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1 Introduction

The study of supergravity backgrounds, which had seen its first period of intense activity in

the 1980s in the context of Kaluza-Klein supergravity (see [1] for a then timely review), was

retaken in earnest in the mid-to-late 1990s ushered in by the dualities-and-branes paradigm

in string theory and by the gauge/gravity correspondence. Although as a result of this

continuing second effort a huge number of backgrounds are now known, it is fair to say

that we know very little about all but a few small corners of the landscape of supergravity

backgrounds. This is perhaps not surprising given our still incomplete knowledge about

solutions to the much more venerable four-dimensional Einstein-Maxwell equations.

The emphasis during the 1980s was on Freund-Rubin backgrounds, in which the

geometry (if not necessarily the fluxes) decomposes into the metric product of a four-

dimensional spacetime and some internal (typically compact) manifold, but the interest

nowadays has widened to backgrounds with an intricate and truly higher-dimensional ge-

ometry. One particularly interesting class of backgrounds, due to the crucial role they play

in the gauge/gravity correspondence, comprises those backgrounds preserving a substan-

tial amount of the supersymmetry of the theory. In fact, the fraction of supersymmetry
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preserved by a background has proved to be a very useful organising principle in our

efforts to tame the zoo of supergravity backgrounds, despite being a rather coarse invari-

ant. Finer invariants, such as the holonomy group of the gravitino connection, are much

harder to calculate and hence have yet to play a decisive role in the various classification

efforts underway.

One particularly attractive classification problem is that of backgrounds which pre-

serve a large fraction of the supersymmetry. In higher dimensions it is possible to make

some limited progress by working one’s way down from the top; i.e., classifying maximally

or near-maximally supersymmetric backgrounds, but in order to make real progress in that

classification, new ideas seem to be required. Based on the increasing number of known

backgrounds, Patrick Meessen (in a private communication to the senior author in 2004)

observed that > 1
2 -BPS backgrounds — i.e., those preserving more than half of the super-

symmetry — were homogeneous; that is, that the Lie group of flux-preserving isometries

of such a background acts transitively on the underlying manifold. He conjectured that

this was always the case and after some initial partial results [2, 3], a local version of the

conjecture was recently demonstrated for ten- and eleven-dimensional supergravity theories

in [4]. In principle this “reduces” the classification problem of > 1
2 -BPS backgrounds to

those backgrounds which are homogeneous. Alas, this is still a daunting task; although

progress can be made.

The purpose of this paper is to extend the homogeneity theorem in [4] to two six-

dimensional supergravity theories: (1, 0) and (2, 0). Other possible supergravity theories

in six dimensions are either not yet constructed or can be obtained by dimensional reduc-

tion (without truncation) from higher-dimensional theories, in which case the homogeneity

theorem follows by general arguments, as will be explained in a forthcoming paper.

For the (1, 0) theory, it was shown in [5] that backgrounds preserve either all, half

or none of the supersymmetry. Therefore if a background preserves more than half of

the supersymmetry, it must be maximally supersymmetric and they are known to be ho-

mogeneous. Indeed, as shown in [6], such backgrounds are lorentzian Lie groups with

bi-invariant metrics and invariant 3-form. In this paper we give a different proof of this

result which has the virtue of not requiring the classification (hence we prove a “Theorem”

instead of a “theorem”, in the nomenclature of Victor Kac) and which additional results

in the construction of the Killing superalgebra of the background. We are not aware of

similar results for the (2, 0) theory beyond the classification of maximally supersymmetric

backgrounds in [6].

The proof of the homogeneity theorem in [4] consists of two steps. The first step is

to show that the natural squaring map from spinor fields to vector fields, when applied to

the Killing spinors of the background, yields Killing vectors which also preserve the fluxes.

With a little extra effort, and because it is an interesting result in its own right, one also

shows that the Killing spinors generate a Lie superalgebra, called the Killing superalgebra

of the background — a more refined invariant than the fraction of supersymmetry, which

only measures the dimension of the odd subspace.

The second step is purely algebraic and consists in proving the surjectivity of the

squaring map restricted to any subspace of dimension greater than one half the rank of the
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relevant spinor bundle. This uses the fact that the vector obtained by squaring a spinor

is causal. Applied to the space of Killing spinors of > 1
2 -BPS backgrounds, it guarantees

that the tangent space at every point can be spanned by vector fields in the image of the

squaring map, which by the first step are known to be infinitesimal symmetries of the

background. This proves the local homogeneity of the background.

The paper is organised as follows. In section 2 we treat the (1, 0) theory, with eight

real supercharges. We introduce the relevant notion of Killing spinor and show that they

generate a Lie superalgebra. We then show that if the space of Killing spinors has dimension

greater than four, then the background is locally homogeneous. In section 3 we do the

same for the (2, 0) theory, with sixteen real supercharges. The calculations here are more

complicated due to the presence of R-symmetry generators in the definition of Killing

spinors. Again we find that the Killing spinors generate a Lie superalgebra and when its

odd subspace has dimension greater than eight, the background is locally homogeneous.

Finally, in appendix A, we collect the basic facts about spinors in six dimensions which are

used in the bulk of the paper: pinor, spinor and R-symmetry representations, the invariant

inner products, explicit matrix realisations and some useful consequences of the Clifford

relations, including the relevant Fierz identities.

2 Six-dimensional (1,0) supergravity

Let (M, g,H) be a bosonic background of six-dimensional (1, 0) supergravity [7]. This

means that (M, g) is a connected six-dimensional lorentzian spin manifold and H ∈ Ω3
−(M)

a closed anti-selfdual three-form and they satisfy the field equations of the theory with

fermions equal to zero. We shall not need the equations in the following.

Let S+ denote the positive-chirality spinor representation of Spin(5, 1). It is a two-

dimensional quaternionic representation, but we prefer to work with complex representa-

tions, whence we will think of S+ as a four-dimensional complex representation with an

invariant quaternionic structure; that is, with a complex antilinear map J : S+ → S+

which obeys J2 = −1.

Similarly, the fundamental representation S1 of the R-symmetry group of (1, 0) super-

gravity, which is isomorphic to Sp(1), is a two-dimensional complex representation with an

invariant quaternionic structure j : S1 → S1.

The tensor product S+⊗CS1 of these two representations is an 8-dimensional complex

representation with an invariant conjugation given by J ⊗ j, whence it is a complex rep-

resentation of real type. In other words, it is the complexification of a real representation

S+, defined by

S+ ⊗C S1 ∼= S+ ⊗R C . (2.1)

The real representation S+, which is the real subspace of S+⊗CS1 fixed under the conjuga-

tion, is eight-dimensional and is the relevant spinorial representation for this supergravity

theory. With some abuse of language we will also denote by S+ the spinor bundle on M

associated to this representation.

Let S− be the real eight-dimensional representation defined as S+ but starting from

the negative-chirality spinor representation S− of Spin(5, 1). As shown in section A.4 in
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the appendix, there is a (Spin(5, 1)×Sp(1))-invariant symplectic structure on S = S+⊕S−,

denoted by 〈−,−〉, and satisfying

〈Γaε1, ε2〉 = −〈ε1,Γaε2〉 . (2.2)

2.1 The Killing superalgebra

The supersymmetry variation of the gravitino defines a connection D on the bundle S+,

defined for a spinor field ε ∈ C∞(M ; S+) and a vector field X ∈ C∞(M ;TM) by

DXε = ∇Xε+
1

4
ιXH · ε , (2.3)

where ∇ is the spin connection on S+ induced by the Levi-Civita connection, · is the

Clifford action and ιX denotes the contraction by the vector field X. Spinor fields which

are parallel with respect to D are called Killing spinors. They form a real vector space

g1 whose dimension is at most the rank of S+, since a parallel section of a bundle over a

connected manifold is uniquely determined by its value at any one point. For the theory in

question, dim g1 ≤ 8. Once fixing a point p ∈M , we will freely identify g1 with a subspace

of the fibre of S+ at p which we will in turn identify with the representation S+ itself. In

other words, we will often think of g1 as a subspace of S+.

Let g0 denote the Lie algebra of Killing vector fields on (M, g) which preserve H. We

will show that on g = g0 ⊕ g1 we can define the structure of a Lie superalgebra. This is by

now a standard construction for supergravity theories [2, 3, 8].

The Lie superalgebra structure on g = g0⊕g1 is a graded skew bilinear map g×g → g,

which unpacks into three bilinear maps:

1. a skewsymmetric bilinear map [−,−] : g0 × g0 → g0, which is simply the Lie bracket

of vector fields;

2. the action of g0 on g1, which is a bilinear map [−,−] : g0 × g1 → g1, defined by the

spinorial Lie derivative (see, e.g., [9])

[X, ε] := LXε = ∇Xε− ρ(∇X)ε (2.4)

where ∇X is the skewsymmetric endomorphism of TM defined by Y 7→ ∇YX and

ρ : so(TM) → End(S+) is the spin representation; and

3. a symmetric bilinear map [−,−] : g1 × g1 → g0, whose restriction to the diagonal

is called the squaring map: it is essentially the transpose of the Clifford action of

vectors on spinors and will be defined presently.

These maps are then subject to the Jacobi identity, which unpacks into four components.

As we will review presently, three of these components are automatically zero, but the

fourth needs proof, which we provide.

The transpose of the Clifford action of TM on S under the metric g on TM and

the symplectic structure on S defines a symmetric bilinear map S+ × S+ → TM . Being
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symmetric it is uniquely determined by its restriction to the diagonal, a quadratic map

S+ → TM , sending a spinor field ε to its Dirac current Vε, defined by

g(Vε, X) = 〈ε,X · ε〉 . (2.5)

By the usual polarisation identity, we define the vector field [ε1, ε2] corresponding to two

spinor fields ε1, ε2 ∈ C∞(M ; S+) by

2[ε1, ε2] = Vε1+ε2 − Vε1 − Vε2 . (2.6)

The first result is that when ε1, ε2 are Killing spinors, [ε1, ε2] is a Killing vector which

preserves the 3-form H. Clearly, it is enough to show this for the Dirac current of a

Killing spinor ε. To see this, we first observe that a Killing spinor ε is parallel relative to

a connection D defined by

Dµ = ∇µ −
1

2
ρ(Hµ) , (2.7)

where ρ is the spin representation applied to the skewsymmetric endomorphism Hµ of TM

defined, relative to a pseudo-orthonormal basis ea, by

Hµ(ea) = Hµ
b
aeb . (2.8)

In other words, D is the spin connection corresponding to an affine connection also denoted

D and defined by Dµ = ∇µ − 1
2Hµ. By covariance, if Dµε = 0, then DµVε = 0 as well. In

other words, writing V for Vε,

DµVν = ∇µVν −
1

2
HµνρV

ρ = 0 , (2.9)

whence ∇µVν = 1
2V

ρHρµν . First of all, we see that ∇µVν = −∇νVµ, whence V is a Killing

vector field. We also see that

dV ♭ =
1

2
ιVH (2.10)

whence dιVH = 0. Since dH = 0, this shows that LVH = 0, whence V preserves H. Then

after polarisation we obtain a symmetric bilinear map [−,−] : g1 × g1 → g0.

If K ∈ g0 is any Killing vector field which preserves H, then the Lie derivative LK

leaves invariant the connection D:

LKDX −DXLK = D[K,X] . (2.11)

In turn, this means that LK acting on spinors also leaves invariant the spin connection D,

whence it sends Killing spinors to Killing spinors, defining a map [−,−] = g0× g1 → g1 by

[K, ε] = LKε.

It now remains to prove the Jacobi identity for the bracket [−,−] : g × g → g just

defined on g = g0⊕g1. The only component of the Jacobi identity which needs to be checked

is the (g1, g1, g1)-component. This is given by a symmetric trilinear map g1× g1× g1 → g1

which again is determined uniquely via polarisation by the restriction to the diagonal: the

map sending a Killing spinor ε to the Killing spinor LVε
ε. We need to show that this is

zero for all ε ∈ g1.
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A quick calculation shows that

LVε
ε = ιVε

H · ε , (2.12)

whose vanishing, using the first equation (A.22), becomes

Vε ·H · ε+H · Vε · ε = 0 . (2.13)

From Lemma 2, we know that H · ε = 0, whence the first term vanishes. The second

term will also vanish as a consequence of the following

Proposition 1. Let ε ∈ S+ and Vε its Dirac current. Then Vε · ε = 0.

Proof. We have

Vε · ε = 〈ε,Γaε〉Γaε = ǫAB

(

εA,ΓaεB
)

Γaε , (2.14)

where we have expanded ε in terms of a symplectic basis for the fundamental representation

S1 of the R-symmetry group USp(2), as described in section A.7.1 of the appendix. But

then by Lemma 3, it vanishes.

In summary, on g = g0 ⊕ g1 we have the structure of a Lie superalgebra, called

the symmetry superalgebra of the supersymmetric (1, 0) background (M, g,H). The ideal

k = [g1, g1]⊕ g1 generated by g1 is called the Killing superalgebra of the background.

2.2 Homogeneity

We will now prove the strong version of the (local) homogeneity conjecture: that the even

part of the Killing superalgebra already acts locally transitively on the background.

It follows from Proposition 1 that the Dirac current Vε of a chiral spinor ε ∈ S+ is null:

g(Vε, Vε) = 〈ε, Vε · ε〉 = 0 . (2.15)

The proof of homogeneity follows the same steps in [4], which we briefly review for the

sake of completeness.

Let dim g1 > 4 = 1
2 dim S+. We want to show that for each p ∈ M , the symmetric

bilinear map ϕ : g1 × g1 → TpM , obtained by sending the pair (ε1, ε2) of Killing spinors to

the tangent vector [ε1, ε2](p) to M at p is surjective. Let v ∈ TpM be perpendicular to the

image of ϕ; that is, to [ε1, ε2](p) for all ε1,2 ∈ g1. This means that for all ε1,2 ∈ g1,

〈ε1, v · ε2〉 = 0 , (2.16)

or that Clifford product by v maps g1 to g⊥1 ⊂ S−. Since dim g1 > dim g⊥1 , it follows that

the Clifford product by v has nontrivial kernel and hence that v is null, since by the Clifford

relation v2·ε = −g(v, v)ε. Every vector which is perpendicular to the image of ϕ is therefore

null and hence (imϕ)⊥ ⊂ TpM is an isotropic subspace. Since the isotropic subspaces of

TpM are at most one-dimensional, we have two possibilities: either ϕ is surjective or else

(imϕ)⊥ is one-dimensional and spanned by a null vector n, say. In this latter case, the

Dirac current Vε of every Killing spinor ε ∈ g1 is a null vector perpendicular to n, whence
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it has to be proportional to n, otherwise they would span a two-dimensional isotropic

subspace. But then by polarisation, every vector in the image of ϕ would be proportional

to n, contradicting the fact that imϕ has codimension one.

In summary, we have shown that the tangent space to M at any point p is spanned

by the values at p of Killing vectors in [g1, g1]. This shows that the (1, 0) background

(M, g,H) is locally homogeneous.

3 Six-dimensional (2,0) supergravity

A bosonic background (M, g,H) of (2, 0) supergravity [10, 11] consists of a connected

6-dimensional lorentzian spin manifold (M, g) and a closed anti-selfdual V-valued three-

form H ∈ Ω3
−(M ;V), where V is the real 5-dimensional orthogonal representation of the

USp(4) ∼= Spin(5) R-symmetry group of the theory. We may choose an orthonormal basis

ei for V and hence think of H = H iei as five anti-selfdual three-forms H i ∈ Ω3
−(M). As in

the (1, 0) theory, these fields are subject to the field equations of the theory with fermions

put to zero, but we shall not need their explicit form in what follows.

As before, S± are the complex 8-dimensional irreducible spinor representations of

Spin(5, 1) and now S2 denotes the fundamental representation of USp(4), which is com-

plex and 4-dimensional. Both S± and S2 have invariant quaternionic structures, whence

their tensor product is a complex representation of Spin(5, 1) × USp(4) of real type,

whence the complexification of a sixteen-dimensional real representation S±. We will

let S = S+ ⊕ S−, on which we have an action of Cℓ(5, 1) ⊗ Cℓ(0, 5) with generators Γa

for Cℓ(5, 1) and γi for Cℓ(0, 5). As discussed in the appendix, S has a symplectic inner

product 〈−,−〉 relative to which S± are lagrangian subspaces and such that

〈ε1,Γaε2〉 = −〈Γaε1, ε2〉 and 〈ε1, γiε2〉 = + 〈γiε1, ε2〉 . (3.1)

3.1 The Killing superalgebra

A Killing spinor of (2, 0) supergravity is a section ε of S+ which is parallel relative to a

connection D defined by

Dµε = ∇µε+
1

8
H i

µabΓ
abγiε . (3.2)

The Dirac current Vε of a spinor ε ∈ C∞(M ;S+) is the vector field defined by

g(Vε, X) = 〈ε,X · ε〉 , (3.3)

for all vector fields X. Its coefficients relative to an orthonormal frame are then given by

V a
ε = 〈ε,Γaε〉.

As before, the Dirac current of a Killing spinor is a Killing vector which preserves H.

Indeed, let ε be a Killing spinor and let V = Vε denote its Dirac current. Its covariant
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derivative is given by

∇µV
ν = ∇µ 〈ε,Γ

νε〉

= 〈∇µε,Γ
νε〉+ 〈ε,Γν∇µε〉

= −
1

8
H i

µρσ (〈Γ
ρσγiε,Γ

νε〉+ 〈ε,ΓνΓρσγi〉)

=
1

8
H i

µρσ 〈γiε, [Γ
ρσ,Γν ]ε〉

=
1

2
H i

µ
ν
σ 〈γiε,Γ

σε〉 .

(3.4)

This can be rewritten as

∇µVν =
1

2
H i

µνρ 〈ε,Γ
ργiε〉 , (3.5)

which shows that V is a Killing vector.

Let θ ∈ Ω1(M ;V) be the V-valued one-form defined by θiµ =
〈

ε,Γµγ
iε
〉

. Its covariant

derivative is given by

∇µθ
i
ν =

〈

∇µε,Γνγ
iε
〉

+
〈

ε,Γνγ
i∇µε

〉

= −
1

8
Hj

µρσ

(〈

Γρσγjε,Γνγ
iε
〉

+
〈

ε,ΓνΓ
ρσγiγjε

〉)

=
1

8
Hj

µρσ

(〈

γiγjε,Γ
ρσΓνε

〉

−
〈

γjγ
iε,ΓνΓ

ρσε
〉)

.

(3.6)

Using the Clifford relations γjγ
i = δij + γj

i, we can rewrite this as

∇µθ
i
ν =

1

8
H i

µρσ 〈ε, [Γ
ρσ,Γν ]ε〉 −

1

8
Hj

µρσ

〈

γj
iε, (ΓρσΓν + ΓνΓ

ρσ)ε
〉

=
1

2
H i

µνρ 〈ε,Γ
ρε〉+

1

8
Hj

µ
ρσ

〈

γijε, (ΓρσΓν + ΓνΓρσ)ε
〉

=
1

2
H i

µνρ 〈ε,Γ
ρε〉+

1

4
Hj

µ
ρσ

〈

γijε,Γνρσε
〉

.

(3.7)

It follows from this that its exterior derivative dθ ∈ Ω2(M,V), with components

(dθ)iµν = ∇µθ
i
ν −∇νθ

i
µ, is given by

(dθ)iµν = H i
µνρ 〈ε,Γ

ρε〉+
1

4
Hj

µ
ρσ

〈

γijε,Γνρσε
〉

−
1

4
Hj

ν
ρσ

〈

γijε,Γµρσε
〉

. (3.8)

Notice that the last two terms can be written in terms of a Clifford commutator, so that

(dθ)iµν = H i
µνρ 〈ε,Γ

ρε〉+
1

24
Hj

ρστ

〈

γijε, [Γµν ,Γ
ρστ ]ε

〉

. (3.9)

The second term in the r.h.s. is seen to vanish, since [Γµν , H
j ]ε = 0, because Hj and

hence also its infinitesimal Lorentz transformation [Γµν , H
j ] are anti-selfdual and hence

annihilate ε by Lemma 2 in the appendix. The remaining term in the r.h.s. is precisely

the contraction of H by V . This shows that ιVH = dθ is closed and, since so is H, that

LVH = dιVH + ιV dH = 0, showing that V leaves H invariant.
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We therefore have all the ingredients for a Lie superalgebra on the vector space g =

g0 ⊕ g1, where g0 is the Lie algebra of Killing vector fields which in addition preserve H

and g1 is the space of Killing spinors, which for the (2, 0) theory has dimension at most

16. The bracket [−,−] : g0× g1 → g1 is given by the spinorial Lie derivative [K, ε] = LKε,

which since K ∈ g0 leaves D invariant and hence takes Killing spinors to Killing spinors.

The bracket [−,−] : g1 × g1 → g0 is obtained as before by polarising the construction of

the Dirac current, as in equation (2.6).

Three of the four components of the Jacobi identity vanish by construction, whence

only the (g1, g1, g1) component needs to be checked. This is a symmetric trilinear map

g1 × g1 × g1 → g1, whence it vanishes if and only if it vanishes when restricted to the

diagonal, which is the map sending a Killing spinor ε to its Lie derivative along its Dirac

current: LVε
ε.

Letting V = Vε, we have

LV ε = ∇V ε− ρ(∇V )ε

= V µ∇µε−
1

4
∇µVνΓ

µνε

= −
1

8
H i

µνρ (Γ
µνθ

ρ
i + V µΓνργi) ε

= −
1

8
H i

µνρΓ
µν (θρi + V ργi) ε

=
1

48
H i

µνρ (Γ
µνρΓσ + ΓσΓ

µνρ) (V σγi + θσi ) ε .

(3.10)

We now use that H i Clifford annihilates ε (Lemma 2 in the appendix) to arrive at

LV ε =
1

48
H i

µνρΓ
µνρΓσ (V

σγi + θσi ) ε

=
1

48
H i

µνρΓ
µνρΓσ (〈ε,Γ

σε〉 γi + 〈ε,Γσγiε〉) ε .

(3.11)

This can be rewritten in a way that allows us to use the Fierz identity (A.32), namely

LV ε =
1

48
H i

µνρΓ
µνρΓσ

(

γi(ε⊗ ε♭) + (ε⊗ ε♭)γi

)

Γσε . (3.12)

Using that Fierz identity and also equation (A.23), we may rewrite this finally as

LV ε = −
1

24
H i

µνρΓ
µνρΓσ (〈ε,Γ

σε〉 γi + 〈ε,Γσγiε〉) ε

= −
1

24
H i

µνρΓ
µνρΓσ (V

σγi + θσi ) ε .

(3.13)

Comparing with equation (3.11), we see that it must vanish.

This shows that the brackets thus defined on g = g0⊕g1 turn it into a Lie superalgebra.

The ideal k = [g1, g1]⊕ g1 is the Killing superalgebra of the (2, 0) background (M, g,H).
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3.2 Homogeneity

The proof of homogeneity follows the same steps as in the (1, 0) theory. An essential

ingredient is that the Dirac current of a spinor is a causal vector; that is, either null or

timelike. In the (1, 0) theory we showed that the Dirac current is always null, but in the

(2, 0) theory this is not the case. Nevertheless we can still show that it is causal. We have

only managed to do this by an explicit computation using the realisation in section A.5 in

the appendix.

The Dirac current of ε ∈ S+ has components

Ka = 〈ε,Γaε〉 . (3.14)

For nonzero ε ∈ S+, it follows that Γ
aε ∈ S− and hence we may express the inner product

in either bilinear or sesquilinear forms. We choose the sesquilinear form and compute the

0th component of the Dirac current. In the notation of section A.5, we find

K0 = ε†(B ⊗ b)(Γ0 ⊗ 14)ε

= ε†(−Γ12345Γ
0 ⊗ 14)ε

= ε†(Γ7 ⊗ 14)ε

= ε†ε > 0 ,

(3.15)

where we have used that Γ7ε = ε. This shows that K0 never vanishes and thus K cannot

be spacelike, otherwise we could Lorentz transform to a frame where K0 = 0.

The proof now follows mutatis mutandis the same steps as those outlined in section 2.2

for the (1, 0) case and will not be repeated here. In summary, if the dimension of the

space of Killing spinors is greater than 8, then the (2, 0) background (M, g,H) is locally

homogeneous.

In summary, we have established the existence of Killing superalgebras for supersym-

metric backgrounds of six-dimensional (1, 0) and (2, 0) supergravities and used that to show

that > 1
2 -BPS backgrounds are locally homogeneous. Together with the results of [4], and

using that the homogeneity theorem survives dimensional reduction, this establishes the

validity of the homogeneity theorem for all (pure, Poincaré) supergravity theories which

have been constructed thus far. Details will appear in a forthcoming paper.
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A Summary of spinorial results

A.1 The Clifford module and its inner products

Our Clifford algebra conventions follow [12]. We define Cℓ(s, t) to be the Clifford algebra

associated with the real vector space R
s+t with inner product given by the matrix

η =

(

1s 0

0 −1t

)

, (A.1)
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where 1p is the p × p identity matrix. This means that Cℓ(s, t) is the associative unital

algebra generated by Γa, a = 1, . . . , s+ t, subject to the relations

ΓaΓb + ΓbΓa = −2ηab1 . (A.2)

(Notice the sign!) In this paper we are interested in Cℓ(5, 1).

As a real associative algebra, Cℓ(5, 1) is isomorphic to the algebra H(4) of 4×4 quater-

nionic matrices. This means that it has a unique irreducible representation, M, which is

quaternionic and of dimension 4. We prefer, however, to work over the complex numbers,

so that we will represent Γa as complex 8 × 8 matrices leaving invariant a quaternionic

structure. The resulting 8-dimensional complex representation is the complex vector space

P obtained from the right quaternionic vector space M via restriction of scalars to C. We

call P the pinor representation of Cℓ(5, 1).

There are two natural involutions of Cℓ(5, 1), each one realisable as the adjoint relative

to a quaternionic inner product on M. The two inner products are denoted 〈−,−〉± and

defined by

〈Γaε1, ε2〉± = ±〈ε1,Γaε2〉 , (A.3)

where 〈−,−〉+ is H-hermitian, and 〈−,−〉− is H-skewhermitian. These quaternionic inner

products induce inner products on the pinor representation P . This is done by decomposing

〈−,−〉±, which are H-valued, into C-valued inner products:

〈−,−〉+ = h+(−,−) + jω+(−,−) , (A.4)

where h+ is C-hermitian and ω+ is C-symplectic; and

〈−,−〉− = ih−(−,−) + jg−(−,−) , (A.5)

where h− is C-hermitian and g− is C-symmetric. In either case, one determines the other:

ω+(ε1, ε2) = h+(ε1j, ε2) and g−(ε1, ε2) = ih−(ε1j, ε2).

A.2 The spinor representations

The spin group Spin(5, 1) ∼= SL(2,H) is contained in Cℓ(5, 1) and hence the irreducible

Clifford module M decomposes under Spin(5, 1) into the direct sum of two irreducible

spinor modules S±, labelled by their chirality, i.e., the eigenvalue of the volume element

Γ7 = Γ012345 in Cℓ(5, 1), which obeys Γ2
7 = 1. The volume element Γ7 is not in the

centre of Cℓ(5, 1), but it commutes with Spin(5, 1), whence its eigenspaces S± are pre-

served by Spin(5, 1). These are the positive- and negative-chirality spinor representations of

Spin(5, 1). They are quaternionic and of dimension two, but we will again restrict scalars to

obtain four-dimensional complex representations S± with an invariant quaternionic struc-

ture. This means that under Spin(5, 1), P = S+ ⊕ S−. There is no Spin(5, 1)-invariant

inner product on S± (or S±), but of course there is on their direct sum, relative to which

S± are isotropic subspaces. This means that S− = S∗
+.
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A.3 The R-symmetry representations

The R-symmetry group of the d = 6 (p, q) supersymmetry algebra is USp(2p) × USp(2q),

whence USp(2) ∼= Sp(1) for the (1, 0) theory and USp(4) ∼= Sp(2) for the (2, 0) theory.

The spinor parameters in the supergravity theory transform according to the fundamental

representations of these groups, which are quaternionic representations S1
∼= H for the

(1, 0) theory and S2
∼= H

2 for the (2, 0) theory. Restricting scalars to C we arrive at

complex representations S1, of dimension two, and S2 of dimension four, with invariant

quaternionic structures, respectively.

The representations S1 and S2 have C-hermitian inner products invariant under USp(2)

and USp(4), respectively. However the gravitino connection in the (2, 0) theory uses ex-

plicitly an equivariant bilinear map V × S2 → S2, where V is the real 5-dimensional rep-

resentation of USp(4) ∼= Spin(5). There are precisely two such maps, corresponding to

the Clifford actions of Cℓ(V) ∼= Cℓ(0, 5) on either of its two irreducible Clifford modules.

This means that S2 is to be thought of not just as a spinor representation of Spin(5), but

actually as one of the two pinor representations of Cℓ(0, 5).

As a real associative algebra, Cℓ(0, 5) is isomorphic to two copies of the algebra H(2) of

2× 2 quaternionic matrices. Therefore it has two inequivalent irreducible representations,

which are quaternionic of dimension 2 or, after restricting scalars, complex of dimension 4

with an invariant quaternionic structure. Let us call these latter complex representations S2
and S′

2. The action of Cℓ(0, 5) is via 4×4 complex matrices γi, satisfying γiγj+γjγi = 2δij1.

The two representations are distinguished by the action of the volume element γ6 = γ12345,

which is central in Cℓ(5), satisfies γ26 = 1 and acts like the identity on S2. The Spin(5)-

invariant inner product on S2 is such that

〈γiε1, ε2〉 = + 〈ε1, γiε2〉 . (A.6)

Indeed, with the opposite sign the volume element would be skewsymmetric making

S2 isotropic.

A.4 The underlying real spinorial representations

In the six-dimensional supergravity theories, the spinor parameters of the supersymmetry

transformations take values in a real representation whose complexification is the tensor

product of the chiral spinor representation of Spin(5, 1) and the fundamental representa-

tion of the R-symmetry group. As discussed above, these representations are complex of

quaternionic type and hence their tensor product (over C) is a complex representation of

real type and thus the complexification of a real representation. In this section of the

appendix we provide the details.

For brevity, we will consider the more general case of a tensor product V ⊗CW of two

complex representations of quaternionic type. This means that V and W have invariant

quaternionic structures JV and JW , respectively. They are complex anti linear maps which

square to −1. Their tensor product c = JV ⊗ JW is a complex antilinear map squaring to

1 —i.e., a conjugation. The eigenspace of c with eigenvalue 1 is a real subrepresentation

U of V ⊗C W and indeed V ⊗C W = U ⊗R C = U ⊕ iU . The complex inner products
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on V and W (induced from the quaternionic inner products on the original quaternionic

representations) determine real inner products on U .

Let us apply this now to the cases of interest. As we have seen, the spinor repre-

sentations S± are isotropic, so if we want an inner product we must work with the pinor

representation P = S+ ⊕ S−. As we saw in section A.1, on P we have one of two possible

pairs of inner products: one pair consisting of a C-hermitian and a C-symplectic inner

product, and another pair consisting of a C-skewhermitian and a C-symmetric inner prod-

uct. We will choose the latter, in order for the Lie bracket on the Killing spinors to be

symmetric and hence have a chance of generating a Lie superalgebra with nontrivial odd

subspace. This means that we choose the inner product 〈−,−〉− on P .

On P⊗CS1 we therefore have a C-symplectic structure, consisting of the tensor product

of the C-symmetric and C-symplectic inner products on P and S1, respectively. This

restricts to a real symplectic inner product on the underlying real subrepresentation S of

P ⊗C S1. We will denote it by 〈−,−〉 and simply notice that the subspaces S±, defined as

the underlying real representations of S± ⊗C S1, are lagrangian subspaces.

For the (2, 0) theory, we again pick the C-symmetric inner product on P and the

C-symplectic inner product on S2, so that on P ⊗C S2 we have a C-symplectic structure,

restricting to a real symplectic inner product on the underlying real representation denoted

S of P ⊗C S2. We will again denote it by 〈−,−〉 and again notice that S = S+ ⊕ S−,

where the lagrangian subspaces S± are now defined as the underlying real representations

of S± ⊗C S2.

A.5 Explicit matrix realisation

An essential ingredient in the proof of the homogeneity theorem is the fact that the Dirac

current of a spinor is a causal vector. Whereas for the (1, 0)-theory, this fact admits a rather

elegant proof, for the (2, 0)-theory we have only managed to show this by calculating using

an explicit matrix realisation. For completeness, and because it may be useful in the future,

we record here the necessary formulae. We let 1n denote the n× n identity matrix and σi
the (hermitian) Pauli spin matrices with σ1σ2 = iσ3, et cetera. An explicit realisation for

the generators Γa of Cℓ(5, 1) is given by the following matrices:

Γ0 = 1⊗ 1⊗ σ3

Γ1 = −i1⊗ σ1 ⊗ σ1

Γ2 = −i1⊗ σ2 ⊗ σ1

Γ3 = iσ1 ⊗ σ3 ⊗ σ1

Γ4 = iσ3 ⊗ σ3 ⊗ σ1

Γ5 = i1⊗ 1⊗ σ2 ,

(A.7)

with 1 = 12.

The invariant quaternionic structure is given by the composition J = mJ ◦χ, where χ

is complex conjugation and mJ is a matrix which obeys ΓamJ = mJΓa (invariance) and in

addition mJmJ = −18. Invariance says that mJ commutes with the real Γa, namely Γ0,2,5,

and anticommutes with the imaginary Γa, namely Γ1,3,4. Thus we can take mJ = Γ025,

which is real and obeys Γ2
025 = −18.

The H-skewhermitian inner product 〈−,−〉− decomposes into ih− + jg−, where ih− is

C-skewhermitian and g− is C-symmetric. In this explicit realisation, ih− is determined by
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a matrix B such that

ih−(ε1, ε2) = ε
†
1Bε2 , (A.8)

and the defining property (A.3) becomes

Γ†
aB = −BΓa , (A.9)

which says that B anticommutes with Γ0 and commutes with the rest. In other words, B

must be proportional to Γ12345, which in this realisation is given by

Γ12345 = iσ2 ⊗ σ3 ⊗ σ2 , (A.10)

which is symmetric and imaginary, hence skewhermitian, as expected. We define B :=

−Γ12345, where the sign is for later convenience.

The symmetric inner product g− is given by a matrix C such that

g−(ε1, ε2) = εT1 Cε2 , (A.11)

where now

ΓT
aC = −CΓa , (A.12)

which says that C commutes with the skewsymmetric Γa, namely Γ2,5, and anticommutes

with Γ0,1,3,4. This means that C must be proportional to Γ0134, which in this realisation is

given by

Γ0134 = iσ2 ⊗ σ1 ⊗ σ2 , (A.13)

which is imaginary and symmetric. We will define C := Γ0134.

For the (2, 0)-theory we will also need an explicit realisation of Cℓ(0, 5), conveniently

given by the following 4× 4 matrices

γ1 = σ1 ⊗ σ2 γ2 = σ2 ⊗ σ2 γ3 = −σ3 ⊗ σ2 γ4 = 1⊗ σ3 γ5 = 1⊗ σ1 , (A.14)

with 1 = 12 again.

The invariant quaternionic structure j is given by the composition mj ◦χ, with χ again

complex conjugation and mj a matrix satisfying mjmj = −14 and mjγi = γimj . We can

therefore take mj = γ245.

The H-hermitian invariant inner product 〈−,−〉+ decomposes into h+ + jω+, where

h+ is C-hermitian and ω+ is C-symplectic. In this realisation, h+ is defined in terms of a

matrix b by

h+(ε1, ε2) = ε
†
1bε2 , (A.15)

where γ†i b = bγi. Since all γ
†
i = γi for all i, we can choose b = 14 without loss of generality.

The C-symplectic inner product ω+ is given in terms of a matrix c by

ω+(ε1, ε2) = εT1 cε2 , (A.16)

where γTi c = cγi. Thus c must commute with γ2,4,5 and anticommute with γ1,3, whence we

can take c = γ245 which is real and symplectic.
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In the tensor product representation S+ ⊗ S2, the conjugation C = J ⊗ j is given

explicitly by

C = (Γ025 ⊗ γ245) ◦ χ , (A.17)

so that an element ε of S obeys

ε = (Γ025 ⊗ γ245) ε . (A.18)

Let ε1,2 ∈ S . Then it is an easy calculation to show that the sesquilinear and bilinear

inner products agree, as expected. This is nothing but the fact that for a Majorana spinor,

the Dirac conjugate agrees with the Majorana conjugate; explicitly,

ε
†
1(B ⊗ b)ε2 = εT1 (Γ025 ⊗ γ245)

T (B ⊗ b)ε2 = εT1 (C ⊗ c)ε2 . (A.19)

A.6 Vectors, forms and their Clifford action

As a vector space, the Clifford algebra is isomorphic (as a Z2-graded vector space) to

the exterior algebra. When we globalise, the Clifford bundle Cℓ(TM) is isomorphic as

a Z2-graded vector bundle to the bundle of differential forms Ω∗(M). This means that

differential forms can act on spinors. If θ ∈ Ωk(M) is a differential form of rank k and

ε ∈ C∞(M ; S) is a spinor field, then we will denote θ ·ε the spinor field obtained by Clifford

acting with θ on ε. Explicitly,

θ · ε =
1

k!
θa1...akΓ

a1...akε . (A.20)

Similarly, if X ∈ C∞(M ;TM) is a vector field, we can define its Clifford action X · ε on a

spinor field as the Clifford action of its dual 1-form X♭.

Let ν ∈ Ω6(M) denote the volume form. Its Clifford action is via Γ7 = Γ012345. Then

if θ ∈ Ωk(M) and ε is any spinor field,

Γ7θ · ε = −(⋆θ) · ε , (A.21)

where ⋆θ is the Hodge dual. A very useful consequence of this calculation is the following.

Lemma 2. Let H ∈ Ω3
−(M) be an anti-selfdual 3-form and let ε ∈ C∞(M ; S+) be a

positive-chirality spinor field. Then H · ε = 0.

Proof. Let Γ7 denote the volume element in the Clifford algebra, so that the volume form

acts via Γ7. Since ε has positive chirality, Γ7ε = ε. If H ∈ Ω3(M) is any 3-form, then

HΓ7 = −Γ7H, whence on the one hand

Γ7H · ε = −H · Γ7ε = −H · ε

and on the other hand, for H anti-selfdual

Γ7H · ε = −(⋆H) · ε = H · ε .

Also useful are the following identities, where θ ∈ Ωk(M) and X is any vector field:

X♭ · θ − (−1)kθ ·X♭ = −2ιXθ

X♭ · θ + (−1)kθ ·X♭ = +2X♭ ∧ θ .
(A.22)

Two more useful consequences of the Clifford relations are

ΓaΓbΓa = 4Γb and ΓaΓbcdΓa = 0 . (A.23)
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A.7 Fierz formulae

In this section we derive two important Fierz formulae.

A.7.1 The (1,0) Fierz formula

Let us first of all consider the (1, 0) theory. Let ε ∈ S+. By choosing a complex basis

eA, A = 1, 2, for the fundamental two-dimensional representation S1 of USp(2) relative to

which the invariant complex symplectic form is given by the Levi-Civita symbol ǫAB, we

may decompose ε ∈ S+ as ε = εAeA, where each εA ∈ S+ is a chiral spinor of Spin(5, 1).

In addition, the εA satisfy a reality condition whose explicit form we will not need. The

real symplectic inner product on S+ ⊕ S− is such that if ε, η ∈ S+ ⊕ S−, then

〈ε, η〉 = ǫAB

(

εA, ηB
)

, (A.24)

where (−,−) is the symmetric inner product on S+ ⊕ S−, which we had denoted g− in

section A.1.

Now let ψ1,2 ∈ S+ and consider the complex linear map ψ1⊗ψ♭
2 : S− → S+ defined by

(

ψ1 ⊗ ψ♭
2

)

(ψ3) = (ψ2, ψ3)ψ1 . (A.25)

This can be extended to an endomorphism of P = S+⊕S− by declaring it to be zero on S+
and hence it defines an element of the Clifford algebra Cℓ(5, 1), which is the endomorphism

algebra of P . Since the map reverses chirality, it lives in Cℓ(5, 1)odd, whence it is a linear

combination of products of an odd number of Γa and since it annihilates S+, it takes

the form

ψ1 ⊗ ψ♭
2 =

(

caΓa +
1

6
cabcΓabc

)

Π− , (A.26)

for some ca and cabc to be determined and where Π− = 1
2 (1− Γ7) is the projector onto

negative chirality spinors.

It is a simple matter of taking the trace of
(

ψ1 ⊗ ψ♭
2

)

Γb and
(

ψ1 ⊗ ψ♭
2

)

Γabc to determine

that

ca =
1

4
(ψ1,Γ

aψ2) and cabc =
1

4

(

ψ1,Γ
abcψ2

)

, (A.27)

whence we arrive at the Fierz identity

ψ1 ⊗ ψ♭
2 =

1

4
(ψ1,Γ

aψ2) ΓaΠ− +
1

24

(

ψ1,Γ
abcψ2

)

ΓabcΠ− . (A.28)

If now ε1,2 ∈ S+ and we apply the above Fierz formula to the linear map εA1 ⊗ (εB2 )
♭ :

S− → S+, we arrive at

εA1 ⊗
(

εB2
)♭

=
1

4

(

εA1 ,Γ
aεB2

)

ΓaΠ− +
1

24

(

εA1 ,Γ
abcεB2

)

ΓabcΠ− . (A.29)

A simple consequence of this Fierz identity is the following result.

Lemma 3. Let ε ∈ S+. Then for all A,B,C = 1, 2,

(

εA,ΓaεB
)

Γaε
C = 0 .
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Proof. An immediate consequence of the Fierz identity (A.29) and equation (A.23) is that

XABC :=
(

εA,ΓaεB
)

Γaε
C

is invariant under cyclic permutations of its indices: XABC = XBCA = XCAB. It also

follows from the fact that Γa is skewsymmetric relative to the symmetric inner product

(−,−), that

XABC = −XBAC .

In other words, XABC is totally skewsymmetric, but since A,B,C = 1, 2, it has to vanish.

A.7.2 The (2,0) Fierz formula

Every ε ∈ S+ defines a linear map ε⊗ ε♭ : S− → S+ by

(

ε⊗ ε♭
)

(ε′) =
〈

ε, ε′
〉

ε , (A.30)

with 〈−,−〉 the symplectic inner product on S = S+⊕S−. The linear map ε⊗ε♭ extends

to an endomorphism of S which is trivial on S+ and hence can be expressed as an element

of Cℓ(5, 1)⊗ Cℓ(0, 5). Symmetry and chirality imply that

ε⊗ ε♭ = caΓaΠ− + ca iΓaγiΠ− +
1

12
cabc ijΓabcγijΠ− , (A.31)

for some coefficients ca, ca i and cabc ij which must be determined. Taking traces and

remembering that γi are 4× 4 matrices, we find that

ε⊗ ε♭ = −
1

16

(

〈ε,Γaε〉Γa +
〈

ε,Γaγiε
〉

Γaγi +
1

24

〈

ε,Γabcγijε
〉

Γabcγij

)

Π− . (A.32)

A consequence of this Fierz identity is that if V µ = 〈ε,Γµε〉 and θiµ =
〈

ε,Γµγ
iε
〉

, then

5V µΓµε+ θiµΓ
µγiε = 0 ; (A.33)

although in contrast with the (1, 0) case, Vε does not Clifford annihilate ε. In particular,

Vε is not necessarily null, but only causal.
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