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Abstract

Background: Bicuspid aortic valve (BAV) is the most common type of congenital heart disease with a population
prevalence of 1-2%. While BAV is known to be highly heritable, mutations in single genes (such as GATA5 and NOTCH1)
have been reported in few human BAV cases. Traditional gene sequencing methods are time and labor intensive, while
next-generation high throughput sequencing remains costly for large patient cohorts and requires extensive
bioinformatics processing. Here we describe an approach to targeted multi-gene sequencing with combinatorial
pooling of samples from BAV patients.

Methods: We studied a previously described cohort of 78 unrelated subjects with echocardiogram-identified BAV.
Subjects were identified as having isolated BAV or BAV associated with coarctation of aorta (BAV-CoA). BAV cusp
fusion morphology was defined as right-left cusp fusion, right non-coronary cusp fusion, or left non-coronary cusp
fusion. Samples were combined into 19 pools using a uniquely overlapping combinatorial design; a given mutation
could be attributed to a single individual on the basis of which pools contained the mutation. A custom gene capture
of 97 candidate genes was sequenced on the Illumina HiSeq 2000. Multistep bioinformatics processing was performed
for base calling, variant identification, and in-silico analysis of putative disease-causing variants.

Results: Targeted capture identified 42 rare, non-synonymous, exonic variants involving 35 of the 97 candidate genes.
Among these variants, in-silico analysis classified 33 of these variants as putative disease-causing changes. Sanger
sequencing confirmed thirty-one of these variants, found among 16 individuals. There were no significant differences
in variant burden among BAV fusion phenotypes or isolated BAV versus BAV-CoA. Pathway analysis suggests a role
for the WNT signaling pathway in human BAV.

Conclusion: We successfully developed a pooling and targeted capture strategy that enabled rapid and cost effective
next generation sequencing of target genes in a large patient cohort. This approach identified a large number of
putative disease-causing variants in a cohort of patients with BAV, including variants in 26 genes not previously
associated with human BAV. The data suggest that BAV heritability is complex and polygenic. Our pooling approach
saved over $39,350 compared to an unpooled, targeted capture sequencing strategy.
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Background
Congenital bicuspid aortic valve (BAV) is the most com-
mon type of cardiac malformation, with an estimated
prevalence of 1-2% in the general population [1]. BAV,
in which two of the three normal aortic cusps are fused
together, encompasses a wide spectrum of clinical phe-
notypes. The valve abnormality may be isolated in some
cases, whereas in others the aortic valve abnormality is
present in conjunction with other cardiac malformations
[2]. BAV may also be associated with varying degrees of
aortic valve stenosis and/or insufficiency as well as with
aortopathy. Among BAV patients, there is variability in
cusp fusion phenotypes. Right coronary and left coron-
ary (R-L) cusp fusion is more common than right coron-
ary and non-coronary (R-NC) cusp fusion. Moreover,
R-L cusp fusion is more often associated with add-
itional cardiac malformations, whereas R-NC cusp fu-
sion is more likely to be associated with aortic valve
dysfunction [3]. The etiologies of these associations are
unknown.
While multiple studies have demonstrated the high

heritability of BAV, the underlying genetic causes remain
poorly understood [4-7]. NOTCH1 and GATA5 are the
only genes that have been linked to bicuspid aortic valve
in humans, yet variants in these genes are present in
only a minority of individuals with BAV [8-14]. Mice
lacking Gata5 have partially penetrant BAV of the R-NC
subtype, but human studies have not yet demonstrated
a specific association between GATA5 variants and the
R-NC subtype of BAV. Animal models of R-L BAV dem-
onstrate excess fusion of the septal and parietal ridges of
the outflow tract, whereas R-NC BAVs result from fu-
sion of the septal ridge and posterior intercalated cush-
ions [15]. These studies suggest that these two cusp
fusion phenotypes may arise from distinct genetic per-
turbations in humans.
Despite tremendous advances in gene sequencing

technology, the genetic etiology of many common hu-
man conditions, including BAV, remains poorly under-
stood. Candidate gene studies have long been used to
detect variants in individual genes; such studies are easy
to perform but require selection of genes with a pro-
posed role in the disease process of interest. Genome-
wide association studies allow investigators to compare
multiple individuals with a given condition and identify
common variants in a non-candidate driven approach
[16]. However, because genome-wide association studies
are predicated upon the common disease-common vari-
ant hypothesis, this approach is not ideal for the study
of rare variants, particularly in complex conditions in
which rare variants at multiple loci may be needed to
produce a clinically recognizable phenotype [17,18].
Next-generation sequencing (NGS) provides an oppor-

tunity for rapid, high-throughput sequencing of entire
patient genomes and may overcome the limitation of
genome-wide association studies in exploring the role of
rare variants in complex diseases [19]. Whole genome
sequencing remains at this time a costly technology, thus
limiting its application to the sequencing of large co-
horts of patients. It also produces a vast amount of data
necessitating extensive bioinformatics processing. One
option to overcome this issue is the design of targeted
capture kits that allow for the rapid and accurate se-
quencing of only the genetic regions of interest. The two
most common approaches to this technique have dis-
tinct limitations. Sequencing of a targeted set of genes
can be done on individual samples, but this approach is
very costly in larger cohorts. Alternatively, sequencing can
be performed on pools of individual samples, wherein
each sample is labeled with a unique genetic “barcode”;
this approach is cost saving, but is quite labor intensive
[20]. Combinatorial pooling schemes, wherein individuals
are sampled in multiple pools, have been utilized to over-
come these pitfalls and still permit identification of the in-
dividual sample contributing a given rare variant [21,22].
Here, we present an approach using combinatorial

pooling and targeted multi-gene sequencing to study a
well-phenotyped cohort of individuals with BAV. We
hypothesize that rare variants will be identified amongst
a large proportion of the candidate genes, that multiple
rare variants will be found in individual probands, and that
such variants will segregate by cusp fusion phenotype.

Results
Identification of sequence variants
We studied a previously described cohort of 78 patients
with echocardiogram-identified BAV [8]. Using a targeted
capture approach, we sequenced 97 candidate genes se-
lected by reviewing the literature for genes relevant to
heart valve development.
The average depth of coverage for the targeted regions

was 268X. Greater than 50X coverage was obtained for
99.04% of the bases sequenced (range: 94.19-99.62), with
greater than 100X for 96.11% of bases covered. The per-
centage of sequencing on target was 71.81%.
Targeted capture identified 42 rare, non-synonymous,

exonic variants involving 35 of the candidate genes
(Additional file 1: Table S1). Among these variants,
in-silico analysis classified 33 of these 42 variants as puta-
tive disease-causing changes; Sanger sequencing did not
validate two of these 33 variants. The remaining 31
changes were identified in 16 individuals and involved 28
genes (Table 1). Each variant was identified in only one
proband. There were no significant differences in variant
burden among BAV fusion phenotypes or isolated BAV
versus BAV-CoA, with p = 0.78 and p = 0.77, respectively
(Additional file 2: Table S2). Only 2 of these variants
(rs72541816 at APC and rs116164480 at GATA5) were



Table 1 Rare, non-synonymous, exonic variants in BAV cohort predicted damaging by in-silico analysis, confirmed
by Sanger sequencing

Gene name Nucleotide change Amino acid change De novo SIFT PP2 EA EVS All EVS 1000G MAF dbSNP137 ID

APC c.C7862G p.S2621C yes 0.03 0.641 0.005 0.003 0.058 rs72541816

AXIN1 c.G2522A p.R841Q no 0.4 1 0.012 0.008 0.01 rs34015754

AXIN2 c.C2051T p.A684V no 0.01 0.95 0.002 0.001 0 rs138287857

FLT1 c.C3092G p.S1031C no 0 1 0 0 0 N/A

GATA4 c.G1310C p.G437A no 0 0.787 0 0 0 N/A

GATA5 c.T698C p.L233P yes 0.05 0.723 0.001 0.001 0.003 rs116164480

GLI1 c.G3142A p.D1048N no 0 1 0 0 0 N/A

JAG1 c.G2810A p.R937Q no 0.47 0.093 0.002 0.001 0.001 rs145895196

MCTP2 c.C1634T p.T545M unknown 0 1 0 0 0 N/A

MCTP2 c.C2539T p.L847F no 0 1 0.0002 0.0002 0 rs150149342

MSX1 c.A581G p.K194R no 0 0.878 0.0003 0.0002 0 rs149092063

NFATC1 c.C230T p.P77L no 0 0.972 0 0 0 rs143045693

NFATC1 c.G628A p.V210M no 0.04 1 0 0 0 rs62096875

NOS1 c.G1975A p.A659T no 0 1 0 0 0 N/A

NOTCH1 c.C6481T p.P2161S unknown 0.02 0.975 0.0002 0.0002 0.001 rs201518848

NOTCH2 c.G6363C p.K2121N no 0.09 0.964 0.0008 0.0005 0 rs144047610

NOTCH3 c.A509G p.H170R no 0.01 0.974 0.002 0.001 0.001 rs147373451

PAX6 c.G1225A p.G409R no 0 1 0 0 0 N/A

PIGF c.A370G p.T124A no 0.27 0.711 0.002 0.002 0.001 rs139098189

PPP3CA c.C334T p.R112C no 0 1 0 0 0 N/A

PTCH1 c.G3487A p.G1163S no 0.06 1 0.0006 0.0006 0.001 rs113663584

PTCH2 c.C3139T p.R1047W no 0 0.998 0 0 0 N/A

SLC35B2 c.A1105G p.I369V no 0.04 0.891 0 0.00008 0 N/A

SNAI3 c.C488T p.T163M no 0.02 0.752 0 0 0.001 rs202205064

SOX9 c.G817C p.V273L no 0 0.719 0 0 0 rs201477430

TBX5 c.C1115T p.S372L no 0.65 0.861 0.0003 0.0002 0.001 rs143068551

TBX5 c.G787A p.V263M no 0.41 0.995 0 0.004 0.006 rs147405081

VEGFB c.C286G p.Q96E no 0 0.596 0.002 0.002 0.002 rs111555072

VEGFC c.A140T p.E47V no 0.01 0.985 0.005 0.004 0 rs55728985

WNT4 c.C129A p.C43X no STOP STOP 0 0 0 N/A

ZNF236 c.C4628T p.P1543L no 0.03 0.943 0 0 0 N/A

PP2; Polyphen 2.
EA, European American.
EVS, Exome Variant Server.
1000G, 1000 Genomes.
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de novo changes not present in either parent of the
affected probands. These two variants were identified
in the same individual with a family history of coarc-
tation of the aorta. Of the 16 individuals in whom pu-
tative disease-causing variants were identified, two
had variants in genes previously known to be involved
in human BAV (NOTCH1, GATA5), one of whom we
previously described [8]. Four of these 16 individuals
had a family history of a left ventricular outflow tract
malformation.
Pathway analysis
Pathway analysis was performed using the Database for
Annotation, Visualization and Integrated Discovery
(DAVID). Pathway analysis was used to draw compari-
sons between the background of only those genes in-
cluded in the targeted capture and the subset of genes in
which rare, non-synonymous exonic variants predicted
damaging by in silico analysis were identified. The path-
way analysis revealed significant enrichment in genes
involved in the WNT signaling pathway (p = 0.035).
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Pooling design validation
All samples in the cohort underwent Sanger sequencing
of the coding regions of GATA5 as previously reported
by our group, used here as a test of the pooling design
as well as the sensitivity and specificity of the variant
calling algorithm. Four rare variants in GATA5 (each
present in 1/78 individuals) were discovered by Sanger
sequencing, of which three were identified by NGS [8].
All of the rare GATA5 variants identified by our NGS
pooling design were attributed to the correct individual
as confirmed by Sanger sequencing.
Sanger sequencing of GATA5 found a variant, p.Q3R,

in one individual that was not identified through the
pooling design [8]. No pool had this variant above our
cut-off threshold of 2.5% (four pools had allele frequen-
cies over 1% with a range of 1.06-1.36%). Coverage of
this base was good, with average read depth of 460X.

Discussion
This NGS design utilizing targeted sequencing of pooled
BAV patient samples identified 33 rare, non-synonymous
exonic variants predicted damaging by in silico analysis.
Traditional Sanger sequencing methods confirmed 31 of
these 33 changes (94%). Analysis of the GATA5 compari-
son dataset indicated that the pooling scheme allowed for
accurate subject identification. This investigation identified
rare variants in 26 genes not previously known to be
involved in human BAV; such variants are considered
hypothesis-generating and merit further testing in replica-
tion cohorts.
Animal models of BAV suggest a possible genotype-

phenotype correlation related to cusp fusion phenotypes.
However, our data does not support such a correlation
in regards to cusp fusion, nor was there a correlation for
isolated BAV versus BAV associated with coarctation of
the aorta. Sample size and low incidence of familial BAV
may limit our ability to detect such an association,
but other groups have had similar findings. Rare, non-
synonymous exonic variants in GATA5 have not been
shown to correlate with cusp fusion [8,13]. Investigations
of familial BAV in large cohorts have demonstrated that
cusp fusion morphologies were inherited interchange-
ably within families [23,24]. Taken together, these studies
suggest that differing BAV phenotypes may derive from
a common genetic pathway influenced by downstream
modifying elements. Thorough testing of genotype-
phenotype correlations would require larger cohorts
with significant representation of cusp fusion phenotypes,
associated congenital cardiac malformations, aortopathy,
and aortic valve insufficiency/stenosis.
Prior to this study, only GATA5 and NOTCH1 variants

had been associated with isolated human BAV. Our data
identified variants in 26 additional genes not previously
identified in human BAV patients. Interestingly, all of
these variants are reported in less than 1% of the Exome
Variant Server controls and half are absent in this control
population. Nonetheless, only 2 of the 31 putative disease-
causing changes confirmed by traditional sequencing
methods were de novo, in that they were not identified in
either parent of the affected proband. We speculate that
these 31 variants may be susceptibility alleles, with add-
itional factors (genetic or environmental) required for full
phenotype expression [25]. Our finding of multiple vari-
ants in the same proband further supports this hypothesis.
Among the 16 individuals in whom putative disease-
causing variants were identified, the mean variant burden
was 1.8 with a range of 1 to 5.
Pathway analysis provides an opportunity to ascribe

further meaning to the large number of candidate genes
that may be identified in high-throughput approaches
such as the one described here. Bioinformatics analysis
via DAVID identified significant enrichment of WNT
pathway genes including WNT4, PPP3CA, NFATC1, APC,
AXIN1 and AXIN 2. DAVID pathway analysis can com-
pare a subset of variants to any background of an investi-
gator’s choosing; by utilizing a background of only the
genes included in the targeted capture as opposed to the
whole genome, the pathway analysis is not biased by over-
representation of WNT pathway genes in the targeted
capture design. WNT pathway genes display variable ex-
pression at various stages in valvulogenesis and have also
been implicated in calcific valvular degeneration [26,27].
Coupling of NGS with pathway analysis allows for the de-
velopment of more targeted sequencing approaches for
subsequent studies. Further investigation into this and
similar BAV cohorts could include an enhanced focus on
the WNT signaling pathway. A more narrow scope of
investigation would then facilitate advanced functional in-
vestigations of identified variants.
Several methods are now available for combining mul-

tiple individuals into a single sequencing run. Sample-
specific indexing uses a short barcode sequence that is
unique to each individual in a pool. This barcode is
attached to the adapter sequence during library prepar-
ation. Commercially available kits now allow up to 96 indi-
viduals to be combined in a single run, with deconvolution
allowing identification of the individual. Some problems re-
main in identifying correctly which sequence reads belong
to the individual tagged, particularly if single (one end)
indexing is used. The pooling method used here does not
allow direct deconvolution, but it is not difficult to identify
the individual possessing the identified variant. However,
the pooling method offers the advantage of error mitiga-
tion through use of biological replicates, reducing the false
positive rate due to the high frequency of sequencing er-
rors in NGS [28]. Pooling will also overcome problems in-
herent in the indexing technique itself (including double
indexing) that lead to sequencing errors [29].



Table 2 Cardiac phenotype of study population

BAV BAV-CoA Overall

R-L 27(34.5%) 20(25.5%) 47(60%)

R-NC 22(28%) 7(9%) 30(38.5%)

L-NC 1(1%) 1(1%) 2(2.5%)

Overall 50(64%) 28(36%)

BAV, bicuspid aortic valve (isolated).
BAV-CoA, bicuspid aortic valve with coarctation of the aorta.
R-L, fusion of right coronary cusp and left coronary cusp.
R-NC, fusion of right coronary cusp and non-coronary cusp.
L-NC, fusion of left coronary cusp and non-coronary cusp.
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More precise estimates of the pooling strategy false
negative rates and investigation into the causes of these
false negatives are necessary to improve the technique.
The GATA5 p.Q3R variant may have been missed for a
variety of reasons including, but not limited to: error in
DNA concentration measurement of the individual pos-
sessing the variant, volume measurement variability dur-
ing pooling, or stochastic events during sequencing. One
potential solution may be utilizing different DNA quan-
tification methods for more accurate concentration prior
to pooling. Additionally, a combinatorial design wherein
each individual is represented in exactly three rather
than two pools would potentially reduce false positive
and negative rates.
A cost analysis of our approach showed significant

savings. Targeted capture used in conjunction with the
pooling scheme herein described resulted in a total se-
quencing cost of $15,950 for the entire 78 proband co-
hort. Targeted capture without pooling would have a
total cost of $54,300 for a cohort of the same sample
number, representing a cost savings of $39,350 from
pooling alone. Moreover, assuming a cost of $1200 per
sample for whole exome sequencing, the pooled and tar-
geted approach would produce a relative cost saving of
$77,650 for this cohort as compared to whole exome se-
quencing without pooling. Compared to whole genome
sequencing without pooling (assumed to cost $5950 per
sample), the pooled and targeted technique would realize a
savings of $448,150.

Conclusions
This unique approach to targeted gene sequencing iden-
tified a large number of putative disease-causing variants
in a cohort of patients with BAV, including variants in
26 genes not previously associated with human BAV.
Pathway analysis supported a role for WNT pathway
genes in human BAV. The data as a whole further under-
score the complex, polygenic nature of BAV. This tech-
nique provides a method for sample multiplexing that
lowers costs and reduces sequencing errors.

Methods
Study population
The study cohort, previously described by our group, in-
cluded 78 unrelated individuals (59 male, 19 female)
with BAV [8]. Subjects were prospectively recruited from
June 2004 to June 2011 as part of a larger study involv-
ing genetic testing in patients with congenital left ven-
tricular tract outflow defects. Informed consent was
obtained from study subjects or parents of subjects less
than 18 years of age (assent was obtained from subjects
9–17 years of age) under protocols approved by the
Institutional Review Board (IRB) at Nationwide Children’s
Hospital. Subjects with known chromosomal abnormalities
were excluded from the analysis. The majority of individ-
uals were of Caucasian ethnicity, with 1 African-American,
1 Asian, and 3 Hispanic individuals. Each subject had
undergone clinical echocardiography with images suffi-
cient to identify associated cardiac malformations and
aortic valve cusp fusion morphology (Table 2). Fifty of
the 78 subjects (64%) had isolated BAV while the remain-
der had BAV-CoA. Forty-six subjects (59%) had R-L cusp
fusion, 39% had R-NC fusion, and 2% had L-NC fusion.
Eighteen of the 78 subjects had a family history of a left
ventricular outflow tract defect. For the majority of sub-
jects, parent samples were also obtained under the same
IRB protocol. Genomic DNA was isolated from blood or
saliva samples using the 5 PRIME DNA extraction kit
(Thermo Fisher Scientific, Pittsburgh, PA).

Pooling scheme
Proband genomic DNA was combined into 19 unique
pools each representing 9 or 10 individuals. The pools
were constructed using overlapping design such that
each individual was represented in exactly two pools,
and a given rare variant could be uniquely attributed to
a single individual on the basis of which two pools con-
tained the variant. Individual genomic DNA samples
were quantified by Nanodrop (Thermo Fisher Scientific),
diluted to a concentration of 200 ng/microliter, and
then requantified by Qubit fluorometer (Invitrogen Life
Technologies, Carlsbad, CA). Quality of the DNA was
assessed by SYBR Gold agarose gel (Life Technologies).
Samples were then pooled, with the total amount of DNA
for each pool consisting of 5 micrograms in 50 microliters
(i.e. 500 ng per sample for a pool of 10 individuals and
550 ng per sample for a pool of 9 individuals).

Targeted capture
A custom, targeted gene capture was designed using the
Agilent SureSelect Target Enrichment kit (Table 3). Can-
didate genes were selected on the basis of relevance to
cardiac development and/or congenital heart defects in
humans and animal models. Reference sequences were
obtained from the Ensembl database. Probes were de-
signed using paired, double-end, 75 base pair reads with



Table 3 Targeted capture gene list

Ensembl gene ID Gene name Chromosome Gene start (bp) Gene end (bp) Size

ENSG00000107796 ACTA2 10 90694831 90751147 56316

ENSG00000115170 ACVR1 2 158592958 158732374 139416

ENSG00000134982 APC 5 112043195 112181936 138741

ENSG00000081181 ARG2 14 68086515 68118437 31922

ENSG00000103126 AXIN1 16 337440 402673 65233

ENSG00000168646 AXIN2 17 63524681 63557765 33084

ENSG00000149541 B3GAT3 11 62382768 62389647 6879

ENSG00000242252 BGLAP 1 156211753 156213112 1359

ENSG00000125845 BMP2 20 6748311 6760910 12599

ENSG00000125378 BMP4 14 54416454 54425479 9025

ENSG00000107779 BMPR1A 10 88516396 88684945 168549

ENSG00000138696 BMPR1B 4 95679119 96079599 400480

ENSG00000204217 BMPR2 2 203241659 203432474 190815

ENSG00000134072 CAMK1 3 9799026 9811676 12650

ENSG00000105974 CAV1 7 116164839 116201233 36394

ENSG00000179776 CDH5 16 66400533 66438686 38153

ENSG00000132535 DLG4 17 7093209 7123369 30160

ENSG00000198719 DLL1 6 170591294 170599561 8267

ENSG00000090932 DLL3 19 39989557 39999118 9561

ENSG00000128917 DLL4 15 41221538 41231237 9699

ENSG00000106991 ENG 9 130577291 130617035 39744

ENSG00000138685 FGF2 4 123747863 123819391 71528

ENSG00000107831 FGF8 10 103530081 103535827 5746

ENSG00000102755 FLT1 13 28874489 29069265 194776

ENSG00000136574 GATA4 8 11534468 11617511 83043

ENSG00000130700 GATA5 20 61038553 61051026 12473

ENSG00000141448 GATA6 18 19749404 19782491 33087

ENSG00000111087 GLI1 12 57853918 57866045 12127

ENSG00000074047 GLI2 2 121493199 121750229 257030

ENSG00000106571 GLI3 7 42000548 42277469 276921

ENSG00000105464 GRIN2D 19 48898132 48948187 50055

ENSG00000164116 GUCY1A3 4 156587863 156653501 65638

ENSG00000061918 GUCY1B3 4 156680144 156728743 48599

ENSG00000164683 HEY1 8 80676245 80680098 3853

ENSG00000135547 HEY2 6 126068810 126082415 13605

ENSG00000163909 HEYL 1 40089825 40105617 15792

ENSG00000080824 HSP90AA1 14 102547106 102606036 58930

ENSG00000096384 HSP90AB1 6 44214824 44221620 6796

ENSG00000166598 HSP90B1 12 104323885 104347423 23538

ENSG00000101384 JAG1 20 10618332 10654608 36276

ENSG00000184916 JAG2 14 105607318 105635161 27843

ENSG00000123700 KCNJ2 17 68164814 68176160 11346

ENSG00000127528 KLF2 19 16435651 16438337 2686

ENSG00000140563 MCTP2 15 94774767 95023632 248865
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Table 3 Targeted capture gene list (Continued)

ENSG00000087245 MMP2 16 55423612 55540603 116991

ENSG00000163132 MSX1 4 4861393 4865663 4270

ENSG00000120149 MSX2 5 174151536 174158144 6608

ENSG00000131196 NFATC1 18 77155772 77289325 133553

ENSG00000183072 NKX2-5 5 172659112 172662360 3248

ENSG00000089250 NOS1 12 117645947 117889975 244028

ENSG00000007171 NOS2 17 26083792 26127525 43733

ENSG00000164867 NOS3 7 150688083 150711676 23593

ENSG00000148400 NOTCH1 9 139388896 139440314 51418

ENSG00000134250 NOTCH2 1 120454176 120612240 158064

ENSG00000074181 NOTCH3 19 15270445 15311792 41347

ENSG00000204301 NOTCH4 6 32162620 32191844 29224

ENSG00000151665 PIGF 2 46808076 46844258 36182

ENSG00000076356 PLXNA2 1 208195587 208417665 222078

ENSG00000132170 PPARG 3 12328867 12475855 146988

ENSG00000138814 PPP3CA 4 101944566 102269435 324869

ENSG00000188191 PRKAR1B 7 588834 767287 178453

ENSG00000154229 PRKCA 17 64298754 64806861 508107

ENSG00000080815 PSEN1 14 73603126 73690399 87273

ENSG00000143801 PSEN2 1 227057885 227083806 25921

ENSG00000185920 PTCH1 9 98205262 98279339 74077

ENSG00000117425 PTCH2 1 45285516 45308735 23219

ENSG00000131759 RARA 17 38465444 38513094 47650

ENSG00000077092 RARB 3 25215823 25639423 423600

ENSG00000172819 RARG 12 53604354 53626764 22410

ENSG00000124813 RUNX2 6 45295894 45632086 336192

ENSG00000186350 RXRA 9 137208944 137332431 123487

ENSG00000204231 RXRB 6 33161365 33168630 7265

ENSG00000143171 RXRG 1 165370159 165414433 44274

ENSG00000162572 SCNN1D 1 1214447 1227409 12962

ENSG00000075223 SEMA3C 7 80371854 80551675 179821

ENSG00000164690 SHH 7 155592680 155604967 12287

ENSG00000128602 SMO 7 128828713 128853386 24673

ENSG00000124216 SNAI1 20 48599536 48605423 5887

ENSG00000019549 SNAI2 8 49830249 49834299 4050

ENSG00000185669 SNAI3 16 88744090 88752901 8811

ENSG00000125398 SOX9 17 70117161 70122561 5400

ENSG00000184058 TBX1 22 19744226 19771116 26890

ENSG00000121068 TBX2 17 59477257 59486827 9570

ENSG00000164532 TBX20 7 35242042 35293758 51716

ENSG00000089225 TBX5 12 114791736 114846247 54511

ENSG00000105329 TGFB1 19 41836813 41859831 23018

ENSG00000106799 TGFBR1 9 101866320 101916474 50154

ENSG00000163513 TGFBR2 3 30647994 30735634 87640

ENSG00000122691 TWIST1 7 19060614 19157295 96681
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Table 3 Targeted capture gene list (Continued)

ENSG00000070010 UFD1L 22 19437464 19466738 29274

ENSG00000112715 VEGFA 6 43737921 43754224 16303

ENSG00000173511 VEGFB 11 64002010 64006259 4249

ENSG00000150630 VEGFC 4 177604689 177713881 109192

ENSG00000105989 WNT2 7 116916685 116963343 46658

ENSG00000162552 WNT4 1 22446461 22470462 24001

ENSG00000184937 WT1 11 32409321 32457176 47855

ENSG00000130856 ZNF236 18 74534563 74682683 148120

CAPTURE SIZE 7567444
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centered design and 2x tiling frequency. A total of 97
candidate genes were probed using a whole gene interval
approach, representing 7.6 Mb of DNA. Analysis was
subsequently confined to exonic regions.

Sequencing
Sequencing of the pooled target captured proband gen-
omic DNA was performed on the Illumina HiSeq 2000.
Variants considered potentially pathogenic identified by
NGS were subsequently confirmed by Sanger sequen-
cing. Where available, parent samples were also sequenced
for these potentially pathogenic variants. Sequencing
primers are available upon request.

Bioinformatics algorithms
Bioinformatics analysis was performed using Churchill,
our laboratory’s pipeline for the discovery of human gen-
etic variation. Churchill utilizes the Burrows Wheeler
Aligner (BWA) for the alignment of sequence data to
the reference genome, hg19. Further refinement steps
were performed on the aligned sequence data using
Genome Analysis ToolKit (GATK) following the Broad
Institute’s guidelines for best practices (https://www.
broadinstitute.org/gatk/guide/best-practices). We utilized
the GATK’s (version 2.4-9) UnifiedGenotyper (UG) to call
variants in the pooled samples. In order to properly handle
the pooled data, we amended the recommended UG
settings by including the –sample_ploidy configuration
parameter and giving it a value of 20, reflecting the po-
tential for 20 individual alleles in a pooled sample of 10
individuals. The threshold for calling was set to 2.5%
alternate allele frequency on the basis of the pooling
scheme.

In-silico analysis
Rare, non-synonymous, exonic variants were analyzed
using the Polyphen 2 and SIFT algorithms. Reference
populations from the 1000 Genomes Project and Exome
Variant Server were utilized as control populations [30,31].
Pathway analysis was performed using the Database
for Annotation, Visualization and Integrated Discovery
(DAVID) with cutoffs of p-value less than 0.05 [32,33].
Availability of supporting data
This project has been registered with the National Center
for Biotechnology Information (NCBI) BioProject database,
identifier PRJNA260036, and can be accessed at: http://
www.ncbi.nlm.nih.gov/bioproject/260036.
Supporting sequence data for this project has been

deposited with the NCBI Sequence Read Archive. The
study accession is SRP045998, available at the following
link: http://www.ncbi.nlm.nih.gov/sra/?term=SRP045998
Biosample IDs for the pools, with their corresponding
URLs are:
3015266: http://www.ncbi.nlm.nih.gov/biosample/3015266
3015267: http://www.ncbi.nlm.nih.gov/biosample/3015267
3015268: http://www.ncbi.nlm.nih.gov/biosample/3015268
3015269: http://www.ncbi.nlm.nih.gov/biosample/3015269
3015270: http://www.ncbi.nlm.nih.gov/biosample/3015270
3015271: http://www.ncbi.nlm.nih.gov/biosample/3015271
3015272: http://www.ncbi.nlm.nih.gov/biosample/3015272
3015273: http://www.ncbi.nlm.nih.gov/biosample/3015273
3015274: http://www.ncbi.nlm.nih.gov/biosample/3015274
3015275: http://www.ncbi.nlm.nih.gov/biosample/3015275
3015276: http://www.ncbi.nlm.nih.gov/biosample/3015276
3015277: http://www.ncbi.nlm.nih.gov/biosample/3015277
3015278: http://www.ncbi.nlm.nih.gov/biosample/3015278
3015279: http://www.ncbi.nlm.nih.gov/biosample/3015279
3015280: http://www.ncbi.nlm.nih.gov/biosample/3015280
3015281: http://www.ncbi.nlm.nih.gov/biosample/3015281
3015282: http://www.ncbi.nlm.nih.gov/biosample/3015282
3015283: http://www.ncbi.nlm.nih.gov/biosample/3015283
3015284: http://www.ncbi.nlm.nih.gov/biosample/3015284
3015285: http://www.ncbi.nlm.nih.gov/biosample/3015285
Additional files

Additional file 1: Table S1. Rare, non-synonymous, exonic variants in
BAV cohort.
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Additional file 2: Table S2. Clinical characteristics of probands with
rare, non-synonymous, exonic variants predicted damaging by in-silico
analysis and confirmed by Sanger sequencing.
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