there is no ‘No Claims Discount’, 0 if discount is present. This is based on
previous accident record of the policyholder. The higher the discount, the better the
prior accident record.

TLength (Exposure) Number of calendar years during which claim counts are registered.
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Table 4 A priori risk premium
for a selection of risk profiles Risk Profile Poisson Distribution NB Distribution

Low 0.0460 0.0454

Medium 0.1541 0.1541

High 0.3727 0.3732

Table 5 A summary of some severity distributions considered in this section

Distribution Density Conditional Mean

Gamma f (y) = 1

�(α)
βαyα−1e−βy E[Y ] = α

β
= exp(x′γ )

Inverse
Gaussian

f (y) =
(

λ

2πy3

)1/2
exp

[
−λ(y − μ)2

2μ2y

]
E[Y ] = μ = exp(x′γ )

Lognormal f (y) = 1√
2πσy

exp

[
− 1

2

(
logy − μ

σ

)2
]

E[Y ] = exp

(
μ + 1

2
σ 2

)
with μ = exp(x′γ )

– Medium: a 43 years old male driver with a driving experience of 11 years and a
NCD = 50. He’s driving a 1,995 cc Nissan Cefiro that is 2 years old. He has a
comprehensive cover and the car is for private use.

– High: a 21 years old male driver with a driving experience of 3 years and a
NCD = 0. He’s driving a 1,597 cc Nissan that is 4 years old. His cover is com-
prehensive and the car is for private use.

2.2.2 Claim severity models

Actuarial data on severities are (usually) positive and (very often) are skewed to the
right, exhibiting a long right tail. Distributions from the exponential family suitable to
model severity data are the Gamma and Inverse Gaussian distribution. After applying
a log transformation to the losses, the Normal distribution is popular as well among
practitioners. Specification of these distributions as members of the exponential fam-
ily is documented in Kaas et al. (2008). In Illustration 2.4 risk classification based on
these severity distributions is demonstrated. Covariate information is incorporated in
the likelihood specifications according to the table summarized below.

Severity distributions from the GLM framework can be used to fit the whole data
set with a single distribution. However, very often, when claim sizes are modeled,
right tails heavier than those from the GLM framework are encountered. It is then
useful to specify a mixture of distributions; one for the body of the data and another
one for the tail. For the latter extreme value methods can be used (e.g. using Pareto-
type modeling of the tail). See Beirlant et al. (2004) for an example demonstrating its
usefulness using losses from a reinsurance company.

Illustration 2.4 (Severity models) We consider the severities corresponding to the
data analyzed in Illustration 2.1. These severities are obtained as the ratio “aggre-
gate loss/total number of claims” for each policyholder i and for each time period.
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Table 6 Descriptive statistics of empirical distribution automobile insurance severity data

Mean StdDev Min 10% 25% 50% 75% 90% 97.5% 99.5% Max

4,439 7,100 1 610 1,229 2,575 5,337 9,835 19,205 37,344 306,304

Fig. 1 Automobile insurance
severity data; histogram and
densities of gamma, Inverse
Gaussian and lognormal

Fig. 2 Automobile insurance severity data; histogram, fitted Lognormal density and risk premium for
selected groups of insureds

Characteristics of these severities are displayed in Table 6. Ignoring risk classifying
information, the quality of the fit of the Gamma, Inverse Gaussian and Lognormal
distributions to the data is illustrated in Fig. 1.

The results of including risk classifying characteristics in these severity models are
tabulated in Table 15. Figure 2 compares the histogram of severities with the fitted
Lognormal density for groups of insureds (based on risk classifying characteristics).
For each group, the corresponding risk premium—determined as the expected value
of the Lognormal distribution—is indicated with a vertical line.
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2.3 Advanced models

Empirical distributions of claim counts often reveal an inflated number of zeros (i.e.
no claim reported) and overdispersion (i.e. variance exceeding the mean). To cope
with these characteristics, regression models beyond the Poisson and NB regression
models are discussed in Sect. 2.3.1. In addition, a typical feature of the empirical dis-
tribution of claim severities is its right-skewness and long- or heavy-tailed character.
To appropriately model such response variables, distributions outside the exponential
family may be necessary. We provide two examples of flexible, parametric families of
distributions, namely the Burr XII and Generalized Beta of the Second Kind (GB2).
This is the topic of Sect. 2.3.2.

2.3.1 Frequency models: generalized count distributions

The recent works of Yip and Yau (2005) and Boucher et al. (2007) in the actuarial
literature highlight the use of parametric distributions other than the Poisson and the
NB distributions to accommodate specific features of actuarial data. Cameron and
Trivedi (1998), Winkelmann (2003), Yau et al. (2003), and Lee et al. (2006) similarly
discuss regression modeling of data with excess zeros found in econometrics and
medical statistics.

Mixtures The NB distribution was our first example of a mixture of the Poisson dis-
tribution in this paper. Other continuous mixtures of the Poisson distribution that
have been studied in the actuarial literature include, among others, the Poisson-
Inverse Gaussian (‘PIG’) distribution and the Poisson-LogNormal (‘PLN’) distrib-
ution. These and other types of mixture models may be found in Panjer and Willmot
(1992).

Zero-inflation The use of a discrete or finite mixture to model count data, like a
zero-inflated Poisson or a zero-inflated NB distribution, recently gained popularity
in actuarial statistics. See, for example, Yip and Yau (2005), Boucher et al. (2007)
for cross-sectional and Boucher et al. (2009) for longitudinal data. A zero-inflated
distribution is a mixture of a standard count distribution with a degenerate distribution
concentrated at zero. Its use is primarily motivated by the inflated number of zeros
(i.e. no claims reported) commonly found in actuarial data for claim count statistics.

Say Pr(Y = y|θ) is the standard count distribution (e.g. Poisson or NB) and p ∈
(0,1) denotes the extra proportion of zeros, then

Y ∼
{

0 with probability p,

Pr(Y = y|θ with probability 1 − p.
(11)

This gives the following distributional specification (with ‘ZI’ for zero-inflated)

PrZI(Y = y|p, θ) =
{

p + (1 − p)Pr(Y = 0|θ), y = 0,

(1 − p)Pr(Y = y|θ), y > 0.
(12)
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In countries where experience rating systems are operational, reporting a claim can
generally increase the insurance premium in the following years. Policyholders there-
fore have the tendency to avoid reporting all incurred claims, which motivates the
presence of inflated probability mass at zero. Zero-inflated distributions take this into
account.

Hurdle models The so-called hurdle models (Mullahy 1986) provide another possi-
bility to deal with extra zeros in empirical data. Hurdle models are two-part models
that will be used here with the hurdle at zero. As such we discriminate between poli-
cies with a claim and policies without a claim. Zeros are then modeled as a binary
component and non-zero observations with a truncated count distribution or a count
distribution defined for strictly positive integers. Thus, when a truncated count distri-
bution is used over the hurdle, we get

PrHur(Y = 0|p, θ) = p,

PrHur(Y = y|p, θ) = 1 − p

1 − Pr(0|θ)
Pr(Y = y|θ), y > 0, (13)

where p is the probability of zero claims and Pr(·) is the standard count distribution
from which the truncated form 1

1−Pr(0)
Pr(Y = y) is derived. For a count distribution

specified on the strictly positive integers, one similarly gets

PrHur(Y = 0|p, θ) = p,

PrHur(Y = y|p, θ) = (1 − p)Pr(Y = y), y > 0. (14)

Pr(·) now denotes a count distribution with the strictly positive integers as support.
As stated in Boucher et al. (2007), the belief that insureds behave differently when

they already have reported a claim (as compared to when they are still claim free)
motivates the use of a hurdle model with the hurdle at zero.

Illustration 2.5 (Generalized count distributions for claim counts) We now fit the
generalized count distributions discussed in this section to the data set introduced
in Illustration 2.1. Regression models based on these distributions are discussed in
Illustration 2.6.

Risk classification The inclusion of risk factors in the count distributions from
Sect. 2.3.1 is done with regression techniques. The expressions given below are for
cross-sectional data with sample size n.

– Zero-inflated Poisson regression: use again a log-linear structure for the mean of
the Poisson part and a logistic regression for the extra zeros. Thus,

log L(β,γ ) =
n∑

i=1

{
ui log

(
pi + (1 − pi) exp(−λi)

)}

+
n∑

i=1

(1 − ui) log

(
(1 − pi)

exp(−λi)λ
yi

i

yi !
)

, (15)
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Table 7 Empirical distribution and Negative Binomial, zero-inflated Poisson and hurdle Poisson fit for
claim frequencies corresponding to the data introduced in Illustration 2.1

Number of Claims Observed Frequency NB Frequency ZIP Frequency Hurdle Poisson Frequency

0 145,683 145,690 145,692 145,683

1 12,910 12,899 12,858 13,161

2 1,234 1,225 1,295 1,030

3 107 119 96 69

4 12 12 6 4

>4 1 1 0.28 0.18

−2 log Lik. 101,314 101,326 105,910

AIC 101,318 101,330 105,914

where pi = exp(z′
iγ )

1+exp (z′
iγ )

, λi = exp(x′
iβ) and ui = I (yi = 0). The log-likelihood then

becomes

log L(β,γ ) =
n∑

i=1

ui log
(
exp(z′

iγ ) + exp
(− exp (x′

iβ)
))

+
n∑

i=1

(1 − ui)
(
yix

′
iβ − exp

(
xiβ

))

−
n∑

i=1

{
log

(
1 + exp(z′

iγ )
) − (1 − ui) log(yi !)

}
. (16)

– Hurdle Poisson regression:

log L(β,γ ) =
n∑

i=1

{
ui log(pi) + (1 − ui) log(1 − pi)

}

+
n∑

i=1

(1 − ui)
[
yi log(λi) − log

(
1 − exp(−λi)

)

− log(yi !) − λi

]
, (17)

where similarly pi = exp(z′
iγ )

1+exp(z′
iγ )

and λi = exp(x′
iβ).

Illustration 2.6 (Regression models for claim counts) Illustration 2.3 is continued.
Table 14 shows parameter estimates for a risk classification system based on the ZIP.
Corresponding risk premiums are in Table 8.
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Table 8 A priori risk premium for a selection of risk profiles

Risk Profile Poisson distribution NB distribution ZIP distribution

Low 0.0460 0.0454 0.0455

Medium 0.1541 0.1541 0.1537

High 0.3727 0.3732 0.3715

2.3.2 Flexible, parametric models for claim severity

There are peculiar characteristics of insurance claim amounts such as skewness and
heavy-tailness that usually cannot be accommodated by classes of distributions be-
longing to the exponential family. Thus, modeling the severity of claims as a function
of their risk characteristics, in the form of covariate information, may require statis-
tical distributions outside those belonging to the GLM class. Principles of regression
within other flexible parametric families of distributions are illustrated in this sec-
tion. In particular, we find the GB2 class of distributions to be indeed quite flexible.
Introduced in economics to model distributions of income by McDonald (1984), the
GB2 class has four parameters that allow for this extreme flexibility and is able to
accommodate covariates as used in Sun et al. (2008). A special case of the GB2 class
is the Burr Type XII distribution. The work of Beirlant et al. (1998) introduces Burr
regression in the actuarial literature.

Other flexible parametric models also appear in Klugman et al. (2008), many of
which are tabulated in the appendix of the book. Several of these loss distributions
can be similarly extendable for regression purposes. All these parametric models usu-
ally try to fit the whole body of the data with a single distribution. In Sect. 2.2.2 an
alternative approach was mentioned, mixing a distribution for the body with one for
the tail.

Illustration 2.7 (Fire insurance portfolio) The cumulative distribution functions for
the Burr Type XII and the GB2 distribution are given, respectively by

FBurr,Y (y) = 1 −
(

β

β + yτ

)λ

, y > 0, β,λ, τ > 0, (18)

and

FGB2,Y (y) = B

(
(y/b)a

1 + (y/b)a
;p,q

)
, y > 0, a �= 0, b,p, q > 0, (19)

where B(·, ·) is the incomplete Beta function. If the available covariate information
is denoted by x (1 × p), it is straightforward to allow one or more of the parameters
in (18) or (19) to vary with x. The result can be called a Burr or a GB2 regression
model.

As an illustration of this approach, we consider a fire insurance portfolio (see Beir-
lant et al. 1998) that consists of 1,823 observations. We want to assess how the loss
distribution changes with the sum insured and the type of building. Claims expressed
as a fraction of the sum insured (‘SI’) are used as the response variable. Explanatory
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Fig. 3 Fire Insurance Portfolio: residual QQ plots for Burr and GB2 regression

variables are the type of building and the sum insured. Residual Q–Q plots like those
in Fig. 3 are used to judge the goodness-of-fit of the proposed regression models.
Details about the construction of these residual Q–Q plots can be found in the above-
mentioned references. A summary of the resulting parameter estimates together with
their respective standard errors are tabulated in Table 9.

2.3.3 Additive regression models

Thus far, only regression models with a linear structure for the mean, a transformation
of the mean or a parameter in the distribution have been considered. Generalized
additive models (GAMs) allow for more flexible relations between a response and a
set of covariates. Without going into details, Fig. 4 shows the additive effect of the
age of the vehicle (‘VAge’), its cubic capacity (‘VehCapCubic’) and the age of the
driver (‘AgeInsured’) and his driving experience (‘Experience’) in a Poisson additive
model with predictor

logμi = ηi = Exposure + β0 + β1 ∗ I (Sex = F) + β2 ∗ I (NCD = 0)

+ β3 ∗ I (Cover = C) + β4 ∗ I (Private = 1) + f1(VAge)

+ f2(VehCapCubic) + f3(Experience) + f4(AgeInsured). (20)

The model was fitted to the data from Illustration 2.1. GAMs are an alternative for
GLMs. As industry practice requires, our examples of GLMs use categorizations of
continuous risk factors. An interesting feature of GAMs is that they provide insight
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Table 9 Fire insurance portfolio: maximum-likelihood estimates and standard errors for Burr and GB2
regression models for observed losses. ‘SI’ stands for sum insured. For numerical reasons, losses are in
102 for the Burr analysis and 103 for the GB2 regression

Parameter Burr (τ ) Burr (β) GB2 (b) GB2 (a)

Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Intercept 0.46 (0.073) −4.921 (0.316) −8.446 (0.349) 0.049 (0.002)

Type 1 −0.327 (0.058) −2.521 (0.326) −2.5 (0.327) −0.012 (0.002)

2 −0.097 (0.06) −0.855 (0.325) −0.867 (0.317) −0.001 (0.002)

3 −0.184 (0.17) −1.167 (0.627) −1.477 (0.682) −0.003 (0.003)

4 −0.28 (0.055) −2.074 (0.303) −2.056 (0.3) −0.01 (0.002)

5 −0.091 (0.067) −0.628 (0.376) −0.651 (0.37) −0.003 (0.003)

Type 1*SI −0.049 (0.025) −0.383 (0.152) −0.384 (0.154) −0.002 (0.001)

2*SI 0.028 (0.028) 0.252 (0.174) 0.248 (0.18) 0.001 (0.001)

3*SI −0.51 (0.067) −2.098 (0.345) −2.079 (0.326) −0.006 (0.001)

4*SI −0.954 (0.464) −5.242 (1.429) −6.079 (1.626) −0.025 (0.006)

5*SI −0.074 (0.027) −0.614 (0.17) −0.598 (0.169) −0.001 (0.001)

6*SI −0.024 (0.037) −0.21 (0.223) −0.183 (0.235) −0.001 (0.001)

β 0.00023 (0.00013)

λ 0.457 (0.04) 0.444 (0.037)

τ 1.428 (0.071)

a 0.735 (0.045)

b 0.969 (0.114)

p 3.817 (0.12) 263.53 (0.099)

q 1.006 (0.12) 357 (0.132)

to the specification of meaningful categories. Denuit and Lang (2004) provides for an
excellent discussion of ratemaking with additive regression models. At the same time
these authors incorporate postcode information in their rating system. This involves
concepts from spatial statistics, a topic which is outside the scope of this paper.

3 Risk classification and a posteriori rating

During the construction of an a priori tariff structure, not all important risk factors
may be observable. This is usually the situation for a new policyholder or even an
existing one where there may be insufficient information to account for as many im-
portant risk factors to meet the homogeneity requirement of an efficient risk classi-
fication system. As a result, tariff cells will not be completely homogeneous. Take
the case of a driver insured in an automobile insurance, his aggressiveness behind
the wheel and the swiftness of his reflexes to be able to avoid possible accidents are
difficult to assess. However, as the driver’s claims history become more available to
the insurer, this provides an additional, important revelation of the true riskiness of
the policyholder. The insurer has the need to continually assess the efficiency of its
risk classification scheme, and as such, the additional information provided by the
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Fig. 4 Data from Illustration 2.1: additive effects in a Poisson GAM as specified in (20)

history of claims as they emerge must be taken into account. Thus, a posteriori sta-
tistical models are necessary in taking into account the history of reported claims and
in adjusting the a priori premium accordingly.

Experience rating has a long tradition in actuarial science. It is a way to penalize
‘bad risks’ and reward ‘good risks’. Here we find that the premium for an insurance
contract is calculated, after some claims history has been revealed, by accounting for
both the experience of the individual policyholder together with that of the whole
insurance portfolio to which the contract belongs. How much weight is assigned to
the policyholder’s own experience is termed ‘credibility factor’ in actuarial science.
In the statistics discipline, this revised estimate of the premium is based on what is
called a ‘shrinkage estimator’. In actuarial science, this topic is called credibility the-
ory and several works on this concept have appeared in the literature. Typically, we
start with citation of the formulation of the classic actuarial credibility models devel-
oped by Bühlmann (1967) and Bühlmann (1969), which provided the profession with
a theoretical justification of the underlying principles of experience or a posteriori
rating. Professionals and researchers extended his fundamental works in several di-
rections, e.g. Jewell (1975) presented credibility models for hierarchically structured
portfolios and Hachemeister (1975) combined concepts of a priori risk classification
with credibility. For a detailed and recent overview of credibility in actuarial science,
see Bühlmann and Gisler (2005).

When updating the a priori tariff based on historical claims, actuaries are clearly
dealing with panel (or longitudinal) data. This is different from the cross-sectional
setting in Sect. 2.1 and involves repeated measurement on a group of ‘subjects’ (in
this case: policies or policyholders) over time. Since they share subject-specific char-
acteristics, observations on the same subject over time often are substantively cor-
related and require a different toolbox for statistical modeling. For instance, in the



206 K. Antonio, E.A. Valdez

case of a posteriori rating, we will use Generalized Linear Mixed Models (GLMMs)
instead of the GLMs from Sect. 2.2. GLMMs extend GLMs by including random
effects in the linear predictor. The random effects do not only determine the correla-
tion structure between observations on the same subject, but also take heterogeneity
among subjects, due to unobserved characteristics, into account. Whereas the above-
mentioned papers on credibility are theoretically oriented, contemporary statistical
and econometric models for panel data and other types of clustered data allow the
actuary to construct computationally driven a posteriori rating models, which can be
implemented in standard statistical software packages. Throughout the various exam-
ples, we present this kind of statistical tools for a posteriori rating. Useful references
that discuss various aspects of a posteriori rating include, but are not limited to, Pin-
quet (1997, 1998), Frees et al. (1999), Pinquet et al. (2001), Bolancé et al. (2003) and
Antonio and Beirlant (2007).

Apart from the time component of recorded data, it is possible that a company may
have several other layers of observations. To illustrate, it is not uncommon to find an
automobile insurer to provide “fleet” coverages where a single insurance policy cov-
ers more than a single vehicle. Thus, the company has observations for a vehicle over
a period of time under a “fleet” coverage. An additional level may be introduced when
the observations are aggregated in the form of an “intercompany” experience, where
the data comes from several companies. Such is usually the case for data obtained by
reinsurers, companies that provide insurance protection to insurance companies. The
analysis of data with such a multilevel structure is the topic of Sect. 3.2.

Experience rating based on multilevel (panel or higher order) models as discussed
in Sects. 3.1 and 3.2 poses a challenge to the insurer when it comes to communi-
cating the predictive results of these models to the policyholders. Customers may
find it difficult to understand. It is not readily transparent to an ordinary policyholder
how the surcharges (maluses) for reported claims and the discounts (bonuses) for
claim-free periods are evaluated. In order to establish an experience rating system
where insureds can easily understand the effect of reported claims or periods without
claims, Bonus–Malus scales have been developed. Examples of these are discussed
in Sect. 3.3.

3.1 A priori and a posteriori rating with credibility models for panel data

Continuing with our discussion of GLMs started in Sect. 2.2, we now focus on ex-
tending this type of models for a posteriori rating. GLMMs extend GLMs by allowing
for random, or subject-specific, effects in the linear predictor (6). Including random
effects in the linear predictor reflects the idea that there is a natural heterogeneity
across subjects (policyholders, in this case) and that the observations on the same
subject share common characteristics. This is the idea behind a posteriori ratemak-
ing.

To fix ideas, suppose we have a data set consisting of N subjects. For each subject i

(1 ≤ i ≤ N ) Ti observations are available. Given the vector bi with the random effects
for subject (or cluster) i, the repeated measurements Yi1, . . . , YiTi

are assumed to be
independent with a density from the exponential family

f (yit |bi ,β, φ) = exp

(
yit θit − ψ(θit )

φ
+ c(yit , φ)

)
, t = 1, . . . , Ti . (21)
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Similar to (6), the following (conditional) relations hold

μit = E[Yit |bi] = ψ ′(θit ) and Var[Yit |bi] = φψ ′′(θit ) = φV (μit ), (22)

where g(μit ) = x′
itβ + z′

itbi . As before, g(·) is called the link and V (·), the variance
function. β (p × 1) denotes the fixed effects parameter vector (governing a priori
rating) and bi (q × 1) the random effects vector. xit (p × 1) and zit (q × 1) con-
tain subject i’s covariate information for the fixed and random effects, respectively.
The specification of the GLMM is completed by assuming that the random effects,
bi (i = 1, . . . ,N ), are mutually independent and identically distributed with density
function f (bi |α). Herewith α denotes the unknown parameters in the density. It is
not uncommon to assume that the random effects have a (multivariate) normal dis-
tribution with zero mean and covariance matrix determined by α. Dependence be-
tween observations on the same subject arises because they share the same random
effects bi .

The likelihood function for the unknown parameters β , α and φ then becomes

L(β,α, φ;y) =
N∏

i=1

f (yi |α,β, φ) =
N∏

i=1

∫ Ti∏
t=1

f (yit |bi ,β, φ)f (bi |α) dbi , (23)

where y = (y ′
1, . . . ,y

′
N)′ and the integral is with respect to the q dimensional vec-

tor bi . For instance, when both the data and the random effects are normally dis-
tributed, the integral can be worked out analytically and explicit expressions exist
for the maximum-likelihood estimator of β and the Best Linear Unbiased Predictor
(‘BLUP’) for bi . For more general GLMMs, however, approximations to the likeli-
hood or numerical integration techniques are required to maximize (23) with respect
to the unknown parameters.

To illustrate the concepts described above, we now consider a Poisson GLMM
with normally distributed random intercept. This GLMM allows for explicit calcu-
lation of the marginal mean and covariance matrix. In this way, one can clearly see
how in this example the inclusion of the random effect leads to overdispersion and
within-subject covariance.

Illustration 3.1 (A Poisson GLMM) Let Nit denote the claim frequency registered
in year t for policyholder i. Assume that, conditional on bi , Nit follows a Poisson
distribution with mean E[Nit |bi] = exp(x′

itβ + bi) and that bi ∼ N(0, σ 2
b ). Straight-

forward calculations lead to

Var(Nit ) = Var
(
E(Nit |bi)

) + E
(
Var(Nit |bi)

)
= E(Nit )

(
exp(x ′

itβ)
[
exp

(
3σ 2

b /2
) − exp

(
σ 2

b /2
)] + 1

)
, (24)

and

Cov(Nit1,Nit2) = Cov
(
E(Nit1 |bi),E(Nit2 |bi)

) + E
(
Cov(Nit1 ,Nit2 |bi)

)
= exp

(
x′

it1
β
)

exp
(
x′

it2
β
)(

exp
(
2σ 2

b

) − exp
(
σ 2

b

))
. (25)
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Hereby we used the expressions for the mean and variance of a Lognormal distrib-
ution. In the expression for the covariance we used the fact that, given the random
effect bi , Nit1 and Nit2 are independent. We see that the expression inside the paren-
theses in (24) is always bigger than 1. Thus, although Nit |bi follows a regular Poisson
distribution, the marginal distribution of Nit is overdispersed. According to (25), due
to the random intercept, observations on the same subject are no longer independent.

Illustration 3.2 (A Poisson GLMM—continued) Let Nit again denote the claim
frequency for policyholder i in year t . Assume that, conditional on bi , Nit fol-
lows a Poisson distribution with mean E[Nit |bi] = exp(x′

itβ + bi) and that bi ∼
N(−σ 2

b

2 , σ 2
b ). This re-parameterization is commonly used in ratemaking. Indeed, we

now get

E[Nit ] = E
[
E[Nit |bi]

] = exp

(
x′

itβ − σ 2
b

2
+ σ 2

b

2

)
= exp(x′

itβ), (26)

and

E[Nit |bi] = exp(x′
itβ + bi). (27)

This specification shows that the a priori premium, given by exp(x′
itβ), is correct on

the average. The a posteriori correction to this premium is determined by exp(bi).

Besides the Lognormal distribution used in the above examples, other mixing dis-
tributions can be used. In the Poisson-Gamma framework for instance, the conjugacy
of these distributions allows for explicit calculation of the predictive premium. This
is demonstrated in Illustration 3.3.

Illustration 3.3 (A Poisson-Gamma model) A simple and classical random effects
Poisson model for panel data (see e.g. Hausman et al. 1984) is constructed with the
assumptions

Nit ∼ Poi(biλit ), where λit = exp(x′
itβ) and bi ∼ �(α,α).

It follows that E[bi] = 1 and the resulting joint, unconditional distribution then be-
comes

Pr(Ni1 = ni1, . . . ,NiTi
= niTi

)

=
(

Ti∏
t=1

λ
nit

it

nit !

)
�(

∑Ti

t=1 nit + α)

�(α)

(
α∑Ti

t=1 nit + α

)α

×
(

Ti∑
t=1

nit + α

)−∑Ti
t=1 nit

,(28)

with E[Nit ] = E[E[Nit |bi]] = λit and Var[Nit ] = E[Var[Nit |bi]] + Var[E[Nit |bi]] =
λit + 1

α
λ2

it .
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For the specification in (28), the posterior distribution of the random intercept bi

has again a Gamma distribution with

f (bi |Ni1 = ni1, . . . ,NiTi
= niTi

) ∝ �

(
Ti∑

t=1

nit + α,

Ti∑
t=1

λit + α

)
. (29)

The (conditional) mean and variance of this posterior distribution are given, respec-
tively, by

E[bi |Nit = nit , t = 1, . . . , Ti] = α + ∑Ti

t=1 nit

α + ∑Ti

t=1 λit

and (30)

Var[bi |Nit = nit , t = 1, . . . , Ti] = α + ∑Ti

t=1 nit(
α + ∑Ti

t=1 λit

)2
. (31)

This leads to the following a posteriori premium:

E[Ni,Ti+1|Nit = nit , t = 1, . . . , Ti] = λi,Ti+1E[bi |Nit = nit , t = 1, . . . , Ti]

= λi,Ti+1

{
α + ∑Ti

t=1 nit

α + ∑Ti

t=1 λit

}
. (32)

The above credibility premium is optimal when a quadratic loss function is used.
Indeed, as is known in mathematical statistics, the conditional expectation minimizes
a mean squared error criterion.

It is now demonstrated how credibility calculations for a panel data set can be
done with standard statistical software packages.

Illustration 3.4 (A numerical example of a posteriori rating with a Poisson GLMM)
We illustrate the statistical tools introduced above with a numerical example. Data
consist of 12,893 policyholders who were observed during (fractions of) the period
1993–2003. Let Nit be the number of claims registered for policyholder i in period t .
The following model specification is used:

Nit |bi ∼ Poi(μit |bi) and μit |bi = eit exp(x′
itβ + bi), (33)

bi ∼ N
(−σ 2/2, σ 2), (34)

where eit is the exposure for policyholder i in year t (expressed in years). If the rating
model only uses observable risk characteristics (in xit ) and not the claims history of
the insured, the a priori premium is given by

(a priori) E[Nit ] = eit exp(x′
itβ). (35)

An experience rating system will adopt the a priori premium based on the claims
reported by the insured. This results in the following a posteriori premium:

(a posteriori) E[Nit |bi] = eit exp(x′
itβ + bi). (36)
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Fig. 5 (Left) Boxplot of the conditional distribution of bi , given the history Ni1, . . . ,NiTi
, for a random

selection of 20 policyholders. (Right) For the same selection of policyholders: boxplots with simulations
from the a priori (white) and a posteriori (gray) premium

The ratio (36)/(35) is called the theoretical Bonus–Malus Factor (BMF). It reflects
the extent to which the policyholder is rewarded or penalized for his past claims.
Using standard statistical software (like Proc NlMixed in SAS) a point estimate
for (35), (36) and the BMF can be obtained easily. In Fig. 5 (left) random draws
from the conditional distributions of bi (given Ni1, . . . ,NiTi

) are shown for a random
selection of policyholders. These results can be obtained from a Bayesian analysis of
the model (using, for example, WinBugs). The conditional distributions reflect the
heterogeneity between policyholders as well as their risk behavior. For instance, the
black boxplot represents a policyholder who reported four claims during an insured
period of 0.67 years, while the white boxplot represents a policyholder with zero
claims during 6.4 years of exposure. The right panel of Fig. 5 shows boxplots of
simulated values of the a priori ((35)) and a posteriori ((36)) premiums of Ni,Ti+1
(for the selection of policyholders under consideration). One can see how the a priori
premiums are corrected based on observed claims.

More supporting graphs are given in Figs. 6 and 7. Such graphs help the actuary to
gain further insight into the portfolio. The vertical axis in both figures gives the a pos-
teriori premium, expressed as a percentage of the a priori premium. The horizontal
axis in Fig. 6 gives the average number of claims reported by the policyholder per
year. This average is the ratio of total reported claims and the total period of exposure
(in years). For instance, for the policyholders highlighted in Fig. 6 (left panel) we
observed four claims on 0.64 years (purple), two on 0.36 (years) (blue) and one on
0.167 year. These claim histories result in a posteriori 462%, 220% and 150% of the
a priori premium. The right panel in Fig. 6 is a detail of the left panel. In this panel we
only display policyholders with a total period of exposure of 3 years. For instance, the
green triangles all represent policyholders who reported the same number of claims
(i.e. one claim) during the same period of exposure (i.e. 3 years). Nevertheless, the
a posteriori corrections that apply to this group of policyholders differ within the
group. The dashed lines in the plot connect policyholders with a low (respectively
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Fig. 6 A posteriori premium expressed as percentage of the a priori premium (y-axis) versus the average
number of claims

Fig. 7 A posteriori premium expressed as percentage of the a priori premium (y-axis) versus the total
period of insurance. Left panel uses the mean and right panel the median of the conditional distribution of
bi , given Ni1, . . . ,NiTi

high) a priori risk premium. It becomes clear from the plot that corrections for high
a priori risks are softer (i.e. penalties are lower and discounts are higher) than those
for low a priori risks.

Figure 7 has the policyholder’s total exposure on the x-axis. In the left panel we
use the mean of the conditional distribution of bi (given Ni1, . . . ,NiTi

) as predictor
for bi in (36). The right panel uses the median. We see that the median results in a less
severe experience rating: smaller penalizations for past claims and bigger rewards for
claim-free policies. At the same time Fig. 7 illustrates graphically how many claim-
free years a policyholder needs to get rid of his penalty, e.g. after reporting one claim,
and pay the a priori premium again. Graphically this is represented by the intersection
of the green cloud and a horizontal line at y = 100.
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3.2 A priori and a posteriori rating with credibility models for clustered data

Whereas Sect. 3.1 is an overview of techniques involved in the rating of data bases
with a panel structure, actuaries may have data sets at their disposal with a more
difficult structure. This is illustrated with an example of multilevel or hierarchical
rating that first appeared in the actuarial literature in Antonio et al. (2010).

Illustration 3.5 (A multilevel model for intercompany claim counts) Data are
available on claim counts registered for automobile insurance policies over a pe-
riod of nine years (1993–2002). The source contains a pooled experience of several
insurers. Moreover, vehicles under consideration are insured under a ‘fleet’ policy.
Fleet policies are umbrella-type policies issued to customers whose insurance covers
more than a single vehicle. The hierarchical or multilevel structure of the data is as
follows: vehicles (v) observed over time (t) that are nested within fleets (f ), with
policies issued by insurance companies (c). Multilevel statistical models allow one
to incorporate the hierarchical structure of the data by specifying random effects at
the vehicle, fleet and company levels. These random effects represent unobservable
characteristics at each level. At the vehicle level, the missions assigned to a vehicle
or unobserved driver behavior may influence the riskiness of a vehicle. At the fleet
level, guidelines on driving hours, mechanical check-ups, loading instructions and so
on, may influence the number of accidents reported. At the insurance company level,
underwriting and claim settlement practices may affect claims. Moreover, random ef-
fects allow one to update an a priori tariff, taking into account the past performance
of vehicle, fleet and company. As such, they are relevant for a posteriori rating with
clustered data.

Antonio et al. (2010) compare the performance of a posteriori rating models (in-
corporating a priori characteristics) based on various count distributions (namely
Poisson, negative binomial, zero-inflated Poisson and hurdle Poisson). Denote Yc,f,v,t

the number of claims in period t for vehicle v insured under fleet f by company c.
With the Poisson distribution the a priori tariff is expressed as

Nc,f,v,t ∼ Poi
(
μ

prior
c,f,v,t

)
,

μ
prior
c,f,v,t = ec,f,v,t exp(ηc,f,v,t ), (37)

ηc,f,v,t = β0 + x′
cβ4 + x′

cf β3 + x′
cf vβ2 + x′

cf vtβ1. (38)

Hereby xc , xcf , xcf v and xcf vt contain observable covariate information registered
at the level of company, fleet, vehicle and period, respectively. ec,f,v,t denotes the
exposure. A posteriori the tariff is updated as follows:

Nc,f,v,t |bc;bc,f ;bc,f,v ∼ Poi(μc,f,v,t |bc;bc,f ;bc,f,v),

μc,f,v,t |bc;bc,f ;bc,f,v = μ
prior
c,f,v,t × exp(bc + bc,f + bc,f,v), (39)

bc ∼ N

(
−σ 2

c

2
, σ 2

c

)
and bc,f ∼ N

(
−σ 2

c,f

2
, σ 2

c,f

)
and

bc,f,v ∼ N

(
−σ 2

c,f,v

2
, σ 2

c,f,v

)
. (40)
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Fig. 8 Illustration of posterior distributions of company effects and a random selection of fleet effects.
A horizontal line is plotted at the mean of the random effects distribution

Equation (37) gives the a priori premium and (39) the a posteriori tariff. The ra-
tio (a posteriori premium/a priori premium) is the theoretical Bonus–Malus Factor
(BMF). Differences between companies and fleets are revealed by the posterior distri-
butions of the random effects at company and fleet level. See Fig. 8 for an illustration.
The left panel in this figure reflects the company effects. For instance, the black box-
plot represents a company where 1,096 claims were registered on a total exposed
period of 4,440 years. The white boxplot corresponds with a company having 191
claims on a period of 2,480 years of exposure. The right panel in Fig. 8 reflects fleet
effects. The white boxplot is from a fleet with zero claims on 53 years of exposure,
whereas the past experience represented by the black boxplot is much worse: nine
claims on a period of 9 years of exposure.

Antonio et al. (2010) investigate how various claim count distributions (see
Sect. 2.3.1) perform in a posteriori rating systems. In Tables 10 and 11 we follow
three vehicles to illustrate the mechanism of experience rating with each of the model
specifications under investigation. The first illustration from Table 10 uses a Poisson
hierarchical model with random effects for company, fleet and vehicle. In this illus-
tration the BMFs for all vehicles are above 1, but the BMF for the vehicle that re-
ports one claim is much higher (2.05) than the BMF for the claim-free vehicles (1.56
and 1.58). Checking the corresponding results for the hierarchical negative binomial
model and the ZIP with fixed p (see distribution specification (11)), the BMF for
all vehicles is >1 and in between those reported in the first illustration in Table 10.
The latter models calculate BMFs at the fleet level, a natural point in the hierarchy
because it is at this level where an insurance contract between a fleet and insurance
company is written. Hence, fleet level BMFs can be used for premium renewals. The
first illustration in Table 10 shows BMFs calculated at the vehicle level. This informa-
tion could also be used for contracts written at the fleet level; as the fleet composition
changes through the retirement or sale of vehicles, the total fleet premium should re-
flect the changing composition of vehicles. Vehicle level BMFs will allow prices to
depend on the vehicle composition of fleets.
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Table 10 Effects of different models on premiums for selected vehicles. Results for hierarchical Poisson,
NB and ZIP with fixed p regression models

Vehicle A Priori (Exp.) A Posteriori BMF Acc. Cl. Acc. Cl.

Number Fleet (Exp.) Veh. (Exp.)

Hierarchical Poisson with random effects for vehicle, fleet and company

6,645 0.08435 (0.5038) 0.1725 2.05 6 (18.5) 1 (1)

7,006 0.08435 (0.5038) 0.1316 1.56 0 (1)

6,500 0.08435 (0.5038) 0.1329 1.58 0 (1)

Hierarchical NB with random effects for fleet and company

6,645 0.08383 (0.5038) 0.1435 1.71 6 (18.5) 1 (1)

7,006 0.08383 (0.5038) 0.1435 0 (1)

6,500 0.08383 (0.5038) 0.1435 0 (1)

Hierarchical ZIP with random effects for fleet and company, fixed p

6,645 0.08241 (0.5038) 0.1484 1.8 6 (18.5) 1 (1)

7,006 0.08241 (0.5038) 0.1484 0 (1)

6,500 0.08241 (0.5038) 0.1484 0 (1)

Note: ‘Acc. Cl. Fleet’ and ‘Acc. Cl. Veh.’ are accumulated number of claims at fleet and vehicle levels,
respectively. ‘Exp.’ is exposure at year level, in parentheses

Table 11 Effects of different models on premiums for selected vehicles. Results for ZIP with fleet-specific
p and hurdle Poisson model

Vehicle A Priori (Exp.) A Posteriori BMF Acc. Cl. (Exp.) Claim-Free Years

Hierarchical ZIP with random effects for fleet and company, fleet-specific p

6,645 0.09051 (0.5038) 0.1306 1.37 6 (18.5) 17

7,006 0.09051 (0.5038) 0.1306

6,500 0.09051 (0.5038) 0.1306

Hierarchical hurdle Poisson with random effects for fleet and company

6,645 0.1098 (0.5038) 0.11 1 6 (18.5) 17

7,006 0.1098 (0.5038) 0.11

6,500 0.1098 (0.5038) 0.11

Note: ‘Acc. Cl. Fleet’ and ‘Acc. Cl. Veh.’ are accumulated number of claims at fleet and vehicle levels,
respectively. ‘Exp.’ is exposure at year level, in parentheses

Comparing the results in Tables 10 and 11 we see that a priori premiums obtained
with the different model specifications closely correspond. The zero-inflated model
with fleet-specific pc,f and the hurdle Poisson model take the claim-free period of
a fleet into account. For panel data, this feature was made explicit in Boucher et al.
(2009) and Boucher et al. (2008). Compare the results for fleet in Tables 10 and 11
between the various specifications: in the NB and ZIP with p fixed, the BMF for this
fleet is 1.71/1.8. In ZIP model with random p this drops to 1.37 and in the hurdle
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model even to 1. That is because these last two model specifications not only use the
number of registered claims, but also the claim-free periods (which is here 17 out of
a total of 18.5 years).

3.3 Experience rating with Bonus–Malus scales

Illustrations 3.4 and 3.5 show that credibility models for hierarchically structured data
are statistically challenging. To the insureds, it is not obvious how penalties for past
claims and discounts based on claim-free periods are calculated. Within automobile
insurance Bonus–Malus (BM) scales are a well-known and widely used commercial
alternative for the credibility type rating systems discussed above. Their commercial
attractiveness lies in the fact that insureds are able to understand how information on
the number of claims reported in year t (Nit ) will change the premium they have to
pay in year t + 1 for their automobile insurance. Our main reference in this section
is Denuit et al. (2007). To discuss the probabilistic and statistical aspects of Bonus–
Malus scales, a credibility model similar to the one in Illustration 3.3 is assumed with
the following specification:

• policy i of the portfolio (i = 1, . . . , n) is represented by a sequence (Θi,N i ) where
N i = (Ni1,Ni2, . . .) and Θi represents unexplained heterogeneity and has mean 1;

• given Θi = θ the random variables Nit (t = 1,2, . . .) are independent and
Poi(λit θ) distributed; and

• the sequences (Θi,N i ) (i = 1, . . . , n) are assumed to be independent.

3.3.1 Bonus–Malus scales

A BM scale consists of a certain number of levels, say s + 1, which are numbered
from 0, . . . , s. A new driver will enter the scale at a specified level, say �0. Drivers
will transition up and down the scale according to the number of claims reported in
each year of insurance. A claim-free year results in a bonus point, which implies that
the driver goes one level down (0 being the best scale). Claims are penalized by malus
points, meaning that for each claim filed, the driver goes up a certain number of levels.
Denote this number by ‘pen’, the penalty. The trajectory of a driver through the scale
can be represented by a sequence of random variables: {L1,L2, . . .} where Lk takes
values in {0, . . . , s} and represents the level occupied in the time interval (k, k + 1).
With Nk the number of claims reported by the insured in the period (k − 1, k), the
future level of an insured Lk is obtained from the present level Lk−1 and the number
of claims reported during the present year Nk . This is at the heart of Markov models:
the future depends on the present and not on the past. The Lk’s obey the recursion:

Lk =
{

max(Lk−1 − 1,0) if Nk = 0,

min(Lk−1 + Nk × pen, s) if Nk ≥ 1,
(41)

assuming independence of N1,N2, . . . . With each level � in the scale a so-called
relativity r� is associated. A policyholder who has at present a priori premium λit

and is in scale �, has to pay r� ×λit . The relativities, together with the transition rules
in the scale, are the commercial alternative for the credibility type models discussed
before.
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Table 12 Transitions in the
(−1/Top Scale) BM system Starting Level occupied if

level 0 ≥1

claim is reported

0 0 5

1 0 5

2 1 5

3 2 5

4 3 5

5 4 5

Illustration 3.6 (−1/Top Scale) Throughout this section fundamentals of BM scales
are illustrated with a simple example of such a scale: the (−1/Top Scale). This scale
has six levels, numbered 0,1, . . . ,5. Starting class is level 5. Each claim-free year
is rewarded by one bonus class. When an accident is reported the policyholder is
transferred to scale 5. Table 12 represents these transitions.

3.3.2 Transition rules, transition probabilities and stationary distribution

To enable the calculation of the relativity corresponding with each level �, some prob-
abilistic concepts associated with BM scales have to be introduced. The transition
rules corresponding with a certain BM scale are indicator variables tij (k) such that

tij (k) =
{

1 if the policy transfers from i to j when k claims are reported,

0 otherwise.
(42)

They can be summarized in the matrix T (k):

T (k) =

⎛
⎜⎜⎜⎝

t00(k) t01(k) . . . t0s(k)

t10(k) t11(k) . . . t1s(k)
...

...
. . .

...

ts0(k) ts1(k) . . . tss(k)

⎞
⎟⎟⎟⎠ , (43)

which is a 0–1 matrix where each row has exactly one 1.
Assuming N1, N2, . . . are independent and Poi(θ) distributed, the trajectory this

driver follows through the scale will be represented as {L1(θ),L2(θ), . . .}. The tran-
sition probability of this driver to go from level �1 to �2 in a single step is

p�1�2(θ) = Pr[Lk+1(θ) = �2|Lk(θ) = �1] (44)

=
+∞∑
n=0

Pr
[
Lk+1(θ)

= �2|Nk+1 = n,Lk(θ) = �1
]
Pr

[
Nk+1 = n|Lk(θ) = �1

]
(45)

=
+∞∑
n=0

θn

n! exp(−θ)t�1�2(n), (46)
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where we used the independence of Nk+1 and Lk . The corresponding one-step tran-
sition matrix P (θ) is given by

P (θ) =

⎛
⎜⎜⎜⎝

p00(θ) p01(θ) . . . p0s(θ)

p10(θ) p11(θ) . . . p1s(θ)
...

...
. . .

...

ps0(θ) ps1(θ) . . . pss(θ)

⎞
⎟⎟⎟⎠ . (47)

The n-step transition probability p
(n)
ij gives the probability of being transferred from

level i to level j in n steps:

p
(n)
ij (θ) = Pr

[
Lk+n(θ) = j |Lk(θ) = i

]

=
s∑

i1=0

s∑
i2=0

· · ·
s∑

in−1=0

pii1(θ)pi1i2(θ) · · ·pin−1j (θ), (48)

where the last expression includes all possible paths between i and j in n steps and
the probability of their occurrence. These probabilities are summarized in the n-step
transition matrix P (n)(θ):

P (n)(θ) =

⎛
⎜⎜⎜⎜⎝

p
(n)
00 (θ) p

(n)
01 (θ) . . . p

(n)
0s (θ)

p
(n)
10 (θ) p

(n)
11 (θ) . . . p

(n)
1s (θ)

...
...

. . .
...

p
(n)
s0 (θ) p

(n)
s1 (θ) . . . p

(n)
ss (θ)

⎞
⎟⎟⎟⎟⎠ . (49)

The following relation holds between the 1- and n-step transition matrices: P (n)(θ) =
P n(θ).

Ultimately, the BM system will stabilize and the proportion of policyholders occu-
pying each level of the scale will remain unchanged. These proportions are captured
in the stationary distribution π(θ) = (π0(θ), . . . ,π s(θ))′, which are defined as

π�2(θ) = lim
n→+∞p

(n)
�1�2

(θ). (50)

Correspondingly, P (n)(θ) converges to �(θ) defined as

lim
n→+∞P (n)(θ) = �(θ) =

⎛
⎜⎜⎜⎝

π ′(θ)

π ′(θ)
...

π ′(θ)

⎞
⎟⎟⎟⎠ . (51)



218 K. Antonio, E.A. Valdez

Illustration 3.7 (−1/Top Scale—continued) For the BM scale introduced in Illustra-
tion 3.6 the transition and one-step probability matrices are given as follows:

T (0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and T (1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (52)

P (θ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

exp(−θ) 0 0 0 0 1 − exp(−θ)

exp(−θ) 0 0 0 0 1 − exp(−θ)

0 exp(−θ) 0 0 0 1 − exp(−θ)

0 0 exp(−θ) 0 0 1 − exp(−θ)

0 0 0 exp(−θ) 0 1 − exp(−θ)

0 0 0 0 exp(−θ) 1 − exp(−θ)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(53)

Using a result from Rolski et al. (1999) (also see Denuit et al. 2007) the stationary
distribution π(θ) can be obtained as π ′(θ) = e′(I − P (θ) + E)−1, with E the (s +
1) × (s + 1) matrix with all entries 1. For the (−1/Top Scale) this results in:

π ′(θ) = (1,1,1,1,1,1)

×

⎛
⎜⎜⎜⎜⎜⎜⎝

2−exp(−θ) 1 1 1 1 exp(−θ)

1−exp(−θ) 2 1 1 1 exp(−θ)

1 1−exp(−θ) 2 1 1 exp(−θ)

1 1 1−exp(−θ) 2 1 exp(−θ)

1 1 1 1−exp(−θ) 2 exp(−θ)

1 1 1 1 1−exp(−θ) 1+exp(−θ)

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

.

(54)

For instance, with θ = 0.1546 (the annual claim frequency from Illustration 2.1) the
stationary distribution becomes:

π ′(0.1546) = (
0.46416 0.0772 0.0901 0.1051 0.1227 0.1432

)
. (55)

3.3.3 Relativities

In a BM scale the relativity r� corresponding with scale � corrects the a priori pre-
mium: a posteriori the policyholder will pay r�% of the a priori premium. The calcu-
lation of the relativities, given a priori risk characteristics, is one of the main tasks of
the actuary. This type of calculations shows a lot of similarities with explicit credibil-
ity type calculations (as in Illustration 3.3). Following Norberg (1976) with the num-
ber of levels and transition rules being fixed, the optimal relativity r�, corresponding
with level �, is determined by maximizing the asymptotic predictive accuracy. This
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implies that one tries to minimize

E
[
(Θ − rL)2], (56)

the difference between the relativity rL and the ‘true’ relative premium Θ , under the
assumptions of our credibility model. Simplifying the notation in this model, the a
priori premium of a random policyholder is denoted with Λ and the residual effect
of unknown risk characteristics with Θ . The policyholder then has (unknown) annual
expected claim frequency ΛΘ , where Λ and Θ are assumed to be independent. The
weights of different risk classes follow from the a priori system with Pr[Λ = λk] =
wk .

Calculation of the r�’s goes as follows:

minE
[
(Θ − rL)2] =

s∑
�=0

E
[
(Θ − r�)

2|L = �
]
Pr[L = �] (57)

=
s∑

�=0

∫ +∞

0
(θ − r�)

2Pr[L = �|Θ = θ ]dFΘ(θ)

=
∑

k

wk

∫ +∞

0

s∑
�=0

(θ − r�)
2π�(λkθ) dFΘ(θ), (58)

where Pr[Λ = λk] = wk . In the last step of the derivation conditioning is on Λ. It is
straightforward to obtain the optimal relativities by solving

∂E[(Θ − rL)2]
∂rj

= 0 with j = 0, . . . , s. (59)

Alternatively, from mathematical statistics it is well-known that for a quadratic loss
function (see (57)) the optimal r� = E[Θ|L = �]. This is calculated as follows:

r� = E[Θ|L = �]
= E

[
E[Θ|L = �,Λ]|L = �

]
=

∑
k

E[Θ|L = �,Λ = λk]Pr[Λ = λk|L = �]

=
∑

k

∫ +∞

0
θ

Pr[L = �|Θ = θ,Λ = λk]wk

Pr[L = �,Λ = λk] dFΘ(θ)
Pr[Λ = λk,L = �]

Pr[L = �] , (60)

where the relation fΘ|L=�,Λ=λk
(θ |�,λk) = Pr[L=�|Θ=θ,Λ=λk]×wk×fΘ(θ)

Pr[Λ=λk,L=�] is used. The
optimal relativities are given by

r� =
∑

k wk

∫ +∞
0 θπ�(λkθ) dFΘ(θ)∑

k wk

∫ +∞
0 π�(λkθ) dFΘ(θ)

. (61)
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Table 13 Numerical
characteristics for the (−1/Top
Scale) and the portfolio from
Illustration 2.1, without and
with a priori rating taken into
account

Level � Pr[L = �] r� = E[Θ|L = �]
without a priori with a priori

5 13.67% 160% 136.7%

4 10.79% 145.6% 127.7%

3 8.7% 133.9% 120.5%

2 7.14% 123.1% 114.4%

1 5.94% 114.2% 109.2%

0 53.75% 65.47% 78.9%

When no a priori rating system is used, all the λks are equal (estimated by λ̂) and the
relativities reduce to

r� =
∫ +∞

0 θπ�(λ̂θ) dFΘ(θ)∫ +∞
0 π�(λ̂θ) dFΘ(θ)

. (62)

Illustration 3.8 ((−1/Top Scale) (continued)) The relativities are calculated for the
data set introduced in Illustration 2.1 and the (−1/Top Scale) from Illustration 3.6.
Numerical integration was done with the function integrate in R. Without a priori
ratemaking the relativities are calculated with λ̂ = 0.1546 and Θi ∼ �(α,α) with α̂ =
1.4658. Results are in Table 13. Incorporating the a priori rating system developed in
Illustration 2.3 and tabulated in Table 14, relativities are adapted as in Table 13. By
taking a priori characteristics into account, the a posteriori corrections are softened.

4 Concluding remarks

Risk classification involves the process of grouping insurance risks into various cat-
egories or cells that share a homogeneous set of characteristics. It is an extremely
important part of establishing a fair and reasonable tariff structure for a portfolio
of insurance risks. Such a categorization usually leads to constructing many differ-
ent cells for which members of each cell share a similar set of risk characteristics
and therefore must pay the same premium rate. McClenahan (2001) outlines several
considerations that must be met when selecting rating (or classifying) variables in
constructing a fair risk classification scheme. Among these considerations are the so-
called actuarial criteria, which require the selection to be based on sound fundamental
statistical principles. It is the purpose of this paper to survey some of the old and the
newer advanced statistical techniques that can be employed by the actuary to meet
these criteria when establishing a risk classification system.

In selecting rating variables for risk classification purposes, the primary statisti-
cal tools fall within the class of regression-type models. These types of models have
several advantages; in particular, they allow the actuary to identify statistically signif-
icant rating variables, to quantify the statistical effects of each rating variable, and to
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Table 14 Parameter estimates for several regression models for the data introduced in Illustration 2.1

Poisson NB ZIP

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Regression Coefficients: Positive Part

Intercept −3.1697 (0.0621) −3.1728 (0.0635) −2.6992 (0.1311)

Sex Insured

female −0.1339 (0.022) −0.1323 (0.0226) not used

male ref. group

Age Vehicle

≤ 2 years −0.0857 (0.0195) −0.08511 (0.02) −0.0853 (0.02)

> 2 and ≤ 8 years ref. group

> 8 years −0.1325 (0.0238) −0.1327 (0.024) −0.1325 (0.0244)

Age Insured

≤ 28 years 0.3407 (0.0265) 0.3415 (0.027) 0.34 (0.0273)

> 28 years and ≤ 35 years 0.1047 (0.0203) 0.1044 (0.0209) 0.1051 (0.0208)

> 35 and ≤ 68 years ref. group

> 68 years −0.4063 (0.0882) −0.4102 (0.0897) −0.408 (0.0895)

Private Car

Yes 0.2114 (0.0542) 0.2137 (0.0554) 0.2122 (0.0554)

Capacity of Car

≤ 1500 ref. group

> 1500 0.1415 (0.0168) 0.1406 (0.0173) 0.1412 (0.0172)

Capacity of Truck

≤ 1 ref. group

> 1 0.2684 (0.0635) 0.2726 (0.065) 0.272 (0.065)

Comprehensive Cover

Yes 1.0322 (0.0321) 1.0333 (0.0327) 0.8596 (0.1201)

No Claims Discount

No 0.2985 (0.0175) 0.2991 (0.0181) 0.2999 (0.018)

Driving Experience of Insured

≤ 5 years 0.1585 (0.0251) 0.1589 (0.0259) 0.1563 (0.0258)

> 5 and ≤ 10 years 0.0699 (0.0202) 0.0702 (0.0207) 0.0695 (0.0207)

> 10 years ref. group

Extra Par. α̂ = 2.4212

Regression Coefficients: Zero Part

Intercept −0.5124 (0.301))

Comprehensive Cover

Yes −0.5325 (0.3057)

Sex Insured

female 0.3778 (0.068)

male ref. group

Summary

−2 Log-Likelihood 98,326 98,161 98,167

AIC 98,356 98,191 98,199
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Table 15 Parameter estimates for several regression models for the severity data introduced in Illustra-
tion 2.4

Gamma Inverse Gaussian Lognormal

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Intercept 8.1515 (0.0339) 8.1543 (0.0682) 7.5756 (0.0391)

Sex Insured

female not sign. not. sign. not sign.

male

Age Vehicle

≤ 2 years ref. group

> 2 and ≤ 8 years ref. group

> 8 years −0.1075 (0.02) −0.103 (0.0428) −0.1146 (0.0229)

Age Insured

≤ 28 years not sign. not sign. not sign.

> 28 years and ≤ 35 years

> 35 and ≤ 68 years

> 68 years

Private Car

Yes 0.1376 (0.0348) 0.1355 (0.0697) 0.1443 (0.04)

Capacity of Car

≤ 1500 ref. group ref. group ref. group

> 1500 and ≤ 2000 0.174 (0.0183) 0.1724 (0.04) 0.1384 (0.021)

> 2000 0.263 (0.043) 0.2546 (0.1016) 0.1009 (0.0498)

Capacity of Truck

≤ 1 not sign. not sign. not sign.

> 1

Comprehensive Cover

Yes not sign. not sign. not sign.

No Claims Discount

No 0.0915 (0.0178) 0.0894 (0.039) 0.0982 (0.0205)

Driving Experience of Insured

≤ 5 years not sign. not sign. not sign.

> 5 and ≤ 10 years

> 10 years ref. group

Extra Par. α̂ = 0.9741 λ̂ = 887.82 σ̂ = 1.167

Summary

−2 Log-Likelihood 267,224 276,576 266,633

AIC 267,238 276,590 266,647

make resulting price predictions and consequently, assess the price relativities among
various cells.

This paper makes several distinctions in the modeling aspects involved in ratemak-
ing. First, it considers the distinction between a priori and a posteriori risk classifi-
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cation in ratemaking. In a priori ratemaking, the process involves establishing the
premium when a policyholder is new to the company so that insufficient informa-
tion may be available. As additional historical claims information becomes available
to the company, an a posteriori ratemaking becomes necessary to correct and adjust
these a priori premiums. Second, we separately consider modeling the claim fre-
quency, which refers to the number of times a claim is made during a specified period
(e.g. typically a calendar year), and the claim severity, which refers to the size of the
claim when it occurs. When combined together, a pure premium provides an estimate
of the cost of the benefit provided by the insurance coverage. Finally, we also take
into consideration the form of the data that may be recorded, become available to the
insurance company and are used for calibrating the statistical models. In an a priori
ratemaking process for example, the data usually are in a cross-sectional form. Here,
the common practice is to use models within the family of Generalized Linear Mod-
els. However, we also examined more advanced models of count distribution models
(e.g. zero-inflated and hurdle models) to accommodate the peculiarities of some fre-
quency data such as excess zeros. On the severity side, insurance claim sizes typically
exhibit more skewness and heavier tails that members of the GLM may be unable to
accommodate; we find that the class of GB2 distribution models provides greater
flexibility and allows for covariates to be introduced. In an a posteriori ratemaking
process, the recorded data can come in various layers: multilevel (e.g. longitudinal)
or other types of clustering. For a posteriori rating with panel data credibility models
as well as a commercial alternative in the form of Bonus–Malus scales are discussed.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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