Schatten et al. Reproductive Biology and Endocrinology 2014, 12:111

http://www.rbej.com/content/12/1/111 =) £ 7} = REPRODUCTIVE BIOLOGY
—

J A—J —#— AND ENDOCRINOLOGY

REVIEW Open Access

The impact of mitochondrial function/dysfunction
on IVF and new treatment possibilities for
infertility

Heide Schatten'”, Qing-Yuan Sun” and Randall Prather®”

Abstract

Mitochondria play vital roles in oocyte functions and they are critical indicators of oocyte quality which is important
for fertilization and development into viable offspring. Quality-compromised oocytes are correlated with infertility,
developmental disorders, reduced blastocyst cell number and embryo loss in which mitochondrial dysfunctions play
a significant role. Increasingly, women affected by metabolic disorders such as diabetes or obesity and oocyte aging
are seeking treatment in IVF clinics to overcome the effects of adverse metabolic conditions on mitochondrial
functions and new treatments have become available to restore oocyte quality. The past decade has seen enormous
advances in potential therapies to restore oocyte quality and includes dietary components and transfer of mitochondria

compromised oocyte quality.

supplementation, Infertility treatment

from cells with mitochondrial integrity into mitochondria-impaired oocytes. New technologies have opened up new
possibilities for therapeutic advances which will increase the success rates for IVF of oocytes from women with
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Background

Mitochondria play vital roles in oocyte functions and they
are critical indicators of oocyte quality. Among the major
mitochondrial functions is the production of adenosine
triphosphate (ATP) to provide energy, but unlike in somatic
cells, ATP in most mammalian oocytes is mainly generated
through the glycolytic and Pentose Phosphate Pathway
(PPP) rather than the oxidative phosphorylation (OXPHOS)
pathway [1,2] used by most differentiated somatic cells.
Correlated with these metabolic differences are significant
structural differences; since the embryo primarily uses
glycolysis and PPP, the mitochondria are round and contain
few cristae, while mitochondria using the OXPHOS
pathway display elongated shapes and contain an elaborate
system of cristae that distinguishes the inner mitochondrial
membrane. Changes in mitochondrial structure from the
round (immature) phenotype to the elongated (mature,
differentiated) phenotype takes place during embryogenesis
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when cells differentiate and mitochondrial metabolism
changes from primarily glycolysis to OXPHOS.

Compared to our knowledge of mitochondria in som-
atic cells, relatively little is known about mitochondria in
oocytes and in the preimplantation embryo but it is well
known that mitochondrial dysfunction in the oocyte and
embryo play significant roles in infertility and in devel-
opmental abnormalities [3-7].

Fertility disorders have become a growing problem
worldwide [8,9], and mitochondrial dysfunction associated
with infertility have clearly been shown in women affected
by diseases or metabolic disorders such as diabetes and
obesity [3,10-12] as well as changes in metabolism result-
ing from oocyte aging [8,11-17]. Other mitochondrial
dysfunctions are still unexplained but have resulted in an
increased number of women requiring in vitro fertilization
(IVF) or other assisted reproductive technologies (ARTs).
Currently, one percent of all babies in the Western world
are already being produced through ART and the numbers
are increasing reviewed in [8,9,18,19].

The effects of mitochondrial dysfunctions as well as
sub-optimal mitochondrial functions are correlated with
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meiotic spindle abnormalities. As will be addressed in
more detail below, mitochondrial functions are important
for the formation of meiotic spindles and for maintenance
of the MII spindle before fertilization. Insufficient ATP
generation will result in aneuploidy, a condition in which
chromosomal segregation errors are frequently encoun-
tered. In human, oocyte chromosomal segregation is
error-prone and these errors have been estimated to be
about 15-20% [20] and 5% of all pregnancies are aneu-
ploid [21]; reviewed in [19]. The frequency of aneuploidy
increases significantly in oocytes from obese or diabetic fe-
males [3,10-12] and in aging oocytes [8,11,12,14,15], as
will be discussed in section 2. While cytoplasmic transfer
from healthy donor oocytes with fully functional mito-
chondria has been successfully applied to overcome mito-
chondrial dysfunctions in quality-compromised oocytes
[6,8,11,12,14,15,22,23] the procedures raised concerns
including ethical concerns, but new studies clarified the
potential risks; such as introducing heteroplasmy or
mitochondrial genetic disease [24]; reviewed in 6. These
techniques have resulted in new possibilities to overcome
mitochondrial dysfunction in quality-compromised oo-
cytes [25-31]. The present review will address: 1) Mito-
chondrial structure, dynamics, characteristics, and their
functions in oocyte maturation, fertilization and embryo
development; 2) Mitochondrial dysfunction in quality-
compromised oocytes; and 3) Possibilities to overcome
mitochondrial dysfunctions in oocytes to improve IVF
success rates.

Section 1: mitochondrial structure, dynamics,
characteristics and their functions in oocyte
maturation, fertilization, and embryo
development
Based on the significant need to increase success rates in
IVF clinics new strategies are in demand to overcome
mitochondrial dysfunctions, but before therapeutic inter-
ventions can be applied the metabolic activities and
dynamics of mitochondria in unaffected oocytes and em-
bryos need to be understood more fully. Many aspects of
mitochondrial function and dysfunction are still un-
explored in oocytes and preimplantation embryos and
many questions remain to be answered. This section will
address our current understanding of mitochondrial dy-
namics and highlight the aspects that still need clarification.
Mitochondria are multifunctional organelles with critical
functions in cellular energy production, calcium homeo-
stasis [32], cell signaling, apoptosis [33] and several other
cellular processes [34]; reviewed in [35,36]. Mitochondria
dynamics and motility are correlated with mitochondrial
functions and mitochondria have an enormous ability to
modulate their functions, dynamic behavior, and meta-
bolic activities, depending on different environmental
conditions. Most studies on mitochondrial metabolism,
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dynamics, biochemistry, molecular composition and
related functions have been performed in somatic cells in
which mitochondrial dysfunctions have been correlated
with specific structural and molecular abnormalities asso-
ciated with diseases such as neurological disorders, heart
disease, diabetes, and cancer; reviewed in [35,36].

Mitochondria are semiautonomous organelles that con-
tain their own genome of ca. 16.6 kb circular mitochon-
drial DNA (mtDNA), encoding for 13 essential protein
subunits of complexes I, III, IV, and V of the respiratory
chain of the mitochondrial OXPHOS complexes as well as
22 tRNAs used in mitochondrial protein synthesis and 2
rRNAs (12 s and 16 s) that are necessary for the transla-
tion of mitochondrial subunits [37]. A functionally close
and important relationship exists between the nuclear
genome and the mitochondrial genome with about 1,500
mitochondrial-related genes that are critical for mitochon-
drial function residing in the nuclear genome [38-40].
Transcripts for most of the mitochondrial polypeptides
are translated in the cytoplasm and imported into the
mitochondria. Examples include the mitochondrial tran-
scription factor A (TFAM) [41,42] that is required for
mtDNA replication; and transcription of TFAM is corre-
lated with transcription of catalytic DNA polymerase
gamma (POLG) and accessory POLYG2 subunits [43].

In addition to mitochondrial activity being dependent on
overall mitochondrial dynamics and motility, mitochondrial
activities depend on several specific mitochondrial features
and characteristics that are important for cell cycle-specific
functions and include the mitochondrial transition pore
(mPT), membrane potential, localization and distribution
patterns, and adequate amounts of mtDNA. Dysfunctions
involve increases in reactive oxygen species (ROS) and
calcium overload; reviewed in [3,8,11,12,14-16].

The mitochondrial permeability transition pore (mPT) is
a nonselective and high-conductance channel composed of
ANT, the voltage-dependent anion channel (VDAC), and
cyclophilin-D [44]. The mPTP is localized to the inner
membrane and an increase of mitochondrial inner mem-
brane permeability to ions and solutes with molecular
masses up to about 1,500 Da leads to matrix swelling [45].
Changes in the mPTP are important for mitochondrial
maturation, as shown in differentiating cardiomyocytes [46].

Mitochondrial membrane potential (Ym) results from
mitochondrial activity, and is highly important for oocyte
quality; conversely lowly-polarized mitochondria in oo-
cytes result in abnormal embryos [47]. Several probes are
available to determine Wm and includes the mitochondrial
membrane potential indicator 5,5',6,6'-tetrachloro-1,1'3,3'-
tetraethylbenzamidazol-carboncyanine (JC-1) [11,48]. JC-1
is a cationic dye whose mitochondrial uptake is directly re-
lated to the level of ¥m. A greater concentration of JC-1
aggregate is correlated with greater mitochondrial uptake
resulting in a red fluorescent emission signal; while green
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fluorescence indicates the presence of JC-1 as monomer. A
higher red:green ratio indicates a more polarized, or more
negative and hyperpolarized mitochondrial inner mem-
brane. JC-1 has been used to measure mitochondrial matur-
ation and distinguish immature from mature mitochondria.

In somatic cells, mitochondria form a highly complex
dynamic network and they undergo fusion and fission to
accommodate the functional requirements of specific
cell types. In most cell types mitochondria are translo-
cated along microtubules to their functional destinations
[49] using the microtubule motor proteins dynein and
kinesin for effective intracellular translocations [50].
Mitochondrial locations can change depending on their
cell cycle-specific function. In some cases activity is re-
quired at specific localized areas in a cell. For example,
mitochondria become localized to the nuclear periphery
prior to nuclear envelope breakdown. This localization
of mitochondria indicates positive developmental poten-
tial while mitochondria dispersed in the cytoplasm at
the predicted time for nuclear envelope breakdown is
indicative of cells or embryos with less developmental
potential [49,51].

As mentioned in the introduction, in contrast to differ-
entiated cells, early embryo cells, like pluripotent stem
cells, contain mitochondria that display a round morph-
ology and only few cristae (Figure 1), generally referred to
as functionally immature mitochondria and are character-
istic of undifferentiated cells. While we do not yet have
complete and detailed knowledge about specific mitochon-
drial functions in embryonic cells we know that mitochon-
dria are important for oocyte maturation, fertilization, and
preimplantation development and may contribute ATP for
energy-consuming events such as nuclear envelope break-
down, and microtubule assembly and disassembly for
meiotic and mitotic spindle assembly.

Oocyte maturation: Mitochondria are critically import-
ant for oocyte maturation and they are reliable indica-
tors for oocyte quality achieved during the maturation
process. Mammalian oocytes are arrested at the germinal
vesicle (GV) stage in the ovary of the newborn which is
the diakinesis stage of prophase I. These arrested oocytes
remain at the GV stage until puberty, when follicle-
stimulating hormone (FSH) induces development of
small antral follicles into the pre-ovulatory stage. Oocyte

Page 3 of 11

maturation in the ovary continues with the resumption of
meiosis from prophase I (germinal vesicle stage; GV) and
the extrusion of the first polar body (PBI) followed by initi-
ation of meiosis II and oocyte arrest at the metaphase II
stage of second meiosis. The number of mitochondria var-
ies in different species but in most mammalian species
mitochondria are closely located around the MII spindle
[50,52]. This localization implies that they are important
for spindle formation and maintenance of spindle integrity.

Meiotic spindle formation begins in most mammals at
the center of the oocyte (reviewed in [53]) after nuclear
envelope breakdown of the germinal vesicle (GVBD). This
process of GVBD is triggered through stimulation of the
cumulus cells by luteinizing hormone (LH). Perinuclear
accumulation of mitochondria is a positive sign of oocyte
quality and allows accurate timing of GVBD (reviewed in
[53]). The formed spindle migrates to the oocyte cortex
and is anchored to the cortex by an actin filament cap
(reviewed in [53]).

Oocyte maturation is important for the establishment of
oocyte qualities that allow for optimal fertilization and em-
bryo development. During oocyte maturation, the oocyte
grows and undergoes remodeling on cellular and mole-
cular levels. This remodeling requires ATP likely supplied
by mitochondria; thereby allowing timely and accurate
cytoplasmic and nuclear maturation [54]. Mitochondria-
supplied ATP is also important for protein phospho-
rylation and dephosphorylation which are among the
regulatory events that play key roles in oocyte maturation,
and include centrosome and microtubule dynamics for the
formation of the meiotic spindles during meiosis I (MI)
and II (MII) [18,19,53,55-57]. Formation of the MI and
MII spindle is a critical process to allow accurate chromo-
some segregation and the two successive asymmetric cell
divisions that result in small polar bodies and a large polar-
ized oocyte. The cytoskeleton plays important roles in this
cellular and molecular remodeling, and it is essential for
accurate redistribution of mitochondria throughout the
maturation process [53,54,56,58-61].

The oocyte arrested at the MII stage is the final prod-
uct of oocyte maturation. On average, the mature mam-
malian MII oocyte contains approximately 100,000 to
200,000 mtDNA copies [62] and amounts to almost
300,000 in pig oocytes [63]. The number of mtDNA in

Zhong et al. [4].

Figure 1 TEM of mitochondria. TEM of round mitochondria without cristae in 2-cell stage porcine oocyte at 48 h of in vitro fertilization. From
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an oocyte is positively correlated with fertilization- and
developmental- competence. Other indicators for posi-
tive developmental potential are the distribution of mito-
chondria surrounding the MII spindle in most mammals
and positive staining with Brilliant Cresyl Blue (BCB).
The BCB dye can be broken down by glucose-6-
phosphate dehydrogenase (G6PD) and can thus be used
as an indicator of G6PD activity. BCB has been used re-
liably to determine oocyte quality [64]. G6PD is synthe-
sized and accumulated during the oocyte growth phase;
it is a rate limiting enzyme needed for NADPH produc-
tion through the PPP. The different levels of BCB indi-
cate variations in oocyte quality as estimated by G6PD.
Oocytes with insufficient G6PD to reduce the dye, stain
blue and are less likely to be developmentally competent,
while oocytes not staining blue contain G6PD and re-
duce the dye to a colorless solution, indicating that these
oocytes may be more developmentally competent. Other
indicators for oocyte quality have also been used and
have been reviewed in [65,66].

Functional motor proteins and protein kinases that are
needed for meiotic spindle assembly and chromosome
alignment require ATP [16], and insufficient ATP produc-
tion is associated with spindle abnormalities. Both meiotic
divisions are error-prone in humans and chromosomal
aneuploidies have been reported for the first and for the
second meiosis [18,19,67-70]. Aberrant functions of motor
proteins and kinetochore-related kinases may contribute
to chromosomal aneuploidies in females with quality-
compromised oocytes [71]. Abnormalities in polo-like
kinase (PIk) functions also have been implicated in aneu-
ploidy. Since ATP is required for the function of protein
kinases, low kinase activity may result in mitochondrial
dysfunction [8,72,73].

Fertilization: When the MII oocyte is ovulated it enters
the oviduct where fertilization occurs. Fertilization initi-
ates completion of meiosis II and is marked by extrusion
of the second polar body (PBII) to achieve the haploid
maternal contribution to the oocyte.

Mitochondria are maternally inherited in mammalian
embryos, and the MII oocyte contains all mitochondria
for subsequent development to the blastocyst stage [74].
The sperm’s mitochondria are destroyed during the
fertilization process [75,76] and the oocyte’s immature
mitochondria are distributed equally to the dividing
daughter cells during first and subsequent cell divisions.
Unequal distribution leads to disproportional patterns of
mitochondrial inheritance [77] in 2- to 4-cell stage hu-
man embryos resulting in cell lysis of the blastomere
that is deficient in mitochondria. Loss of cells from the
developing embryo may have negative consequences for
embryo implantation.

Preimplantation embryo development: Remodeling of
mitochondrial features is important for differentiation
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when increased energy is needed for embryo development.
During preimplantation embryo development several
changes take place in mitochondrial architecture as they
transform from a simple spherical structure to begin
displaying more complex morphologies, including well-
developed cristae, a denser matrix, and an elongated or
branched appearance. This more complex change in
morphology is correlated with a bioenergetic transition
from mainly glycolytic to aerobic OXPHOS metabolism.
This transition includes an increase in the respiratory
chain complex density and ATP production. Several pro-
teins drive the mitochondrial differentiation process which
have been determined to some extent [1,2] but many
remain undetermined. As cellular differentiation occurs
mitochondrial differences are especially apparent during
blastocoel formation when cells are differentiated into
trophectoderm (TE) and inner cell mass (ICM) cells
[1,2,78,79]. Mitochondrial elongation and increased cristae
formation is first observed in TE cells during their differ-
entiation into an epithelial layer [49,51,78] while ICM cells
retain spherical mitochondria that contain only few or no
cristae. The spherical shape in ICM cells is also character-
istic for pluripotent stem cells and many cancer cell types.

Many of the studies on maturation, fertilization and
embryo development have been performed in animal
models such as the mouse, rabbit, bovine, and porcine
systems and fewer studies are available for human;
although this area of research is progressing more
rapidly now because of the need for higher success rates
in IVF clinics.

Section 2: mitochondrial dysfunction in quality-
compromised oocytes

As mentioned in section 1, oocyte quality is important for
fertilization and development into viable offspring. Quality-
compromised oocytes are correlated with infertility, devel-
opmental disorders, reduced blastocyst cell number and
embryo loss, but the mechanisms underlying these effects
are not well understood. Oocyte quality is achieved during
the maturation process as addressed in section 1. Matur-
ation defects can have several causes and many have been
associated with mitochondrial dysfunction [18,19] due to
insufficient ATP, calcium homeostasis, hormonal effects,
and several others.

Several metabolic changes or disorders such as obesity,
diabetes, and aging among others, play a role in reduced
oocyte quality. Metabolic disorders not only affect oo-
cytes in the adult female but they also affect all oocytes
produced in the developing fetus during pregnancy of
the mother, as the adverse intrauterine environment dir-
ectly affects oogenesis in the fetus and the embryo’s
primordial germ cells from which the next generation
develops [80].
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As mentioned in section 1 sufficient oocyte maturation,
both nuclear and cytoplasmic, is important to acquire
fertilization-competency (reviewed in [18]. Mitochondria
are essential for cytoplasmic maturation to contribute
ATP (reviewed in [81]) which is needed for critical cyto-
plasmic and cellular functions [82]. For effective cytoplas-
mic maturation a minimum amount of mitochondrial
DNA (mtDNA) copy number is important; this has been
demonstrated for mouse oocytes [83], bovine oocytes [84],
porcine oocytes [64] and human oocytes [62]. While the
copy numbers in mouse, bovine and porcine oocytes does
not vary significantly between individual oocytes of the
same species, interestingly, in the human, there is signifi-
cant variability ranging between 20,000 and 598,000, with
a mean of 193,000 [62], mean values of 256,000 [85],
314,000 [86] and mean values of 795,000 [87] copies. This
significant range in human oocytes may reflect the range
of different IVF patients analyzed, and it may be indicative
of the wide range of oocyte quality in humans that may be
correlated with fertility and decreased fertility/infertility
problems [88]. A threshold level of mtDNA is necessary to
support fertilization and embryo development [64,83]. As
all mitochondria are maternally inherited (reviewed in
[18,19]) the threshold number of mitochondria in the
metaphase II (MII) oocyte is critical. The regulation of oo-
cyte mDNA copy number has been studied in detail by
Mao et al. [63]) and it has been shown that follicular fluid,
epidermal growth factor (EGF) and neuroregulin 1 play a
significant role during in vitro maturation and subsequent
embryo development in pigs.

Oocyte aging is strongly associated with mitochondrial
dysfunction [6,8,13,17] for which underlying causes have
been explored and include: an increase in mtDNA dam-
age with changes in copy number and mutational load;
changes in mitochondrial gene expression; a decrease in
mitochondrial membrane potential; changes in mito-
chondrial dynamics; increased density of mitochondrial
matrix; frequency of ruptured mitochondrial mem-
branes; a decrease in A¢,,, a decrease in ATP synthesis
and metabolic reactions in the electron transport chain;
and increased production of reactive oxygen species
(ROS). The excessive reactive oxygen species (ROS) gen-
eration is closely associated with the oxidative energy
production or calcium overload, which may trigger
opening of the transition pore and subsequent apoptosis.

ROS is generated during the production of ATP and it
causes oxidative damage to mitochondrial DNA if not
detoxified, which results in mutations and deletions of
mtDNA. As repair enzymes for mtDNA are minimal,
mitochondria are especially sensitive to oxidative stress-
induced damage [89]. The mutation rate in mitochondrial
DNA is 10- to 20-fold higher compared with nuclear
DNA, and it is likely related to the limited DNA repair
capacity [90,91]. A number of different mitochondrial
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deletions and mutations have been reported and the most
common deletion has been identified in the human mito-
chondrial genome as a 4,977 bp deletion within two 13 bp
repeats, beginning at positions 8,470 and ending at 13,459
[92]. The accumulation of the 4,977 bp deletion within
mtDNA is considered a marker for aging [85,93-95] and is
related to lower energy production. Accumulations of mu-
tational loads to the mtDNA adversely affects mitochon-
drial functions and will negatively impact development of
the preimplantation embryo. In addition, oocyte mito-
chondria with mutations may pass these mutations to the
offspring who will inherit the susceptibility to metabolic
diseases [96,97].

Chromosomal aneuploidies are well known effects of
oocyte aging but the time-dependent detailed cascades
and specific mechanisms leading to loss of spindle integ-
rity and aneuploidy are still being explored. A detailed
cause and effect mechanism is not known. However, sev-
eral aspects are clearly observed during the aging
process and include decreases in motor protein func-
tions as addressed above in section 1.

Diabetes and obesity are two of the major causes for
mitochondrial dysfunction [3,11,12,98-100] which has sig-
nificant implications for oocyte quality from women with
such metabolic disorders or diseases [3,10-12,100-102].
Other dysfunctions related to metabolic disorders are
probable but many dysfunctions remain unexplained.

Diabetes and obesity have become major concerns
worldwide and have now exceeded the undernourished
population with estimated numbers of 1.5 billion and 1
billion, respectively. Diabetes and obesity are both sig-
nificantly associated with infertility and have contributed
to the increase in patients seeking ART procedures in
IVF clinics. Many of the mitochondrial dysfunctions that
are known for aging oocytes are also seen in oocytes
from diabetic and obese females: these include a de-
crease in membrane potential, reduced blastocyst forma-
tion with imbalances in TE and ICM cell numbers
resulting in embryo loss, and several others; reviewed in
[3,11,12,100,103].

Section 3: possibilities to overcome mitochondrial
dysfunction in oocytes to improve IVF success
rates

One of the most challenging obstacles for achieving suc-
cessful in vitro fertilization (IVF) and embryo development
in IVF clinics is the poor quality of mitochondria in oo-
cytes of obese and diabetic women, of women at advanced
reproductive ages, and of women with various other meta-
bolic disorders. This limitation has stimulated a number
of different approaches to overcome the defects and in-
cludes cytoplasmic transfer which refers to the supple-
mentation of an oocyte with donor cytoplasm containing
healthy mitochondria (mitochondrial supplementation).
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While this approach had raised concerns as mentioned in
the introduction [26] cytoplasmic transfer has recently
been viewed more favorably as an optional therapy to
eliminate mitochondrial mutations, thereby allowing the
birth of mitochondrial mutation-free healthy children
[27-29]. However, there are risks to be taken into account.
For example, in ooplasmic transfer, of 13 pregnancies, two
fetuses were karyotypically 45, XO (Turner’s syndrome).
One of these fetuses aborted spontaneously and the other
pregnancy was terminated. This fact is recorded in a
FDA document (http://www.fda.gov/OHRMS/DOCKETS/
ac/02/briefing/3855B1_01.doc). While different policies
exist in different countries [104] and research is not sup-
ported by Federal funding agencies clinical applications
are possible. The option is available if parents agree to
the procedure. With these new considerations [105,106]
new approaches for cytoplasmic transfer into quality-
compromised oocytes are possible to overcome mitochon-
drial dysfunctions or deficiencies. Such procedures are
especially important considering that the demand for IVF
procedures has increased significantly in recent years. The
increase in demand is in part due to the worldwide in-
creases in obesity, diabetes and the trend to have children
later in life when oocytes have aged considerably and
display mitochondrial insufficiencies [8,9,12,88,107]. New
treatment options for quality-compromised oocytes are
needed to overcome insufficient mitochondrial functions.

Because many developmental disorders and diseases are
associated with dysfunctional mitochondria (such as
neurological diseases [108,109], diabetes [99,110] and ref-
erences therein, cancer [111], the immune system [112]
and aging [113], as well as other diseases and disorders
that affect a large percent of the population worldwide) re-
search on mitochondria has excelled in recent years. Since
mitochondria are versatile and can be manipulated experi-
mentally it is possible to develop new strategies for thera-
peutic intervention to restore mitochondrial functions
once we know the specific defects [36].
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In quality-compromised oocytes containing dysfunc-
tional mitochondria transfer of mitochondria-containing
cytoplasm from donated fresh oocytes has corrected the
mitochondrial lesions [6,26-29]. The benefits, but also
complexities, have been addressed and it was shown that
the source of the donor cytoplasm is a major factor in
successes or failures. Because of the close functional
dependency of mitochondria on the nuclear genome the
cell type used for donor transfer is of primary concern
and should be closely related to the recipient cell for
optimal coordination of mtDNA and nuclear DNA.
Ovarian or oocyte-differentiated cells have been shown
to yield the highest success rate in transferring donor
cytoplasm containing healthy mitochondria into quality-
compromised oocytes. Cells of oogonial derivation have
been studied in recent years in light of the search for oo-
gonial stem cells or stem-like cells [114-118] for which
unresolved controversies exist in the field [119]. However,
this research has benefitted the characterization of
oogonial-derived cells.

Germ line quality mitochondria are optimally available
from oocyte precursor cells and may be used preferably
to reduce possible compromised oxidative phosphoryl-
ation function that may be encountered as a result of
mitochondrial heteroplasmy (mixing of different mtDNA
genotypes) [64,120]. Heteroplasmy might be a problem
and may cause negative effects but it has also has been
shown in somatic cell nuclear transfer (SCNT) experi-
ments that heteroplasmy is tolerable to some extent
[121] (Figures 2 and 3). In women with 3% of mtDNA
heteroplasmy no negative effects are observed [122]
(Figure 4). The possibility of oocyte precursor cells has
been reported in both the mouse and human [123-129].
These cells might serve as excellent mitochondria do-
nors as they have differentiated to the oocyte lineage
without having resided for prolonged times in a post-
mitotic state and would fulfill the optimal conditions to
provide high-quality germ line autologous homoplasmic

Figure 2 TEM of mitochondria after SCNT. TEM of reconstructed (somatic nuclear transfer; SCNT) oocyte at 30 min after fusion. The donor cell
is still clearly separated from the enucleated oocyte (delineated by arrows) at this stage of SCNT. These cells contain somatic cell mitochondria
with an elongated shape and cristae that co-exist with round oocyte mitochondria for at least up to the blastocyst stages and represent
heteroplasmy in the developing pre-implantation embryo. From Zhong et al. [4].
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Figure 3 Fluorescence microscopy of mitochondria after SCNT.
Fluorescence microscopy of donor cell preloaded with CMXRos, 30 min
after fusion of donor cell into enucleated oocyte. Donor-derived
mitochondria locate near the donor nucleus and disperse into the
cytoplasm in developing embryos with heteroplasmy as observed up to
the blastocyst stages. From Zhong et al. [4].

mitochondrial DNA without containing mutations and
deletions [122].

Considering that numerous mitochondrial mutations,
deletions, and nucleotide variations are found in quality-
compromised oocytes and blastocysts [130] from women
of advanced ages and women with metabolic disorders,
such as obesity or diabetes new treatments to augment
the healthy mitochondrial population through cytoplas-
mic transfer from uncompromised cells would not only
benefit the mothers to overcome fertility problems but

Patient oocyte

Donor oocyte

O healthy

© impaired mitochondria

mitochondria

4

Qocyte cytoplasm
(volume: 5-15%)

7

<@

Inject oocyte cytoplasm
with healthy mitochondria

Patient oocyte containing
donor cytoplasm with
healthy mitochondria

Figure 4 Schematic diagram of mitochondrial supplementation.
Ooplasmic mitochondrial transfer (schematic diagram). A patient’s
oocyte containing inferior mitochondria is injected with donor into
the patient’s oocyte to supplement the mitochondrial population
required for normal development. From Yabuuchi et al. [122].
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also children of affected mothers who otherwise may in-
herit mitochondria with deficiencies and suboptimal
function. In many cases a low amount of mitochondrial
transfer is sufficient to restore optimal mitochondria
function and prevent inheritance of suboptimal mito-
chondria to the next generation.

Other sources for mitochondrial transfer may include
stem cell cytoplasm, as stem cell mitochondria display
many of the characteristics that are known for embry-
onic immature mitochondria (reviewed in [1,7] including
the round shapes, glycolysis for energy generation, and
amenability to differentiation under different environ-
mental conditions.

Aside from cytoplasmic transfer dietary aspects (such as
dietary supplementation with CoQ10 that may increase
mitochondrial activity) have also been considered to im-
prove mitochondria functions in quality-compromised oo-
cytes [131]. CoQ10 aids in the transport of electrons in the
mitochondrial respiratory chain and is therefore a key en-
zyme in energy production. Other therapies are being con-
sidered and a variety of approaches have been proposed to
develop strategies for mitochondrial pharmacology leading
to the identification of druggable mitochondrial targets
[36].

Different from approaches to supplement mitochon-
dria through cytoplasmic transfer are the approaches
that are currently being discussed to eliminate inherited
mtDNA mutations. To eliminate the transmission of
mtDNA mutations to the offspring two oocytes from
different females are needed and several approaches are
possible.

In one approach either the GV or the MII spindle and
associated chromosomes are removed from the patient’s
unfertilized egg containing the abnormal mitochondria
and transferred into an enucleated donor egg containing
healthy mitochondria. The donor egg now primarily
contains the donor’s mitochondrial DNA but the pa-
tient’s nuclear DNA although some of the patient’s mito-
chondrial DNA is transferred along with the nucleus.
This reconstituted egg now can be fertilized with the pa-
tient’s partner through the intracytoplasmic sperm injec-
tion (ICSI) procedure; thereby now containing the future
parents’ nuclear DNA but mitochondria from the donor.
The cleaving embryo with normal mitochondria and ma-
ternal and paternal genomes can then be transplanted
into the patient’s uterus. This approach has also been
characterized as “three-parent in vitro fertilization” but
in fact the nuclear genetic material is only contributed
by two parents. It is primarily used to prevent trans-
mission of inherited mitochondria disease. This ap-
proach has been discussed extensively during the past
year and resulted in approval by the Food and Drug
Administration (FDA) [106]. It had previously been
evaluated in 2012 by the UK Human Fertilization and
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Embryology Authority (HFEA) [104]. Details of this pro-
cedure are described in several recent papers including
[26,28-31,122,132,133].

In another approach the patient’s egg containing
abnormal mitochondria is fertilized with the partner’s
sperm and allowed to develop to the patient’s zygote
stage that still contains the abnormal mitochondria. The
patient’s pronuclei are then removed and transferred to
an enucleated donor egg containing healthy mitochon-
dria. The reconstructed zygote is then processed further
for transfer into the patient’s uterus.

In a more recent approach the recipient oocyte is enu-
cleated by removing the MII spindle; a donor oocyte is
fertilized and the second polar body is removed and then
transferred to the recipient oocyte [134], now containing
the donor oocyte’s nuclear DNA but minimal amounts
of mitochondria, as the polar body only contains a small
amount of mitochondria and mainly consists of one
chromosome set that is extruded naturally to restore the
haploid oocyte condition as detailed in section 1. The
second polar body contains the same amount of nuclear
DNA as the oocyte. The recipient oocyte with healthy
mitochondria now contains the nuclear DNA of the
donor and can then be used for IVF following regular
IVF procedures. Variations of these current procedures
are possible to eliminate transmission of mutant mtDNA
to children and will allow the generation of children
without inheriting mitochondrial diseases from affected
parents.

Other therapeutic approaches are actively being pur-
sued to improve mitochondrial dysfunction and include
approaches based on genome editing. For example,
specific elimination of mutant mitochondrial genomes in
patient-derived cells by mitoTALENSs have been reported
[135] in which mitochondria-targeted TALEN expres-
sion led to permanent reductions in deletion or point-
mutant mtDNA in patient-derived cells.

Perspectives and future directions

The past decade has seen enormous advances in potential
therapies for quality-compromised oocytes that will par-
ticularly benefit women with metabolic disorders such as
obesity, or diseases such as diabetes, or metabolic changes
associated with aging. Dietary components such as CoQ10
and especially transfer of mitochondria from cells with
mitochondrial integrity have opened new possibilities for
therapeutic advances which will increase the success rates
for oocytes of women with compromised oocyte quality.
Optimal conditions for such transfers include that mito-
chondrial supplementation should be obtained from the
patient’s own cells for optimal communication between
mtDNA and nuclear DNA to maintain homoplasmy in
offspring; using cells of ovarian or oocyte origin; and using
mitochondria of high-quality cells without the risk to
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transmit deletions or mutations to the offspring. Stem cell
mitochondria may be an optimal source for supplementa-
tion of quality-compromised oocytes.
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