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1 Introduction
Over the past few years, there has been much research activity concerning the oscillation
and asymptotic behavior of various classes of differential equations; we refer the reader to
[–] and the references cited therein. Half-linear differential equations occur in a variety
of real world problems such as in the study of p-Laplace equations, non-Newtonian fluid
theory, and the turbulent flow of a polytrophic gas in a porous medium; see the related
background details reported in []. Many authors have studied the properties of solutions
of the higher-order differential equation

Lx + q(t)xβ
(
τ (t)

)
= , Lx :=

(
r
(
x(n–)

)α)′(t). (.)

The operator Lx is said to be in canonical form if
∫ ∞
t

r–/α(t) dt = ∞; otherwise, it is called
noncanonical. Throughout the paper, we assume that α and β are ratios of odd positive
integers, r ∈ C[t,∞), r(t) > , r′(t)≥ , q, τ ∈ C[t,∞), q(t) > , and limt→∞ τ (t) = ∞.
Agarwal et al. [] established a criterion for the existence of bounded solutions of (.)

under the assumptions that n is even,
∫ ∞
t

q(t) dt = ∞, and

∫ ∞

t
r–/α(t) dt <∞. (.)

Zhang et al. [, ] obtained some results on asymptotic behavior of (.) in the case
where (.) holds, τ (t) < t, and β ≤ α. In [, ], an unsolved problem can be formulated
as follows.
(P) Is it possible to establish asymptotic criteria for equation (.) in the case where

β ≥ α?
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As a special case when α =  and n = , equation (.) becomes

(
rx′)′(t) + q(t)xβ

(
τ (t)

)
= . (.)

Li et al. [] established the following criterion for (.).

Theorem . (See [, Theorem .]) Let (.) hold with α = , β ≥ , τ (t)≤ t, and τ ′(t) >
 for all t ≥ t. Assume that there exists a function ρ ∈ C([t,∞),R) with ρ(t) ≥ t and
ρ ′(t) >  such that, for all sufficiently large t and for all positive constants M and L,

∫ ∞[
q(t)Rβ

(
τ (t)

)
–

βM–βτ ′(t)Rβ–(τ (t))
r(τ (t))

∫ t
t

τ ′(s)
r(τ (s)) ds

]
dt = ∞

and
∫ ∞[

q(t)ξβ (t) –
βρ ′(t)

Lβ–ξ (t)r(ρ(t))

]
dt = ∞, (.)

where R(t) :=
∫ t
t
r–(s) ds and ξ (t) :=

∫ ∞
ρ(t) r

–(s) ds. Then (.) is oscillatory.

The purpose of this paper is to solve question (P) and to improve Theorem .. By a
solution of equation (.) we mean a function x ∈ Cn–[Tx,∞), Tx ≥ t, which has the
property r(x(n–))α ∈ C[Tx,∞) and satisfies (.) on [Tx,∞). We consider only the solu-
tions satisfying sup{|x(t)| : t ≥ T} >  for all T ≥ Tx and tacitly assume that (.) possesses
such solutions. A solution of (.) is called oscillatory if it has arbitrarily large zeros on
[Tx,∞); otherwise, it is called nonoscillatory. Equation (.) is said to be oscillatory if all
its solutions are oscillatory.

2 Main results
In the sequel, all functional inequalities are assumed to hold eventually, that is, they are
satisfied for all t large enough. We use the notation δ(t) :=

∫ ∞
t r–/α(s) ds and (ρ ′(t))+ :=

max{,ρ ′(t)}.

Theorem . Assume (.) and let n ≥ , β ≥ α, and τ (t) < t for all t ≥ t. Further, assume
that the differential equation

y′(t) + q(t)
(

λτ
n–(t)

(n – )!r/α(τ (t))

)β

yβ/α(
τ (t)

)
=  (.)

is oscillatory for some constant λ ∈ (, ). If

lim sup
t→∞

∫ t

t

[(
Mδ

(
τ (s)

))β–αq(s)
(

λ

(n – )!
τ n–(s)

)β

δα(s)

–
αα+

(α + )α+


δ(s)r/α(s)

]
ds = ∞ (.)

holds for some constant λ ∈ (, ) and for all constants M > , then every solution of (.)
is oscillatory or tends to zero as t → ∞.
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Proof Assume that (.) has a nonoscillatory solution x.Without loss of generality, wemay
assume that x is eventually positive. Moreover, suppose that limt→∞ x(t) �= . It follows
from (.) that there exist two possible cases:
() x(t) > , x(n–)(t) > , x(n)(t) < , (r(x(n–))α)′(t) < ;
() x(t) > , x(n–)(t) > , x(n–)(t) < , (r(x(n–))α)′(t) < 

for t ≥ t, where t ≥ t is large enough.
Assume that case () holds. From [, Lemma .], we have

x(t)≥ λtn–

(n – )!r/α(t)
(
r/αx(n–)

)
(t) (.)

for every λ ∈ (, ) and for all sufficiently large t. Hence by (.), we see that y := r(x(n–))α

is a positive solution of the differential inequality

y′(t) + q(t)
(

λτ n–(t)
(n – )!r/α(τ (t))

)β

yβ/α(
τ (t)

) ≤ .

Using [, Theorem ], we see that equation (.) also has a positive solution, which is a
contradiction.
Assume that case () holds. Define the function w by

w(t) :=
r(t)(x(n–))α(t)
(x(n–))α(t)

, t ≥ t. (.)

Then w(t) <  for t ≥ t. Noting that r(x(n–))α is decreasing, we have

r/α(s)x(n–)(s) ≤ r/α(t)x(n–)(t), s ≥ t ≥ t.

Dividing the above inequality by r/α(s) and integrating the resulting inequality from t to
l, we obtain

x(n–)(l)≤ x(n–)(t) + r/α(t)x(n–)(t)
∫ l

t

ds
r/α(s)

.

Letting l → ∞, we get

x(n–)(t) ≥ –r/α(t)x(n–)(t)δ(t), (.)

which yields

–
r/α(t)x(n–)(t)

x(n–)(t)
δ(t) ≤ .

Thus, by (.), we see that

–w(t)δα(t)≤ . (.)

Differentiating (.), we have

w′(t) =
(r(x(n–))α)′(t)
(x(n–))α(t)

– α
r(t)(x(n–))α+(t)
(x(n–))α+(t)

.
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It follows from (.) and (.) that

w′(t) = –q(t)
xβ (τ (t))

(x(n–))α(t)
– α

w(α+)/α(t)
r/α(t)

. (.)

By virtue of (.), we have

(
x(n–)

δ

)′
(t) ≥ . (.)

On the other hand, by [, Lemma .], we get

x(t)≥ λ

(n – )!
tn–x(n–)(t) (.)

for every λ ∈ (, ) and for all sufficiently large t. Then from (.), (.), and (.), there
exists a constantM >  such that

w′(t) = –q(t)
xβ (τ (t))

(x(n–)(τ (t)))β
(
x(n–)

(
τ (t)

))β–α (x(n–)(τ (t)))α

(x(n–)(t))α
– α

w(α+)/α(t)
r/α(t)

≤ –
(
Mδ

(
τ (t)

))β–αq(t)
(

λ

(n – )!
τ n–(t)

)β

– α
w(α+)/α(t)
r/α(t)

. (.)

Multiplying (.) by δα(t) and integrating the resulting inequality from t to t, we have

δα(t)w(t) – δα(t)w(t) + α

∫ t

t
r–/α(s)δα–(s)w(s) ds

+
∫ t

t

(
Mδ

(
τ (s)

))β–αq(s)
(

λ

(n – )!
τ n–(s)

)β

δα(s) ds

+ α

∫ t

t

w(α+)/α(s)
r/α(s)

δα(s) ds≤ .

Set B := r–/α(s)δα–(s), A := δα(s)/r/α(s), and v := –w(s). Using (.) and the inequality

Av(α+)/α – Bv ≥ –
αα

(α + )α+
Bα+

Aα
, A > , (.)

we have

∫ t

t

[(
Mδ

(
τ (s)

))β–αq(s)
(

λ

(n – )!
τ n–(s)

)β

δα(s)

–
αα+

(α + )α+


δ(s)r/α(s)

]
ds ≤ δα(t)w(t) + ,

which contradicts (.). This completes the proof. �

Applying the result of [] to equation (.), we have the following result due to Theo-
rem ..
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Corollary . Assume (.) and let n≥ , β > α, τ (t) < t, and τ ′(t) >  for all t ≥ t.More-
over, assume that there exists a continuously differentiable function ϕ such that

ϕ′(t) >  and lim
t→∞ϕ(t) = ∞, (.)

lim sup
t→∞

ϕ′(τ (t))τ ′(t)
ϕ′(t)

<
α

β
, (.)

and

lim inf
t→∞

q(t)( τn–(t)
r/α (τ (t)) )

βe–ϕ(t)

ϕ′(t)
> . (.)

If (.) holds for some constant λ ∈ (, ) and for all constants M > , then every solution
of (.) is oscillatory or tends to zero as t → ∞.

In the following, we establish some results for (.) when n ≥  is even.

Theorem . Assume (.) and let n ≥  be even, β ≥ α, τ ′(t) > , and τ (t) ≤ t for all
t ≥ t. Further, assume that there exists a function ρ ∈ C([t,∞), (,∞)) such that

lim sup
t→∞

∫ t

t

[
Kβ–αq(s)ρ(s) –


(α + )α+

((n – )!)αr(s)((ρ ′(s))+)α+

(θτ ′(s)τ n–(s)ρ(s))α

]
ds = ∞ (.)

holds for all constants θ ∈ (, ) and K > . If (.) holds for some constant λ ∈ (, ) and
for all constants M > , then every solution of (.) is oscillatory or tends to zero as t → ∞.

Proof Assume that (.) has a nonoscillatory solution x. Without loss of generality, we
may assume that x is eventually positive. Moreover, suppose that limt→∞ x(t) �= . It fol-
lows from (.) that there exist two possible cases () and () (as those of the proof of
Theorem .).
Assume that case () holds. From [, Lemma .], we see that x′(t) >  for t ≥ t. Define

the function u by

u(t) := ρ(t)
r(t)(x(n–))α(t)
xα(τ (t)/)

, t ≥ t. (.)

Then u(t) >  for t ≥ t and

u′(t) =
ρ ′(t)
ρ(t)

u(t) + ρ(t)
(r(x(n–))α)′(t)
xα(τ (t)/)

– α
ρ(t)τ ′(t)


r(t)(x(n–))α(t)x′(τ (t)/)

xα+(τ (t)/)
. (.)

From [, Lemma .], there exist a t ≥ t and a constant θ with  < θ <  such that

x′(τ (t)/) ≥ θ

(n – )!
τ n–(t)x(n–)(t) (.)

for all t ≥ t. It follows from (.), (.), (.), and (.) that

u′(t)≤ ρ ′(t)
ρ(t)

u(t) – q(t)ρ(t)
xβ (τ (t))
xα(τ (t)/)

–
ατ ′(t)


θ

(n – )!
τ n–(t)

u(α+)/α(t)
(ρ(t)r(t))/α

. (.)
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Using x′ >  and (.), we get

u′(t) ≤ (ρ ′(t))+
ρ(t)

u(t) –Kβ–αq(t)ρ(t)

–
ατ ′(t)


θ

(n – )!
τ n–(t)

u(α+)/α(t)
(ρ(t)r(t))/α

(.)

for some constant K > . Set

A :=
ατ ′(t)


θ

(n – )!
τ n–(t)

(ρ(t)r(t))/α
, B :=

(ρ ′(t))+
ρ(t)

, and v := u(t).

Using inequality (.), we obtain

(ρ ′(t))+
ρ(t)

u(t) –
ατ ′(t)


θ

(n – )!
τ n–(t)

u(α+)/α(t)
(ρ(t)r(t))/α

≤ 
(α + )α+

((n – )!)αr(t)((ρ ′(t))+)α+

(θτ ′(t)τ n–(t)ρ(t))α
.

Substituting the last inequality into (.), we get

u′(t)≤ –Kβ–αq(t)ρ(t) +


(α + )α+
((n – )!)αr(t)((ρ ′(t))+)α+

(θτ ′(t)τ n–(t)ρ(t))α
. (.)

Integrating (.) from t to t, we have

∫ t

t

[
Kβ–αq(s)ρ(s) –


(α + )α+

((n – )!)αr(s)((ρ ′(s))+)α+

(θτ ′(s)τ n–(s)ρ(s))α

]
ds ≤ u(t),

which contradicts (.). Assume that case () holds. Proceeding as in the proof of Theo-
rem ., we can obtain a contradiction to (.). This completes the proof. �

Next we establish a result for (.) when n = .

Theorem . Assume (.) and let n = , β ≥ α, τ ′(t) > , and τ (t) ≤ t for t ≥ t. Further,
assume that there exists a function ρ ∈ C([t,∞), (,∞)) such that

lim sup
t→∞

∫ t

t

[
Kβ–αq(s)ρ(s) –


(α + )α+

r(s)((ρ ′(s))+)α+

(τ ′(s)ρ(s))α

]
ds = ∞ (.)

for all constants K > . If

lim sup
t→∞

∫ t

t

[(
Mδ

(
τ (s)

))β–αq(s)δα(s) –
αα+

(α + )α+


δ(s)r/α(s)

]
ds = ∞ (.)

holds for all constants M > , then (.) is oscillatory.

Proof Assume that (.) has a nonoscillatory solution x.Without loss of generality, wemay
assume that x is eventually positive. It follows from (.) that there exist two possible cases

http://www.advancesindifferenceequations.com/content/2013/1/54
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() and () with n =  (as those of the proof of Theorem .). Assume that case () holds.
Define

u(t) := ρ(t)
r(t)(x′(t))α

xα(τ (t))
, t ≥ t.

The rest of the proof is similar to that of Theorem ., and so is omitted. Assume that case
() holds. Similar as in the proof of Theorem ., we can obtain a contradiction to (.).
This completes the proof. �

Next we establish some oscillation criteria for (.) when n ≥  is even and τ (t) > t for
all t ≥ t.

Theorem . Assume (.) and let n ≥  be even, β > α, and τ (t) > t for all t ≥ t. Further,
assume that there exists a function ρ ∈ C([t,∞), (,∞)) such that

lim sup
t→∞

∫ t

t

[
Kβ–αq(s)ρ(s) –


(α + )α+

((n – )!)αr(s)((ρ ′(s))+)α+

(θsn–ρ(s))α

]
ds = ∞ (.)

holds for all constants θ ∈ (, ) and K > . If

∫ ∞
q(t)δβ

(
τ (t)

)(
τ n–(t)

)β dt = ∞, (.)

then every solution of (.) is oscillatory or tends to zero as t → ∞.

Proof Assume that (.) has a nonoscillatory solution x. Without loss of generality, we
may assume that x is eventually positive. Moreover, suppose that limt→∞ x(t) �= . It fol-
lows from (.) that there exist two possible cases () and () (as those of the proof of
Theorem .).
Assume that case () holds. From [, Lemma .], we see that x′(t) >  for t ≥ t. Define

the function u by

u(t) := ρ(t)
r(t)(x(n–))α(t)

xα(t/)
, t ≥ t.

Then u(t) >  for t ≥ t and

u′(t) =
ρ ′(t)
ρ(t)

u(t) + ρ(t)
(r(x(n–))α)′(t)

xα(t/)
– α

ρ(t)


r(t)(x(n–))α(t)x′(t/)
xα+(t/)

.

From [, Lemma .], there exist a t ≥ t and a constant θ with  < θ <  such that

x′(t/)≥ θ

(n – )!
tn–x(n–)(t)

for all t ≥ t. Thus

u′(t)≤ ρ ′(t)
ρ(t)

u(t) – q(t)ρ(t)
xβ(τ (t))
xα(t/)

–
α


θ

(n – )!
tn–

u(α+)/α(t)
(ρ(t)r(t))/α

.
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Similar as in the proof of Theorem ., we can get a contradiction to (.). Assume that
case () holds. We have (.) and (.) for every λ ∈ (, ) and for all sufficiently large t.
Thus, we get by (.), (.), and (.) that

(
r
(
x(n–)

)α)′(t) – q(t)
(

λ

(n – )!
τ n–(t)δ

(
τ (t)

))β(
r/αx(n–)

)β(
τ (t)

) ≤ .

Let u := r(x(n–))α . Then y := –u >  is a solution of the advanced inequality

y′(t) – q(t)
(

λ

(n – )!
τ n–(t)δ

(
τ (t)

))β

yβ/α(
τ (t)

) ≥ .

It follows from [, Lemma .] that the corresponding advanced differential equation

y′(t) – q(t)
(

λ

(n – )!
τ n–(t)δ

(
τ (t)

))β

yβ/α(
τ (t)

)
= 

has an eventually positive solution. Using condition (.) and [, Theorem ], one can
obtain a contradiction. This completes the proof. �

Finally, we establish a result for (.) when n = .

Theorem . Assume (.) and let n = , β > α, and τ (t) > t for t ≥ t. Further, assume
that there exists a function ρ ∈ C([t,∞), (,∞)) such that

lim sup
t→∞

∫ t

t

[
Kβ–αq(s)ρ(s) –


(α + )α+

r(s)((ρ ′(s))+)α+

ρα(s)

]
ds = ∞ (.)

for all constants K > . If

∫ ∞
q(t)δβ

(
τ (t)

)
dt = ∞, (.)

then (.) is oscillatory.

Proof Assume that (.) has a nonoscillatory solution x.Without loss of generality, wemay
assume that x is eventually positive. It follows from (.) that there exist two possible cases
() and () with n =  (as those of the proof of Theorem .). Assume that case () holds.
Define

u(t) := ρ(t)
r(t)(x′(t))α

xα(t)
, t ≥ t.

The rest of the proof is similar to that of Theorem ., and so is omitted. Assume that case
() holds. Similar as in the proof of Theorem ., we can obtain a contradiction to (.).
This completes the proof. �

3 Examples and discussions
In the following, we illustrate possible applications with two examples.
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Example . For t ≥ , consider the second-order delay differential equation

(
etx′(t)

)′ + et/x
(
t


)
= . (.)

Let α = , β = , and ρ(t) = . Note that δ(t) = e–t . Using Theorem ., equation (.) is
oscillatory. It is not difficult to see that Theorem . fails to apply due to condition (.).

Example . For t ≥ , consider the second-order advanced differential equation

(
etx′(t)

)′ +
et

t
x(t) = . (.)

Let α = , β = , and ρ(t) = . Note that δ(t) = e–t . Using Theorem ., equation (.) is
oscillatory.

In this paper, we suggested some new results on the oscillation and asymptotic behavior
of differential equation (.). Theorem . can be applied in the odd-order and even-order
equations.
We stress that the study of equation (.) in the case (.) brings additional difficulties.

Since the sign of x(n–) is not known, our criteria include a pair of assumptions; see, e.g.,
(.) and (.). We utilized two different methods (Riccati substitution and comparison
method) to deal with the cases τ (t)≤ t and τ (t) > t.
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