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Abstract Let X be a locally compact space with a continuous proper action of
a locally compact group G. Assuming that X satisfies a certain kind of duality in
equivariant bivariant Kasparov theory, we can enrich the classical construction of
Lefschetz numbers for self-maps to an equivariant K-homology class. We compute
the Lefschetz invariants for self-maps of finite-dimensional simplicial complexes and
smooth manifolds. The resulting invariants are independent of the extra structure used
to compute them. Since smooth manifolds can be triangulated, we get two formulas
for the same Lefschetz invariant in this case. The resulting identity is closely related
to the equivariant Lefschetz Fixed Point Theorem of Lück and Rosenberg.

Mathematics Subject Classification (2000) 19K35 · 46L80

1 Introduction

Euler characteristics and Lefschetz numbers of self-maps are important objects in
algebraic topology. They can be refined for spaces with a group action. A purely
topological approach to such equivariant Lefschetz invariants has been developed
by Lück and Weber [10,12]. This article grew out of the authors’ previous work on
equivariant Euler characteristics in [5]. The applications in [5] dictated studying Euler
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600 H. Emerson, R. Meyer

characteristics in the setting of bivariant Kasparov theory. Here we extend the frame-
work of [5] to produce Lefschetz invariants as well.

The main ingredient in our definition of the Lefschetz invariant is a certain duality
in bivariant Kasparov theory. Let X be a locally compact space and let G be a locally
compact group acting on X . A G-equivariant abstract dual for X is a pair (P,Θ)

consisting of a G-C∗-algebra P and a class Θ ∈ RKKG
n (X; C,P) for some n ∈ N

such that Kasparov product with Θ induces isomorphisms

KKG∗ (P ⊗ A, B) ∼= RKKG∗+n(X; A, B) (1)

for all G-C∗-algebras A and B; Kasparov [8] defines the groups KKG∗ (P ⊗ A, B)
and RKKG∗+n(X; A, B) appearing here.

Given an abstract dual for X , we define an equivariant Euler characteristic of X in
KKG

0 (C0(X),C) and an equivariant Lefschetz map

Lef : RKKG∗ (X;C0(X),C) → KKG∗ (C0(X),C).

The construction of these maps is explained in the body of the paper, see also [5]. The
equivariant Euler characteristic is already studied in [5], the Lefschetz map is studied
in [6], even in the more general setting of groupoid actions, which includes relative
Euler characteristics and Lefschetz maps for bundles of spaces. Here we only consider
the simpler case of a single space with a group action.

In order to actually compute the invariants, it is useful to have a bit more structure,
which is formalised in the notion of a Kasparov dual in [5,6].

If X is compact, then

RKKG∗ (X;C0(X),C) ∼= KKG∗ (C (X),C (X))

because both groups are defined by the same cycles. Hence the domain of the equi-
variant Lefschetz map consists of morphisms from X to X in an appropriate category
in this case. In general, there is a canonical map

KKG∗ (C0(X),C0(X)) → RKKG∗ (X;C0(X),C)

(see [6, Sect. 4.1.4]). Roughly speaking, the group on the right hand side also con-
tains non-proper self-maps of C0(X). In particular, any G-equivariant continuous
map ψ : X → X yields a class in RKKG

0 (X;C0(X),C), to which we can apply the
Lefschetz map to get Lef(ψ) ∈ KKG

0 (C0(X),C).
We are going to compute Lef(ψ) in two important cases where a Kasparov dual is

available—for simplicial complexes and smooth manifolds—and compare the results.
An important point is that Lef(ψ) does not depend on the dual that we use to com-
pute it. Since any smooth manifold can be triangulated, we therefore get two formulas
for Lef(ψ). The equality of these two formulas amounts to a Lefschetz Fixed Point
Theorem in KKG . The result is comparable to the Equivariant Lefschetz Fixed Point
Theorem of Lück and Rosenberg in [10]. However, there are some differences. On
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Equivariant Lefschetz maps 601

the one hand, their invariant is finer than ours. On the other hand, we are able to
weaken the standard transversality assumption on ψ to deal with the case where the
fixed point set of ψ has strictly positive dimension. Instead of orientation data at a
fixed point, we get a contribution of the Euler characteristic of the fixed point set.
In the transverse case, we describe the local orientation data in a different way than
Lück and Rosenberg. The local data for us is an element of the representation ring
of the isotropy subgroup of the fixed point. It can be described using Clifford alge-
bras and their representation theory. Finally, our methods allow the group G to be
non-discrete.

Lefschetz invariants exist for general elements of KKG∗ (C0(X),C0(X)), not just
for maps. We will address this kind of generalisation in a future article. As in the Euler
characteristic computations in [5], in the analysis presented here, Lef(ψ) appears as
a linear combination of point evaluation classes, at least in the simplicial case. In this
sense, the Lefschetz invariant of a map is always a 0-dimensional object. This changes
when we apply the Lefschetz map to more general elements in RKKG∗ (X;C0(X),C):
on that domain, the Lefschetz map is split surjective by [6, Proposition 4.26], so that
the Lefschetz map yields arbitrarily complicated K-homology classes. Of course, this
also makes computations more difficult. In another forthcoming article, we shall com-
pute Lefschetz invariants of geometric cycles or correspondences as defined by Baum
and his coauthors ([1,2]) and by Connes and Skandalis [3]. But these computations
use a different Kasparov dual in order to express everything in terms of geometric
cycles. The computations here are closer to those in [5].

There are some similarities between the results here and the Lefschetz Fixed Point
Formula in [4], which is also based on the method of Poincaré duality. However, each
deal with different situations: in [4] the trace of certain automorphisms of the crossed
product C0(X) � G on K∗(C0(X) � G) is computed. Our approach here only deals
with special automorphisms that act identically on G; but it yields a refined invariant
in KKG

0 (C0(X),C) instead of just a number.
The contents of this article is as follows. In Sect. 2, we briefly recall the notion of a

Kasparov dual and define the Lefschetz map. Section 3 contains our three main results.
Theorem 1 provides a formula for Lef(ψ) in the simplicial case and Theorem 2 in
the smooth case; Theorem 3 combines them into a Lefschetz Fixed Point Theorem.
The proofs appear in Sect. 4 for the simplicial case and in Sect. 5 for the smooth
case.

2 Kasparov duality and the Lefschetz map

The general framework of duals and Lefschetz maps is explained carefully in [6].
Here we only recall the definition of a Kasparov dual for a G-space X , where X is a
locally compact space and G a locally compact group. As in [6], we write 1 = C. If
we worked with real C∗-algebras, we would use R instead.

A Kasparov dual for X consists of an X � G-C∗-algebra P and two classes

Θ ∈ RKKG
n (X;1,P), D ∈ KKG−n(P,1),
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satisfying some conditions (see [6, Definition 4.1]). These ensure that the maps

PD : KKG
i−n(A ⊗ P, B) → RKKG

i (X; A, B), f �→ Θ ⊗P f, (2)

PD∗ : RKKG
i (X; A, B) → KKG

i−n(A ⊗ P, B), g �→ (−1)ni TP (g)⊗P D,

(3)

are inverse to each other. Here the map TP combines three maps

RKKG∗ (X; A, B) = RKKG∗ (X;C0(X, A),C0(X, B))

→ RKKG∗ (X × X;C0(X, A)⊗ P,C0(X, B)⊗ P)

→ RKKG∗ (X; A ⊗ P, B ⊗ P) → KKG∗ (A ⊗ P, B ⊗ P);

the first map is the exterior product, the second one is induced by the diagonal embed-
ding X → X × X , and the third one is the forgetful map. In our computations, we
will only use the following special case:

Lemma 1 Let ψ : X → X be a G-equivariant map. Let ψ∗(∆X ) be the class in
RKKG

0 (X;C0(X),1) of the ∗-homomorphism induced by the map X → X × X,
x �→ (x, ψ(x)), as in [6, Example 4.19]. Then

TP (ψ
∗∆X ) ∈ KKG

0 (C0(X)⊗ P,P)

is represented by the G-equivariant ∗-homomorphism

µψ : C0(X)⊗ P → P, f ⊗ a �→ ( f ◦ ψ) · a,

where the multiplication uses the X-structure on P .

Proof The proof is straightforward. �	
The Lefschetz map for X is the composition

Lef : RKKG∗ (X;C0(X),1)
PD∗−−→ KKG∗+n(C0(X)⊗ P,1)

Θ⊗C0(X)⊗P−−−−−−−−→ KKG∗ (C0(X),1). (4)

Here Θ is obtained from Θ by applying the forgetful map

RKKG
n (X;1,P) → KKG

n (C0(X),C0(X)⊗ P).

Given a G-equivariant map f : X → X , we define

Lef(ψ) := Lef(ψ∗∆X ),
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Equivariant Lefschetz maps 603

where we use ψ∗∆X ∈ RKKG
0 (X;C0(X),1) as defined in Lemma 1. Plugging in (3)

and Lemma 1, this becomes

Lef(ψ) = Θ ⊗C0(X)⊗P TP (ψ
∗∆X )⊗P D = Θ ⊗C0(X)⊗P [µψ ] ⊗P D. (5)

Since the class of ψ∗∆X in RKKG
0 (X;C0(X),1) depends only on the equivariant

homotopy class of ψ , so does Lef(ψ). The Lefschetz invariant of the identity map is
the equivariant Euler characteristic of X :

EulX := Lef(idX ) ∈ KKG
0 (C0(X),1). (6)

This agrees with the definition in [5].
All choices of a Kasparov dual (P,Θ, D) yield the same Lefschetz map. This

is shown in [5] for the equivariant Euler characteristic; as observed in [6], the proof
generalises to the Lefschetz map. We will use this fact when X is, at the same time,
a smooth Riemannian manifold with G acting isometrically and a simplicial complex
with G acting simplicially. Both the smooth and the combinatorial structure provide
Kasparov duals for X . These two duals yield different formulas for Lef(ψ). But they
must produce the same class in KKG

0 (C0(X),1). The equality between both results is
our equivariant Lefschetz formula.

3 Statement of the main results

We first consider the simplest possible case. We let G be trivial and let X be a con-
nected compact manifold equipped with a triangulation. Let C•(X) be the resulting
simplicial chain complex. Let ψ : X → X be a self-map.

We can find a smooth map ψ̃ : X → X that is homotopic to ψ and whose graph is
transverse to the diagonal. When we use the Kasparov dual from the smooth structure
on X , we get

Lef(ψ) = Lef(ψ̃) =
∑

p∈Fix(ψ̃)

sign det
(

idTp X − Dpψ̃
)

· [ev],

where Dpψ̃ denotes the derivative of ψ̃ at p and [ev] ∈ K0(X) denotes the class
of point evaluations. Since X is connected and KK-theory is homotopy invariant, all
point evaluations have the same K-homology class. The numerical factor in front of
[ev] is the usual local formula for the Lefschetz number of ψ̃ in terms of fixed points.

The triangulation provides another Kasparov dual for X . This dual yields

Lef(ψ) =
dim X∑

d=0

(−1)d tr (Ψd : Cd(X) → Cd(X)) · [ev],

where Ψ• : C•(X) → C•(X) is the chain map induced by ψ (or a cellular approxima-
tion ofψ). A familiar trick replaces the spaces of cycles Cd(X) by the homology spaces
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604 H. Emerson, R. Meyer

Hd(X) in the last formula, expressing the Lefschetz number as a global homological
invariant.

The equivariant generalisation of our Lefschetz formulas requires some preliminary
notation. First we explain the formula for the combinatorial case, then for the smooth
case.

3.1 The combinatorial Lefschetz map

Let X be a finite-dimensional simplicial complex and let G be a locally compact
group acting smoothly and simplicially on X (that is, stabilisers of points are open).
The finite-dimensionality assumption is needed for the construction of a Kasparov
dual in [5] to work. It can probably be dropped if we use a more sophisticated dual.
Assume that X admits a colouring (that is, X is typed) and that G preserves the col-
ouring. This ensures that if g ∈ G maps a simplex to itself, then it fixes that simplex
pointwise.

Let SX be the set of (non-degenerate) simplices of X and let Sd X ⊆ SX be the
subset of d-dimensional simplices. The group G acts smoothly on the discrete set SX
preserving the decomposition SX = ⊔

Sd X . Decompose SX into G-orbits. For each
orbit σ̇ ⊆ SX , choose a representative σ ∈ SX and let ξσ ∈ X be its barycentre
and Stab(σ ) ⊆ G its stabiliser. Restriction to the orbit of ξσ defines a G-equivariant
∗-homomorphism

ξσ̇ : C0(X) → C0 (G/Stab(σ )) → K
(
�2(G/Stab σ)

)
, (7)

where the second map is the representation by pointwise multiplication operators. We
let [ξσ̇ ] be its class in KKG

0 (C0(X),1).
Let ψ : X → X be a G-equivariant self-map of X . It is too restrictive to assume ψ

to be simplicial–simplicial approximation requires us to refine the triangulations on
domain and target independently, so that we may need two different triangulations
of X for a self-map. What we can achieve is that ψ becomes a cellular map with
respect to the canonical CW-complex structure on a simplicial complex.

More precisely, ψ is G-equivariantly homotopic to a G-equivariant cellular map.
Hence we may assume without loss of generality that ψ is itself cellular, so that it
induces a G-equivariant chain map

Ψ : C•(X) → C•(X),

where C•(X) is the cellular chain complex of X ; this is nothing but the chain complex
of oriented simplices of X . A basis for C•(X) is given by the set of (un)oriented
simplices, by arbitrarily choosing an orientation on each simplex. We may describe
the chain map Ψ by its matrix coefficients Ψστ ∈ Z with respect to this basis; thus the
subscripts are unoriented simplices. For example, if ψ maps a simplex to itself and
reverses its orientation, thenΨσ,σ = −1. Sinceψ is G-equivariant,Ψg(σ ),g(σ ) = Ψσσ .
So the following makes sense.
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Equivariant Lefschetz maps 605

Definition 1 For σ̇ ∈ G\Sd X , let n(Ψ, σ̇ ) := (−1)dΨσσ ∈ Z for any choice of
representative σ ∈ σ̇ .

Theorem 1 Let X be a finite-dimensional coloured simplicial complex and let G be
a locally compact group that acts smoothly and simplicially on X, preserving the
colouring. Let ψ : X → X be a G-equivariant self-map. Define n(Ψ, σ̇ ) ∈ Z and
[ξσ̇ ] ∈ KKG

0 (C0(X),1) for σ̇ ∈ G\SX as above. Then

Lef(ψ) =
∑

σ̇∈G\SX

n(Ψ, σ̇ )[ξσ̇ ].

Theorem 1 will be proved in Sect. 4, where we also recall the Kasparov dual for X .

3.2 The K-orientation of a vector bundle automorphism

Here we prepare for the Lefschetz formula for self-maps of manifolds. We need an
invariant for vector bundle automorphisms that generalises the sign of the determi-
nant of a linear map A : V → V on a single vector space. This is a refinement of a
construction which appears in [4] in connection with the equivariant index of twisted
Schrödinger operators. If G is a group of orthogonal transformations of R

n and if
A ∈ Gln(R) commutes with G, then a refinement of the sign of the determinant of A
is the virtual group character

χG,A : G → {±1}, χG,A(g) := sign det(A|Fix(g)). (8)

The virtual representation of G corresponding to χG,A is the solution to an equivariant
index problem on R

n . Here we take a different approach to the same invariant, which
permits a generalisation of it to equivariant bundles. In the case where Y is a point,
the equivalence between the picture in [4] and the one presented here follows from
the fact that both give a solution to the same equivariant index problem.

A very similar invariant to ours appears in the work of Lück and Rosenberg, but
the connection to index theory and to representation theory seems absent.

We consider the following situation. Let Y be a locally compact space, let G be a
locally compact group (or groupoid) acting continuously on Y , and let π : E → Y be
a G-equivariant Euclidean R-vector bundle over E , that is, E comes equipped with
a G-invariant inner product on its fibres. Let A : E → E be a G-equivariant vector
bundle automorphism, that is, a G-equivariant continuous map E → E over Y that
restricts to R-vector space isomorphisms on the fibres of E . We are going to define a
G-equivariant Z/2-graded real line bundle sign(A) over Y .

Since we work with complex K-theory most of the time, we are mainly interested
in the complexification sign(A) ⊗R C. Nevertheless, it is worth noting that the line
bundles we get are complexifications of real line bundles.

If Y is a point, then G-equivariant Z/2-graded real vector bundles over Y corre-
spond to real orthogonal virtual representations of G. The initial data is thus a real
orthogonal representation of G on a Euclidean space R

n and an invertible linear map
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606 H. Emerson, R. Meyer

A : R
n → R

n commuting with G. The sign is a virtual one-dimensional representation
of G and hence corresponds to a pair (χ, ε), where ε ∈ {0, 1} is the parity of the line
bundle and χ : G → {−1,+1} is a real-valued character. The parity ε turns out to
be 0 if A preserves orientation and 1 if A reverses orientation (see Example 2). In this
sense, our invariant refines the orientation of A. As it happens, if the parity is even,
then χ = χG,A as in (8), and if the parity is odd, then χ = −χG,A. In particular,
evaluating χG,A at the identity of G yields the parity.

Definition 2 Let Cliff(E) be the bundle of Clifford algebras associated to E ; its fibre
Cliff(E)x is the (real) Clifford algebra of Ex with respect to the given inner product.

We can also form Cliff(E) if E carries an indefinite bilinear form. If the index of
the bilinear form on E is divisible by 8, then the fibres of Cliff(E) are isomorphic to
matrix algebras. In this case, a G-equivariant spinor bundle for E is a Z/2-graded
real vector bundle SE together with a grading preserving, G-equivariant ∗-algebra
isomorphism c : Cliff(E) → End(SE ). This representation is determined uniquely by
its restriction to E ⊆ Cliff(E), which is a G-equivariant map c : E → End(SE ) such
that c(x) is odd and symmetric and satisfies c(x)2 = ‖x‖2 for all x ∈ E . We only use
spinor bundles in this special case.

Recall that the spinor bundle is uniquely determined up to tensoring with a G-equi-
variant real line bundle L: if ct : E → St for t = 1, 2 are two G-equivariant spinor
bundles for E , then we define a G-equivariant real line bundle L over Y by

L := HomCliff(E)(S1, S2),

and the evaluation isomorphism S1⊗L
∼=−→ S2 intertwines the representations c1 and c2

of Cliff(E).

Definition 3 Let A : E → E be a G-equivariant vector bundle automorphism and
let A = T ◦ (A∗ A)1/2 be its polar decomposition with an orthogonal vector bundle
automorphism T : E → E .

Let F be another G-equivariant vector bundle over Y with a non-degenerate bilin-
ear form, such that the signature of E ⊕ F is divisible by 8, so that Cliff(E ⊕ F) is
a bundle of matrix algebras over R and E ⊕ F has a G-equivariant spinor bundle,
that is, there exists a G-equivariant linear map c : E ⊕ F → End(S) that induces an
isomorphism of graded ∗-algebras

Cliff(E ⊕ F) ∼= End(S).

Then

c′ : E ⊕ F → End(S), (ξ, η) �→ c(T (ξ), η)

yields another G-equivariant spinor bundle for E ⊕ F . We let

sign(A) := HomCliff(E⊕F)
(
(S, c′), (S, c)

)
.

This is a G-equivariant Z/2-graded real line bundle over Y .

123



Equivariant Lefschetz maps 607

Example 1 For example, consider A = id. Choose F , S and c as in the definition.
Then the sign of the identity map is HomCliff(E⊕F) ((S, c), (S, c)). Since the spinor
representation is fibrewise irreducible, the only fibrewise endomorphisms of S that
commute with the Clifford action are multiples of the identity map. The identity map is
grading-preserving and commutes with G. Hence sign(id) is the trivial, evenly graded
line bundle over Y equipped with the trivial G-action.

Formally, we may think of the sign construction as follows. The set of equivariant
K-orientations on X is in a natural way a module over the Abelian group of real equi-
variant line bundles. The procedure given above of twisting with an equivariant map
f : X → X is invariant under twisting with a real equivariant line bundle, that is, it
commutes with the module structure. Hence it must itself be given by module product
with some equivariant real line bundle. The latter is the sign of f .

Lemma 2 The G-equivariant Z/2-graded real line bundle sign(A) is well-defined,
that is, it depends neither on the bundle F nor on the spinor bundle S for E ⊕ F.
Furthermore, sign(A) is a homotopy invariant of A and has the following additivity
properties:

• sign(A1 ◦ A2) ∼= sign(A1) ⊗ sign(A2) for two equivariant automorphisms
A1, A2 : E ⇒ E of the same bundle;

• sign(A1 ⊕ A2) ∼= sign(A1) ⊗ sign(A2) for two equivariant vector bundle auto-
morphisms A1 : E1 → E1 and A2 : E2 → E2.

Proof Since the spinor bundle for E ⊕ F is unique up to tensoring with some line
bundle L , changing the spinor bundle replaces sign(A) by L ⊗ sign(A) ⊗ L∗ for
some line bundle, which is canonically isomorphic to sign(A). Homotopy invariance
of sign(A) follows because homotopic line bundles are isomorphic, and this implies
that it suffices to treat orthogonal transformations A.

Let E1 and E2 be two G-equivariant vector bundles with G-equivariant spinor bun-
dles (S1, c1) and (S2, c2). Let A1 : E1 → E1 and A2 : E2 → E2 be two vector bundle
automorphisms. Equip E := E1 ⊕ E2 with the automorphism A := A1 ⊕ A2 and the
G-equivariant spinor bundle S := S1 ⊗ S2 with the representation

c := (c1 ⊗ 1)⊕ (1 ⊗ c2) : E1 ⊕ E2 → End(S1 ⊗ S2).

The canonical map

HomCliff(E1) ((S1, c1), (S1, c1 ◦ A1)) ⊗ HomCliff(E2) ((S2, c2), (S2, c2 ◦ A2))

→ HomCliff(E) ((S, c), (S, c ◦ A))

is an isomorphism.
For A2 = id, this shows that sign(A1) remains unchanged if we stabilise by another

vector bundle with a spin structure. Hence sign(A) does not depend on F . We also get
the second additivity property; the first one is trivial. �	
Example 2 By R we will understand the one-dimensional real vector space with pos-
itive parity, and by R

op the same vector space with odd parity.
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By the definitions, if Y is a point and G is trivial, then sign(A) is either R or R
op.

Since sign(A) is homotopy invariant, all orientation-preserving maps A have
sign(A) = sign(id) = R. A routine computation (see the next example) shows that the
sign of the orientation reversal automorphism x �→ −x on R is R

op. Since any orienta-
tion-reversing map A is homotopic to the direct sum of x �→ −x and idRn−1 , it follows
from Lemma 2 that sign(A) = R for orientation-preserving A and sign(A) = R

op for
orientation-reversing A, as claimed above.

Example 3 Consider G = Z/2. We use similar notation as above, but decorate R

(or R
op) by a subscript which is a character, as appropriate.

Let τ : G → {1} be the trivial character and let χ : G → {+1,−1} be the non-
trivial character. Consider A : Rχ → Rχ , t �→ −t . Then sign(A) ∼= R

op
χ carries a

non-trivial representation.
To see this, let F be Rχ with negative definite metric. Thus the Clifford algebra of

Rχ ⊕ Rχ is Cliff1,1 ∼= M2×2(R). Explicitly, the map

c(x, y) =
(

0 x − y
x + y 0

)

induces the isomorphism. We equip R
2 with the representation τ ⊕ χ , so that c is

equivariant.
Twisting by A yields another representation

c′(x, y) := c(−x, y) = Sc(x, y)S−1 with S = S−1 =
(

0 1
−1 0

)
.

Since S reverses the grading and exchanges the representations τ and χ , it induces an

isomorphism (Rτ ⊕ R
op
χ )⊗ R

op
χ

∼=−→ Rτ ⊕ R
op
χ . Hence sign(A) = R

op
χ .

This result can be computed using the picture (8) instead. The fixed point set of the
identity element of Z/2 is all of R. The fixed point set of the non-trivial generator of
Z/2 is {0} ⊂ R. Restricting A to these subspaces gives sign det equal to −1 and 1,
respectively. This describes the virtual character −χ .

Now we comment on the relationship between our equivariant orientation and the
corresponding notion used by Lück and Rosenberg in [10]. Our work intersects with
theirs when Y is discrete, that is, we are dealing with a self-map with isolated, regular
fixed points. Since both methods use induction in the same way, we will just consider
the case when Y is a point and G is a finite group.

Thus G acts by orthogonal transformations on a Euclidean space E , and A is a
G-equivariant, invertible linear map on E . We have shown above how to associate to
this data a virtual character sign(A) of G, which is described in (8). To the same data,
Lück and Rosenberg associate an invariant DegG

0 (A) in the Abelian group U G(
) of
Z-valued functions on the setΠ(G) of conjugacy classes of subgroups of G. Compu-
tations in [10] describe DegG

0 (A) by the formula

DegG
0 (A)(L) = sign det(A|Fix(L)).
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Equivariant Lefschetz maps 609

Comparison with (8) shows that this restricts to our virtual character on cyclic sub-
groups. Thus their local invariant contains more information than ours.

3.3 The smooth Lefschetz map

Now let X be a smooth Riemannian manifold and assume that G acts on X isometri-
cally and continuously.

Letψ : X → X be a G-equivariant self-map of X . In order to write down an explicit
local formula for Lef(ψ), we impose the following restrictions on ψ :

• ψ is smooth;
• the fixed point subset Fix(ψ) of ψ is a submanifold of X ;
• if (p, ξ) ∈ T X is fixed by the derivative Dψ , then ξ is tangent to Fix(ψ).

The last two conditions are automatic ifψ is isometric with respect to some Riemann-
ian metric (not necessarily the given one) and hence if ψ has finite order.

In the simplest case, ψ and idX are transverse, that is, id − Dψ is invertible at each
fixed point of ψ ; this implies that ψ has isolated fixed points. While this situation can
always be achieved in the non-equivariant case, we cannot expect transversality for
non-discrete G because the fixed point set must be G-invariant.

To describe the Lefschetz invariant, we abbreviate Y := Fix(ψ). This is a closed
submanifold of X by assumption. Let ν be the normal bundle of Y in X . Since the
derivative Dψ fixes the tangent space of Y , it induces a linear map Dνψ : ν → ν. By
assumption, the map idν − Dνψ : ν → ν is invertible.

Theorem 2 Let X be a complete smooth Riemannian manifold, let G be a locally
compact group that acts on X continuously and by isometries, and let ψ : X → X
be a smooth self-map. Assume that the fixed point subset Y := Fix(ψ) of ψ is a
submanifold of X and that all tangent vectors of X fixed by Dψ are tangent to Y .

Let ν be the normal bundle of Y in X and let Dνψ : ν → ν be induced by the
derivative of ψ as above. Let rY : C0(X) → C0(Y ) be the restriction map and let
EulY ∈ KKG

0 (C0(Y ),1) be the equivariant K-homology class of the de Rham opera-
tor on Y . Then

Lef(ψ) = rY ⊗C0(Y ) sign(idν − Dνψ)⊗C0(Y ) EulY .

Remark 1 It is shown in [5] that the equivariant Euler characteristic EulX := Lef(idX )

is the class of the de Rham operator on X . This justifies the notation EulY in Theorem 2.
If ψ is the identity map, then Theorem 2 reduces to this description of EulX .

Now we make Theorem 2 more concrete in the special case where ψ and idX are
transverse. Then the fixed point subset Y is discrete. A discrete set is a manifold, and
Theorem 2 describes its Euler characteristic: the de Rham operator on Y is the zero
operator on L2(Λ∗

C
(T ∗ X)) = �2(Y ), so that we have the class of the representation

C0(Y ) → K(�2Y ) by pointwise multiplication operators.
The normal bundle ν to Y in X is the restriction of T X to Y . For p ∈ Y , let n p be +1

if idTp X − Dpψ preserves orientation, and −1 otherwise. The graded equivariant line

123



610 H. Emerson, R. Meyer

bundle sign(idν − Dνψ) in Theorem 2 is determined by pairs (n p, χp) for p ∈ Y ,
where n p is the parity of the representation at p and χp is a certain real-valued charac-
ter χp : Stab(p) → {−1,+1} that depends on idTp X − Dpψ and the representation of
the stabiliser Stab(p) ⊆ G on Tp X via the formula (8). Equivariance implies that n p is
constant along G-orbits, whereas χp behaves like χg·p = χp ◦ Ad(g−1). Let �2

χ (Gp)
be the representation of G � C0 (G/Stab(p)) obtained by inducing the representa-
tion χp from Stab(p), and let C0(X) act on �2

χ (Gp) by restriction to G/Stab(p). This
defines a G-equivariant ∗-homomorphism

ξGp,χ : C0(X) → K(�2
χG).

Theorem 2 implies

Corollary 1 If the graph of φ is transverse to the diagonal in X × X, then

Lef(ψ) =
∑

Gp∈G\ Fix(ψ)

n p[ξGp,χ ]

where [ξGp,χ ] ∈ KKG
0 (C0(X),1) and the multiplicities n p are explained above.

Furthermore, the character χ : StabG(p) → {−1,+1} at a fixed point p has the
explicit formula

χ(g) = sign det
(
id − Dpφ

) · sign det
(
id − Dpφ|Fix(g)

)
.

If, in addition, G is trivial and X is connected, then ξGp,χ = evp for all p ∈ Y ;
moreover, all point evaluations have the same K-homology class because they are
homotopic. Hence we get the classical Lefschetz data multiplied by the K-homology
class of a point

Lef(ψ) =
⎛

⎝
∑

p∈Fix(ψ)

sign(idTp X − Dψp)

⎞

⎠ · [ev]

as asserted above. This sum is finite if X is compact.

Lemma 3 Let H ⊆ G be compact and open, let p, q ∈ X H belong to the same path
component of the fixed point subspace X H , and let χ ∈ Rep(H). Then

[
ξ

Gp,indStab(Gp)
H (χ)

]
=

[
ξ

Gq,indStab(Gq)
H (χ)

]
in KKG

0 (C0(X),1).

Proof The two representations ξGp,... and ξGq,... both act on G-Hilbert spaces that
are isomorphic to indG

H χ . A homotopy from p to q inside X H provides a path of
G-equivariant ∗-homomorphisms

C0(X) → C0(G/H) → K(indG
H χ).

�	
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Equivariant Lefschetz maps 611

Example 4 Let X ⊆ C be the unit circle and let G = Z/2 = {1, g} act on X by the
conjugation z �→ z, that is, reflection at the real axis. Let n ∈ N≥2 and consider the
G-equivariant self-map ψ(z) := zn of X . Its fixed point set is the set of roots of unity
of order n − 1. The derivative Dψ is n at all fixed points, so that idR − Dψ = 1 − n
is a negative multiple of the identity map on R.

Let τ and χ be the trivial and non-trivial representations of G and let Cτ and Cχ

be C with the corresponding representation of G. If p ∈ X is aψ-fixed point different
from ±1, then its stabiliser in G is trivial, so that there is no representation χp to worry
about. By Example 2, each of these fixed points contributes −[ξ{z,z}], where ξ{z,z} is the
representation of C0(X) on �2({z, z}) by pointwise multiplication. Example 3 shows
that the contribution of 1 is −[ξ{1},χ ]; this is just the class of the representation of
C0(X) on Cχ by evaluation at 1 ∈ X . If n is odd, then there is a similar contribution
−[ξ{−1},χ ] from the fixed point −1.

The limit of ξ{z,z} for z → ±1 is [ξ{1},χ⊕τ ] because χ ⊕ τ is the regular represen-
tation of G, and by Lemma 3. Hence the contributions of ±1 are [ξ±1,τ ] − [ξ{z,z}] for
any z ∈ X\{±1}. We may abbreviate ξ±1,τ = ev±1. Thus we get

Lef(ψ) =
{

[ev1] + [ev−1] − n+1
2 [ξ{z,z}] if n is odd,

[ev1] − n
2 [ξ{z,z}] if n is even.

We may also triangulate X by taking ±1 as vertices and the upper and lower semi-
circles as edges. The combinatorial Lefschetz invariant of ψ is given by the same
formula in this case, as it should be. When we forget the G-action, Lef(ψ) simplifies
to (1−n) · [ev]; this is the expected result because 1−n is the supertrace of the action
of ψ on the homology of X .

Example 5 Let G ∼= Z�Z/2Z be the infinite dihedral group, identified with the group
of affine transformations of R generated by u(x) = −x and w(x) = x + 1. Then G
has exactly two conjugacy classes of finite subgroups, each isomorphic to Z/2. Its
action on R is proper, and the closed interval [0, 1/2] is a fundamental domain. There
are two orbits of fixed point in R – those of 0 and 1/2 – and their stabilisers represent
the two conjugacy classes of finite subgroups.

Now we use some notation from Example 3. Each copy of Z/2 acting on the tangent
space at the fixed point acts by multiplication by −1 on tangent vectors. Therefore,
the computations in Example 3 show that for any nonzero real number A, viewed as
a linear transformation of the tangent space that commutes with Z/2, we have

sign(A) =
{

R
op
χ if A < 0, and

Rτ if A > 0.

Let φ be a small G-equivariant perturbation of the identity map R → R with the
following properties. First, φmaps the interval [0, 1/2] to itself. Second, its fixed points
in [0, 1/2] are 1/4 and the end points 0 and 1/2; third, its derivative is bigger than 1 at
both endpoints and between 0 and 1 at 1/4. Such a map φ clearly exists. Furthermore,
it is homotopic to the identity map, so that Lef(φ) = EulR.
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612 H. Emerson, R. Meyer

By construction, there are three fixed points modulo G, namely, the orbits of 0, 1/4

and 1/2. The isotropy groups of the first and third orbit are non-conjugate subgroups
isomorphic to Z/2; from Example 3, each of them contributes R

op
χ . The point 1/4

contributes the trivial character of the trivial subgroup. Hence

Lef(φ) = −[ξZ,χ ] − [ξZ+1/2,χ ] + [ξZ+1/4].

On the other hand, suppose we change the above map φ to fix the same points but to
have zero derivative at 0 and 1/2 and large derivative at 1/4. This is obviously possible.
Then we get contributions of Rτ at 0 and 1/2 and a contribution of −[ξ1/4] at 1/4. Hence

Lef(φ) = [ξZ,τ ] + [ξZ+1/2,τ ] − [ξZ+1/4].

Combining both formulas yields

[ξZ,τ ] + [ξZ+1/2,τ ] − [ξZ+1/4] = −[ξZ,χ ] − [ξZ+1/2,χ ] + [ξZ+1/4]. (9)

By the way, the left-hand side is the description of EulR we get from the combinatorial
dual with the obvious G-invariant triangulation of R with vertex set Z · 1/2 ⊂ R.

It is possible, of course, to verify (9) directly. Indeed, since τ + χ is the regular
representation λ, (9) is equivalent to

[ξZ,λ] + [ξZ+1/2,λ] = 2[ξZ+1/4],

and this relation follows from Lemma 3.

Now let G be a Lie group acting properly and isometrically on a Riemannian man-
ifold X . Assume that G\X is compact. Let ψ : X → X be a smooth map. Assume
that F := Fix(ψ) is a manifold and the restriction of id − Dpψ to the normal bundle
of Tp F ⊆ Tp X is injective for all p ∈ F . Restriction of the Riemannian metric on X
to F gives a Riemannian metric on F . Since F is closed and G\X is compact, G\F
is compact. Hence G\F is complete with respect to the restricted metric.

Let H be a Lie group acting isometrically by orientation-preserving maps on an
odd-dimensional complete Riemannian manifold F . Then EulF ∼= 0 (see [5]). Using
Theorem 2, we see that odd-dimensional components of G\F do not contribute to
Lef(ψ). Only even-dimensional components may have non-trivial Euler characteris-
tics.

Example 6 Let ψ : S
3 → S

3 be the reflection ψ(x, y, z, w) := (x, y, z,−w), where

S
3 := {(x, y, z, w) ∈ R

4 | x2 + y2 + z2 + w2 = 1}.

The group O(3,R) ⊂ O(4,R) acts on S
3 commuting with ψ , so that Theorem 2

applies. We have Fix(ψ) ∼= S
2 and

Lef(ψ) = −i∗(EulS2) ∈ KKO(3,R)
0 (C (S3),C),
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Equivariant Lefschetz maps 613

where i : S
2 → S

3 is the inclusion as the equator. The bundle sign(id − Dψ) is the
trivial line bundle with trivial action of O(3,R), with negative parity; this accounts
for the sign. Note that EulS2 with respect to the group O(3,R) is nonzero because
the (non-equivariant) Euler characteristic of S

2 is 2. The equivariant index of EulS2 in

KKO(3,R)
0 (C,C) is given by the character τ + det, where τ is the trivial character and

det : O(3,R) → {−1,+1} is the determinant. This follows from the usual description
of the index of the de Rham operator in terms of spaces of harmonic forms.

Finally, at least in the non-equivariant case, we record that maps of non-compact
G-spaces usually have zero Lefschetz invariants:

Corollary 2 In the situation of Theorem 2, assume that G is the trivial group, ψ
and idX are transverse, and none of the connected components of X are compact.
Then Lef(ψ) = 0.

Proof There is an increasing sequence of compact subsets (Km) in X such that, for
each m ∈ N, no component of X\Km is compact. For each p ∈ Y , let m be minimal
with p ∈ Km , and let Ip be a path from p to ∞ in X+ that does not meet Km−1.
This ensures that

⊕
p∈Y evIp(t) is a homotopy from the ∗-homomorphism describing

Lef(ψ) to the zero map. �	
The equivariant Lefschetz map can carry information also for non-compact spaces.

An analogue of Corollary 2 holds in the equivariant case for discrete G provided for
each finite subgroup H ⊆ G, the fixed point submanifold {x ∈ X | H x = x} has no
compact components; it suffices to assume this only for those components that contain
a fixed point of ψ .

3.4 The Lefschetz formula: comparing the two computations

Theorem 3 Let G be a discrete group and let X be a smooth manifold equipped with
a proper action of G. Let ψ : X → X be a smooth map that satisfies the conditions of
Theorem 2. Choose a G-equivariant cellular decomposition of X, and letψ ′ : X → X
be G-homotopic to ψ and cellular. Then

∑

σ̇∈G\SX

n(Ψ, σ̇ )[ξσ̇ ] = Lef(ψ ′)

= Lef(ψ) = rY ⊗C0(Y ) sign(idν − Dνψ)⊗C0(Y ) EulY .

Here SX denotes the set of cells in the decomposition, and the multiplicities n(Ψ, σ̇ )
and the equivariant K-homology classes [ξσ̇ ] are as in Theorem 1; Y = Fix(ψ), rY is
the class of the restriction map C0(X) → C0(Y ), ν is the normal bundle of Y , and EulY
is the equivariant K-homology class of the de Rham operator on Y as in Theorem 2.

Proof Since G is discrete and acts properly, X carries a G-equivariant triangulation
(see [7]) and a complete G-invariant Riemannian metric.
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614 H. Emerson, R. Meyer

The combinatorial Lefschetz invariant
∑
σ̇∈G\SX n(Ψ, σ̇ )[ξσ̇ ] is independent of the

cellular decomposition. Hence we may compute it using the cellular structure underly-
ing a triangulation (our duality approach does not work for general G-CW-complexes).
Any G-equivariant self-map of a G-CW-complex is G-equivariantly homotopic to a
cellular G-equivariant self-map, so thatψ ′ exists. We have Lef(ψ ′) = Lef(ψ) because
the Lefschetz invariant is homotopy invariant. Now combine the formulas in Theo-
rems 1 and 2. �	

This result is similar to the Lefschetz Fixed Point Formula of [10]. There are two
differences: first, we allow ψ to have non-isolated fixed points and describe the local
contributions of fixed points differently even in the isolated case; second, we compute
an element of KKG

0 (C0(X),1) instead of the universal equivariant homology theory
considered in [10].

4 Lefschetz invariants for simplicial complexes

We first recall briefly the combinatorial Kasparov dual in [5]. This construction is
suggested by work of Kasparov and Skandalis in [9]. In order to compute Euler char-
acteristics in [5] we reconstructed the results of Kasparov and Skandalis in more
explicit terms. We refer the reader to our previous article for details and some nota-
tion. We are going to use the combinatorial Kasparov dual to compute the Lefschetz
invariant of a cellular self-map. This is a matter of plugging all the ingredients into (5)
and simplifying the outcome.

4.1 Description of the combinatorial dual

Let X be a simplicial complex and let G be a locally compact group acting simplicially
on X . Thus G permutes the simplices of X , and the stabiliser of each simplex is an
open subgroup of G. Since this forces the connected component of the identity in G to
act trivially, the group G will usually be totally disconnected, but we do not need this
assumption. Let Sd X be the set of d-simplices in X and SX = ⊔

Sd X . In particular,
S0 X is the set of vertices of X .

We assume throughout that X is finite-dimensional, say of dimension at most n. Let
n := {1, . . . , n}. An (n-dimensional, G-invariant) colouring on X is a map γ : S0 X →
n that is G-invariant and satisfies γ (σ ) �= γ (τ) whenever σ, τ ∈ S0 X are joined by
an edge. Equivalently, if σ ∈ SX is any simplex, then γ restricts to an injective map
on the set of vertices of σ . Coloured simplicial complexes are also called typed.

The barycentric subdivision of an n-dimensional simplicial complex admits a
canonical n-dimensional colouring, so that we may assume without loss of gener-
ality that X itself has such a colouring γ . Since γ is G-invariant, a group element that
maps a simplex to itself must fix it pointwise.

We use the n-dimensional affine space

E := {(t0, . . . , tn) ∈ R
n+1 | t0 + · · · + tn = 1}
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Equivariant Lefschetz maps 615

and the standard n-simplex

Σ := {(t0, . . . , tn) ∈ E | ti ≥ 0 for i = 0, . . . , n}.

For a non-empty subset f ⊆ n, we let Σ f ⊆ Σ be the corresponding face; its
points are characterised by t j = 0 for j /∈ f . This subset is denoted by | f | in [5]. The
map f �→ Σ f gives a bijection between the set S(n) of non-empty subsets of n and
the set of faces of Σ .

Let τ be a simplex in X with vertices v0, . . . , vd , where d = dim τ . We also write |τ |
for the corresponding subset of X . Points in |τ | can be described by barycentric coor-
dinates as t0v0 + · · · + tdvd with t0, . . . , td ∈ R≥0 and t0 + · · · + td = 1. Since the
colouring γ is injective on the vertices of τ , the set

γ (τ) := {γ (v0), . . . , γ (vd)}

has d + 1 elements and hence determines a d-dimensional face Σγ(τ) of Σ . Even
more, γ induces a linear bijection

|γ | : |τ | → Σγ(τ), t0v0 + · · · + tdvd �→ t0eγ (v0) + · · · + tdeγ (vd ).

Here ei ∈ Σ ⊆ E is the i th standard basis vector.
We define

R f := {t ∈ E | t j ≥ 0 for j ∈ f and t j ≤ 0 for j /∈ f }.
R≤ f :=

⋃

l⊆ f

Rl = {t ∈ E | t j ≤ 0 for j ∈ n\ f }.

We introduce homogeneous coordinates by letting

[t0 : . . . : tn] := (t0, . . . , tn)

t0 + · · · + tn

for (t0, . . . , tn) ∈ R
n+1 with t0 + · · · + tn �= 0. We define a retraction q : E → Σ

from E to Σ by

q(t) := [max(t0, 0) : . . . : max(tn, 0)] for t = (t0, . . . , tn) ∈ E .

Thus R≤ f = q−1(Σ f ) for f ∈ S(n).
Let K := K(�2SX). If T ∈ K, let Tσ,σ ′ for σ, σ ′ ∈ SX be its matrix coefficients.

Definition 4 The dual C∗-algebra of X is defined by

P := {ϕ ∈ C0(E,K) | suppϕσ,σ ′ ⊆ R≤γ (σ∩σ ′) for all σ, σ ′ ∈ SX}.
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616 H. Emerson, R. Meyer

Example 7 Suppose X is a single 1-simplex—together with its two vertices. Thus SX
has three elements. The dual C∗-algebra is the algebra of 3×3-matrices with a pattern
of entries of the form

⎛

⎝
C0(R<0) C0(R<0) 0
C0(R<0) C0(R) C0(R>1)

0 C0(R>1) C0(R>1)

⎞

⎠ .

This C∗-algebra is Morita–Rieffel equivalent to C0(R). This is to be expected because
[0, 1] is homotopy equivalent to the point, so that its dual should be, up to dimension
shift, KK-equivalent to 1.

We return to the general case. The pointwise multiplication homomorphismC0(E)⊗
P → P turns P into a C∗-algebra over E . To describe the fibre at t ∈ E , let
f := { j ∈ n | t j ≥ 0}; equivalently, this is the minimal subset of n for which t is
contained in the interior of R≤ f . Let SX≥ f := {σ ∈ SX | γ (σ ) ⊇ f } and define a
relation on SX≥ f by

σ ∼ f σ
′ ⇐⇒ γ (σ ∩ σ ′) ⊇ f.

This is an equivalence relation because γ is a colouring. The fibre of P over t is the
C∗-algebra of the equivalence relation ∼ f on SX≥ f or, equivalently,

K f := {ϕ ∈ K | ϕσ,σ ′ = 0 unless γ (σ ∩ σ ′) ⊇ f }.

This is a direct sum of matrix algebras with one summand for each simplex in X of
colour f .

To be part of a Kasparov dual, P must be a C∗-algebra over X . This structure
can also be described by a non-degenerate G-equivariant ∗-homomorphism
m : C0(X,P) ∼= C0(X)⊗ P → P . We recall its description in [5, Eq. 42]:

m(ϕ)σσ ′(t) = ϕσσ ′(q̄σ (t), t)

for all ϕ ∈ C0(X,P), t ∈ E , and, σ, σ ′ ∈ SX . This involves the map

q̄ : E × SX → X, (t, σ ) �→ q̄σ (t)

which is defined as follows. If ϕσσ ′( , t) : X → C is not identically zero, then t must
lie in the interior of R≤γ (σ∩σ ′) ⊆ R≤γ (σ ), so that we only need q̄σ (t) for t ∈ R≤γ (σ ).
Then q(t) ∈ Σγ(σ), which is identified with |σ | ⊆ X by the colouring. We let q̄σ (t)
be the point of |σ | that corresponds to q(t).

To compute the Lefschetz invariant of a self-map ψ , we must combine the multi-
plication map m : C0(X,P) → P with ψ (see Lemma 1). The resulting ∗-homo-
morphism µψ : C0(X)⊗ P → P in (5) is given by

µψ(ϕ)σ,σ ′(t) = ϕ (ψ ◦ q̄σ (t), t)σ,σ ′ . (10)
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Equivariant Lefschetz maps 617

Next we describe the class D ∈ KKG
n (P,1) for the Kasparov dual. Let

βE ∈ KKG
n (C0(E),1) and β̂E = β−1

E ∈ KKG−n (1,C0(E))

be the Bott class and its inverse and let i : P → C0(E)⊗K be the obvious inclusion.
The latter defines a class [i] ∈ KKG

0 (P,C0(E)) because KKG is stable. We let

D := [i] ⊗C0(E) βE ∈ KKG
n (P,1).

The final datum Θ is more involved and uses two ingredients:

1. A G-equivariant continuous map v from X to the space of unit vectors in �2(SX),
and

2. A family of ∗-homomorphisms hs ! : C0(E) → C0(E) for s ∈ E .

The map v has two main features: first, the support of v(x) ∈ �2(SX) is the set of
faces of σ if x ∈ |σ |; second, v(x) = δσ if x ∈ |σ | and |γ |(x) ∈ C Rγ (σ ), where the
regions C R f are defined by

C R f := {t ∈ Σ | ti ≥ L for i ∈ f and ti ≤ L for i ∈ n\ f }

with an auxiliary parameter L > 0. The subsets C R f for f ∈ S(n) cover Σ . Each
C R f is a closed polygonal neighbourhood of the barycentre of Σ f in Σ . The shape
of these regions for n = 2 is indicated in [5, Figure 3].

Passing from unit vectors to rank-1-projections, we get a map

P : X → K, x �→ |v(x)〉 〈v(x)| .

Let x ∈ |σ |. The properties of v ensure two things. First, P(x)τ,τ ′ = 0 unless both
τ and τ ′ are faces of σ . Second, if |γ |(x) ∈ C Rγ (σ ), then P(x)τ,τ ′ = 0 unless
τ = τ ′ = σ , and P(x)σ,σ = 1.

The second ingredient for Θ is a family of ∗-homomorphisms

hs ! : C0(E) → C0(E)

for s ∈ E , which is constructed as follows. Let

B(δ) := {t ∈ R
n+1 | t0 + · · · + tn = 0 and |ti | < δ for j = 0, . . . , n}.

Fix λ > 1
1−(n+1)L and let rλ : E → E be the radial expansion by a factor of λ around

the barycentre of Σ :

rλ(t0, . . . , tn) :=
(
λt0 − λ− 1

n + 1
, . . . , λtn − λ− 1

n + 1

)
.

By [5, Lemma 27], we can find δ > 0 such that

rλ(s)+ B(δ) ⊆ R≤ f for all f ∈ S(n) and s ∈ C R f . (11)
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Let h : E
∼=−→ B(δ) be a fixed, orientation-preserving diffeomorphism. For s ∈ E ,

we define hs ! : C0(E) → C0(E) by

hs !(ϕ)(t) :=
{
ϕ

(
h−1(t − s)

)
for t − s ∈ B(δ),

0 otherwise.
(12)

The definitions above ensure that

ϑx (ϕ) := h|γ |(x)!(ϕ)⊗ P(x) (13)

is a ∗-homomorphism from C0(E) to P for all x ∈ X . Letting x vary, we get a
G � X -equivariant ∗-homomorphism

ϑ : C0(X × E) ∼= C0(X)⊗ C0(E) → C0(X)⊗ P ∼= C0(X,P).

This yields [ϑ] ∈ RKKG
0 (X;C0(E),P).

Finally, Θ ∈ RKKG−n(X;1,P) is defined by

Θ := β̂E ⊗C0(E) [ϑ],

where β̂E ∈ KKG−n(1,C0(E)) is the generator of Bott periodicity.
The data (P,Θ, D) defined above is a G-equivariant Kasparov dual for X of

dimension −n by [5, Theorem 29].

4.2 Computing the Lefschetz invariant

We now compute the Lefschetz invariant of a G-equivariant self-map ψ : X → X
using the simplicial dual described above. The map ψ is G-equivariantly homotopic
to a G-equivariant cellular map, that is, a map that preserves the filtration of X by
skeleta. Even more, by an equivariant version of the Simplicial Approximation The-
orem, any self-map is G-equivariantly homotopic to a G-equivariant simplicial map
ψ ′ : Sd X → X , where Sd X denotes a sufficiently fine G-invariant subdivision of X
(since we allow the subdivision to get finer near infinity, this even works if G does
not act cocompactly on X ). Since the Lefschetz invariant of a self-map is homotopy
invariant, we may assume that ψ has this special form from now on.

The map ψ is a cellular map with respect to the cellular decomposition under-
lying the original simplicial structure on X , so that it induces a cellular chain map
Ψ : C•(X) → C•(X). The matrix coefficient Ψστ of Ψ for two simplices σ , τ counts
how many of the simplices in the subdivision of τ are mapped onto σ , with a sign
depending on whether the map ψ ||τ | : |τ | → |σ | preserves or reverses orientation.

The starting point for our computation is (5). We must plug in the ingredients we
have constructed above. This yields

Lef(ψ) = Θ ⊗C0(X,P) [µψ ] ⊗P D

= β̂E ⊗C0(E) [ϑ] ⊗C0(X,P) [µψ ] ⊗P [i] ⊗C0(E) βE (14)
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Equivariant Lefschetz maps 619

in KKG
0 (C0(X),1). Here βE and β̂E are the Bott class and its inverse, and the remain-

ing ingredients are given by ∗-homomorphisms

C0(X)⊗ C0(E)
ϑ−→ C0(X,P)

µψ−→ P
i−→ C0(E,K).

The mapsϑ andµψ are described in (13) and (10), the map i is just the embedding. The
Kasparov product for ∗-homomorphisms agrees with the usual composition. Hence

Lef(ψ) = β̂E ⊗C0(E) [Ξψ ] ⊗C0(E) βE (15)

with the G-equivariant ∗-homomorphism

Ξψ := i ◦ µψ ◦ ϑ : C0(X × E) → C0(E)⊗ K(�2SX).

Equations (13) and (10) yield

Ξψ(ϕ)σ,σ ′(t)=ϕ
(
ψ ◦ q̄σ (t), h−1 (t−rλ ◦ |γ | ◦ ψ ◦ q̄σ (t))

)
· Pσ,σ ′ (ψ ◦ q̄σ (t))

(16)

for all σ, σ ′ ∈ SX , t ∈ E , ϕ ∈ C0(X × E); this is understood to be 0 unless
t − rλ ◦ |γ | ◦ ψ ◦ q̄σ (t) ∈ B(δ).

Lemma 4 Let ϕ ∈ C0(X × E), t ∈ E, and σ, σ ′ ∈ SX, and let x := ψ ◦ q̄σ (t).
Assume that Ξψ(ϕ)σ,σ ′(t) �= 0. Then:

1. t ∈ B(δ)+ rλ ◦ |γ |(x),
2. σ = σ ′,
3. |γ |(x) ∈ Σγ(σ) ∩ C Rγ (σ ),
4. t belongs to the interior of Rγ (σ ).

Proof The first claim follows immediately from the definition of hs ! in (12). The next
two properties are more interesting.

Choose f ⊆ n with |γ |(x) ∈ C R f . [5, Lemma 27] yields t ∈ B(δ)+rλ (|γ |(x)) ⊆
R≤ f . Thus q(t) ∈ Σ f and q̄σ (t) belongs to the d-skeleton of X with d := dim f =
| f | − 1.

Since ψ is cellular, x = ψ (q̄σ (t)) also belongs to the d-skeleton. Hence the point
s := |γ |(x) ∈ Σ belongs to some d-dimensional face of Σ . Thus at most d + 1
of its coordinates s0, . . . , sn can be non-zero. But s ∈ C R f means that s j ≥ L for
j ∈ f , providing d + 1 non-zero coordinates. Hence s j ≥ L for j ∈ f and s j = 0 for
j ∈ n\ f or, equivalently, s ∈ Σ f ∩ C R f . But then P(x) is the projection onto the
basis vector δτ , where τ is the unique simplex in X with x ∈ τ and γ (τ) = f . Thus
τ = σ = σ ′ and f = γ (σ ). We also get |γ |(x) = s ∈ Σγ(σ) ∩ C Rγ (σ ) as asserted in
(3). We have already seen above that t = (t0, . . . , tn) must belong to R≤γ (σ ), that is,
ti ≤ 0 for i ∈ n\ f . If ti ≤ 0 for some i ∈ f , then q̄σ (t) belongs to the d − 1-skeleton
of X , which is impossible. Hence ti > 0 for all i ∈ f . Furthermore, t ∈ B(δ)+rλ(Σ f )

implies ti < 0 for i ∈ n\ f . Thus t is an interior point of R f . �	

123



620 H. Emerson, R. Meyer

As a result, the range of Ξψ is contained in the C∗-subalgebra

C0(E × SX) ∼= C0(E)⊗ C0(SX) ⊆ C0(E)⊗ K(�2SX)

of all operators that are diagonal on �2(SX) in the standard basis. Let

Ξψ,σ : C0(X × E) → C0(E)

be the value at σ ∈ SX , so that Ξψ = (Ξψ,σ )σ∈SX .
Given t ∈ E and σ ∈ SX , we define y := q̄σ (t) and x := ψ(y) = ψ ◦ q̄σ (t) and

let f := γ (σ ). Lemma 4 yieldsΞψ,σ (ϕ)(t) = 0 unless x ∈ |σ | and |γ |(x) ∈ C R f . If
x ∈ |σ | and |γ |(x) ∈ C R f , then

Ξψ,σ (ϕ)(t) = ϕ
(

x, h−1 (t − rλ ◦ |γ |(x))
)

because v(x) = δσ . We have y ∈ |σ | because the range of q̄σ is contained in σ . Thus
Ξψ,σ (ϕ) vanishes identically unless there is y ∈ |σ | with ψ(y) ∈ |σ |.

If x ∈ |σ |, then there is a canonical linear homotopy from x to the barycentre ξσ .
Deforming Ξψ,σ along this homotopy, we get the map Ξ ′

ψ,σ : C0(X × E) → C0(E)
defined by

Ξ ′
ψ,σ (ϕ)(t) = ϕ

(
ξσ , h−1 (t − rλ ◦ |γ |(x))

)

for x ∈ |σ | and |γ |(x) ∈ C R f , and 0 otherwise. Hence the families of maps
(Ξψ,σ )σ∈SX and (Ξ ′

ψ,σ )σ∈SX define the same class in KKG
0 (C0(X × E),C0(E)).

The map Ξ ′
ψ,σ is an exterior product of the evaluation map

C0(X) → 1, ϕ �→ ϕ(ξσ ),

and a certain endomorphism Ξ ′′
ψ,σ of C0(E). Since ψ is G-equivariant, Ξ ′′

ψ,σ only
depends on the orbit σ̇ := Gσ of σ . Hence we get

Lef(ψ) =
∑

σ̇∈G\SX

[ξσ̇ ] ⊗ (βE ⊗C0(E) [Ξ ′′
ψ,σ̇ ] ⊗C0(E) β̂E )

with [ξσ̇ ] as defined in (7). Since KK0 (C0(E),C0(E)) ∼= Z by Bott periodicity, the
class [Ξ ′′

ψ,σ̇ ] cannot contribute more than a multiplicity. This is determined by the
following lemma:

Lemma 5 [Ξ ′′
ψ,σ̇ ] = n(Ψ, σ̇ ) · [id] in KK0 (C0(E),C0(E)) with the number n(Ψ, σ̇ )

defined in Notation 1.

The proof of Lemma 5 will finish the proof of Theorem 1 and will occupy the
remainder of this section.
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Equivariant Lefschetz maps 621

Fix σ ∈ SX and let d := dim σ and f := γ (σ ) ∈ S(n). Let

Dσ := {x ∈ |σ | | |γ |(x) ∈ C R f }.

This is a closed neighbourhood of the barycentre of σ that does not intersect the
boundary of σ . Let

D′
σ := {y ∈ |σ | | ψ(y) ∈ Dσ }.

Recall thatψ is a simplicial map Sd X → X for some subdivision of X . Let Sd σ be
the set of d-dimensional simplices in the subdivision of σ . If τ ∈ Sd σ , then either ψ
maps τ bijectively onto σ or |ψ(τ)| ∩ |σ | ⊆ ∂|σ |. Hence |τ | and D′

σ intersect if and
only if ψ(τ) = σ . As a result, D′

σ is a disjoint union of homeomorphic copies of
C R f , one for each simplex τ ∈ Sd σ with ψ(τ) = σ . Let τ1, . . . , τk be a list of these
simplices. For j = 0, . . . , k, define α j : C0(E) → C0(E) by

α j (ϕ)(t) :=
{
ϕ

(
h−1 (t − rλ ◦ |γ | ◦ ψ ◦ q̄σ (t))

)
if q̄σ (t) ∈ τ j ∩ D′

σ ,

0 otherwise.

Since the supports of the maps α j are disjoint, we get

[Ξ ′′
ψ,σ̇ ] = [α0] + · · · + [αk].

Thus it remains to check that [α j ] = (−1)dε j , where ε j = ±1 depending on whether
ψ ||τ j | : |τ j | → |σ | preserves or reverses orientation.

We claim that the fixed point equation

t = rλ ◦ |γ | ◦ ψ ◦ q̄σ (t)

has a solution t = (t0, . . . , tn) in the interior of R f with q̄σ (t) ∈ |τ j | ∩ D′
σ . In

particular, α j is not identically zero.
We may assume right away that t = rλ(s) for some s ∈ C R f ∩Σ f . Thus

ti > 0 for i ∈ f , and
ti = −λ−1

n+1 for i ∈ n\ f .

Although q̄σ is non-linear in general because of the homogeneous coordinates involved,
its restriction to points of this special form is linear: it simply annihilates the coeffi-
cients ti for i /∈ f and rescales the others by the constant

(n + 1)λ

(d + 1)λ+ (n − d)

to get a point in E . Furthermore, q̄σ is invertible between the relevant d-dimensional
subspaces. We consider this restriction in the following when we speak of q̄−1

σ . Thus
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our fixed point problem is equivalent to finding u := q̄σ (t) ∈ |τ j | ∩ D′
σ with

u = q̄−1
σ ◦ rλ ◦ |γ | ◦ ψ(u).

The map A := q̄−1
σ ◦ rλ ◦ |γ | ◦ψ is affine on |τ j | ∩ D′

σ because each of the factors
is affine on the relevant subsets. Furthermore, A is expansive in all directions: the pre-
image of |σ | is contained in the interior of |τ j | ⊆ |σ |. Hence its inverse map A−1 is
uniformly contractive. Thus A−n(s) converges towards a fixed point of A. This shows
that a fixed point exists.

Bott periodicity implies that the inclusion map C0 (B(δ)) → C0(R
n) is a

KK-equivalence for all δ > 0. Hence we can compute the class of α j by restrict-
ing it to an arbitrarily small ball around some point. Near the fixed point t constructed
above, the map

t ′ �→ h−1 (
t ′ − rλ ◦ |γ | ◦ ψ ◦ q̄σ (t

′)
)

is smooth. Hence [α j ] = ±1 in KK0 (C0(E),C0(E)), where the sign is the sign of
the determinant of the derivative of the above map. Since h preserves orientation, we
may omit it without changing the sign. In the directions orthogonal to rλ(Σ f ), the
above map acts identically, so that they contribute no sign either. Thus the sign is the
same as the sign of the linear map id − A0, where A0 is the linear part of the affine
map A above. Since ‖A−1

0 ‖ < 1 and id − A0 = −A0 · (id − A−1
0 ), this is the same as

the sign of det(−A0) = (−1)d det(A0). Thus we get (−1)d if ψ preserves orientation
and (−1)d+1 otherwise. This finishes the proof of Lemma 5 and thus of Theorem 1.

5 Lefschetz invariants for smooth manifolds

In this section, X is a complete Riemannian manifold. The action of G on X is not
quite required to be proper, but only isometric, or equivalently, the action should fac-
tor through a proper action. (The equivalence of these two conditions follows because
the isometry group of X is a Lie group that acts properly on X provided X has only
finitely many connected components; conversely, given a proper action of a Lie group
by diffeomorphisms, there is a complete Riemannian metric for which the action is
isometric.) Such actions are those for which Kasparov originally proved duality results
in [8, Sect. 4]. His construction uses Clifford algebras and differential operators. First
we describe this dual. Then we compute the Lefschetz invariant of a suitable self-map.
This is done once again by plugging all the ingredients into (5) and simplifying the
result. To prepare for the main line of argument, we need a formula for the result of
twisting the Thom isomorphism by a vector bundle automorphism. This is the source
of the line bundle sign(idν − Dνψ) in our computation.

5.1 Description of the Clifford algebra dual

The complex Clifford algebras of the tangent spaces of X form a locally trivial bundle
of finite-dimensional Z/2-graded C∗-algebras Cliff(T ∗ X). Since G acts isometrically
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Equivariant Lefschetz maps 623

on X , we get an induced action on Cliff(T ∗ X) by grading preserving ∗-algebra auto-
morphisms. We let

P := Γ0
(
X,Cliff(T ∗ X)

)

be the Z/2-graded G-C∗-algebra of sections of Cliff(T ∗ X).
Let Λ := Λ∗

C
(T ∗ X) be the complexified exterior algebra bundle of T ∗ X . There is

a canonical isomorphism Cliff(T ∗ X) ∼= Λ that preserves the grading, inner products,
and the G-action, but not the algebra structure. We let c : Cliff(T ∗ X) → End(Λ) be
the resulting representation by Clifford multiplication.

We describe this on the level of forms. Let λω : Λ → Λ be the exterior product
with ω ∈ Λ. Let iω denote the interior product with ω, that is,

iω(u1 ∧ · · · ∧ uk) :=
k∑

j=1

(−1) j−1〈ω, u j 〉u1 ∧ · · · ∧ û j ∧ · · · ∧ uk .

A simple calculation yields the graded commutator of these operations:

iωλτ + λτ iω = 〈ω, τ 〉.

In particular, c(ω) := λω + iω satisfies c(ω)2 = ‖ω‖2. Since iω = λ∗
ω as well, c

defines a representation of the Clifford algebra Cliff(T ∗ X) on Λ.
Let d be the usual boundary map on differential forms and let DdR := d+d∗. This is

a G-equivariant self-adjoint, odd, elliptic differential operator of order 1, and it com-
mutes with c(P) up to bounded operators. Now let H := L2(Λ); this is a Z/2-graded
Hilbert space with a unitary representation of G, and c yields a grading-preserving,
G-equivariant ∗-representation of P on H . The operator DdR is essentially self-
adjoint, and M f (1 + D2

dR)
−1 is compact for all f ∈ C0(X) because X is complete.

Therefore, (H , c,DdR/(1 + D2
dR)

1/2) is a Kasparov cycle for KKG
0 (P,1), which we

denote by D.
The diagonal embedding X → X × X has a G-invariant tubular neighbourhood U

that is G-equivariantly diffeomorphic to the normal bundle T X for the embedding.
We can choose the diffeomorphism Φ : T X → U of the form

(x, ξ) �→ (
x, expx (αx (‖ξ‖) · ξ))

for a function α : X × R≥0 → R that takes care of a possibly finite injectivity radius.
It is important that π1 ◦Φ is the usual projection T X → X .

Let JU ⊆ C0(X)⊗ P be the G-invariant ideal of functions that vanish outside U .
We view this as a G-equivariant Hilbert module over C0(X)⊗P in the usual way. We
let C0(X) act on JU by pointwise multiplication: ( f1 · f2)(x, y) := f1(x) · f2(x, y).
Identifying U ∼= T X , we get a canonical section of the bundle underlying JU , which
associates to Φ(x, ξ) ∈ U the vector ξ/(1 + |ξ |2)1/2 ∈ Tx X viewed as an element
of Cliff(Tx X). This defines a G-invariant, odd, self-adjoint multiplier F of JU with
1 − F2 ∈ JU . Hence (JU , F) yields a class Θ ∈ RKKG

0 (X;1,P).
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Results in [8, Sect. 4] show that (P,Θ, D) as defined above is a Kasparov dual
for X .

5.2 A twisted Thom isomorphism

The computations in this section explain how the line bundle sign(id − Dνψ) appears
in our Lefschetz formula.

Let G be a locally compact group, let X be a locally compact proper G-space, and
let π : E → X be a G-equivariant real vector bundle over X with G-invariant inner
product. First, we generalise the construction of D andΘ above by working fibrewise.
For each x ∈ X , the fibre Ex has C0 (Ex ,Cliff(Ex )) as a Kasparov dual, via classes Dx

and Θx . These combine to classes

DX
E ∈ RKKG

0 (X;C0 (E,Cliff(E)) ,C0(X)) ,

ΘX
E ∈ RKKG

0 (E;C0(X),C0 (E,Cliff(E))) ;

here we tacitly pull back E to a bundle on E via π : E → X to form

P X
E := C0 (E,Cliff(E)) ;

this is a G-C∗-algebra over E .
More explicitly, DX

E is the de Rham operator along the fibres of π . Since E is
already a vector bundle over X , all of E ×X E is a tubular neighbourhood of the
diagonal E ⊆ E ×X E . Hence we can simplifyΘX

E ; the underlying Hilbert module is
simply

C0
(
E ×X E, π∗

2 Cliff(E)
)
,

where π2 : E ×X E → E is the second coordinate projection. The group G acts in
an obvious way, and C0(E) acts by pointwise multiplication via π1 : E ×X E → E .
We define an essentially unitary multiplier of C0

(
E ×X E, π∗

2 Cliff(E)
)
, that is, a

bounded continuous section of π∗
2 Cliff(E), by

F(ξ, η) := (1 + ‖ξ − η‖2)−1/2 · (ξ − η).

This determines an operator F on C0
(
E ×X E, π∗

2 Cliff(E)
)
, and we get our cycle

ΘX
E . The triple (P X

E , DX
E ,Θ

X
E ) is a G-equivariant Kasparov dual for the space E

over X (see [6] for this relative notion of duality). This means that we have canonical
isomorphisms

RKKG∗
(
E;π∗(A), π∗(B)

) ∼= RKKG∗ (X;C0 (E,Cliff(E))⊗X A, B)
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for all G � X -C∗-algebras A and B. Actually, since the projection E → X is a
G-equivariant homotopy equivalence,

RKKG∗
(
E;π∗(A), π∗(B)

) ∼= RKKG∗ (X; A, B).

The Kasparov duality simply means that DX
E ∈ RKKG∗

(
X;P X

E ,C0(X)
)

is invertible
and that the inverse is the element

Θ̃X
E ∈ RKKG∗ (X;C0(X),P

X
E )

that corresponds toΘX
E . Explicitly, the underlying Hilbert module of Θ̃X

E is P X
E with

the usual action of G and the representation of C0(X) by pointwise multiplication
operators. The essentially unitary operator in the Kasparov cycle is the multiplier F X

E
of P X

E defined by

E � (x, ξ) �→ (1 + ‖ξ‖2)−1/2ξ ∈ Ex ⊆ Cliff(Ex ).

The proof that DX
E and Θ̃X

E are inverse to each other can be reduced to the case where X
is a point using the same trick as in [11, Théorème 7.4]. (The Clifford algebras allow
a kind of Thom isomorphism even if E is not K-oriented).

The following proposition is the entry point for the line bundle sign( f ) in our
Lefschetz computation. It is a refinement of the results in [4, Sect. 2].

Proposition 1 Let f : E → E be a G-equivariant isomorphism of vector bundles.
Let [ f !] ∈ RKKG

0 (X;P X
E ,P

X
E ) be the class of

f ! : C0 (E,Cliff(E)) → C0 (E,Cliff(E)) , f !(ϕ)(x, ξ) := ϕ (x, f (ξ))

for (x, ξ) ∈ E, ϕ ∈ C0 (E,Cliff(E)) = P X
E . The composition

C0(X)
Θ̃X

E−−→ P X
E

[ f !]−−→ P X
E

DX
E−−→ C0(X)

is the class in KKG
0 (C0(X),C0(X)) of the G-equivariant Z/2-graded line bundle

sign( f )⊗R C over X.

Proof Since f is homotopic to the isometry in its polar decomposition, we may assume
that f itself is isometric.

The Kasparov product of Θ̃X
E and f ! is easy to compute because the latter is a

∗-homomorphism. We get P X
E with the usual action of G and of C0(X) by pointwise

multiplication—because π ◦ f = π : E → X . The multiplier F X
E above is changed,

however, to

(x, ξ) �→ f (ξ) · (1 + ‖ f (ξ)‖2)−1/2 = f (ξ) · (1 + ‖ξ‖2)−1/2.
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The construction of Θ̃X
E uses the left regular representation Cliff(E) → End(S),

where S = Cliff(E), of the Clifford algebra on itself. The left regular representation
can be extended to an irreducible representation

c : Cliff(E ⊕ E−) ∼= Cliff(E)⊗̂Cliff(E) → End(S)

of Cliff(E ⊕ E−), where E− denotes E with bilinear form negated. That is, S has
the structure of a spinor bundle over Cliff(E ⊕ E−). To see this, we combine the
right regular representation of E , which commutes with the left regular one, with the
grading γ ; since E is contained in the odd part of Cliff(E), the two maps

Cliff(E) ⇒ Cliff(E), a �→ x · a, a �→ γ aγ · y,

for x, y ∈ E anti-commute, and the square of the latter maps a to −a · y2 = −a‖y‖2.
The fact that we get an irreducible representation follows by counting dimensions.

We use the spinor bundle S = Cliff(E) for E ⊕ E− just constructed to compute
the line bundle sign( f ). The point of sign( f ) is that we have a canonical equivariant
isomorphism of complex vector bundles

sign(A)⊗R (S, c) ∼= (S, c′), ϕ ⊗ a �→ ϕ(a), (17)

where c′ as usual denotes the Clifford multiplication twisted by f ⊕ id. This isomor-
phism is equivariant with respect to the ordinary (untwisted) Clifford multiplication
(x, y) �→ c(x, y) ⊗ id on its domain, and the twisted action (x, y) �→ c′(x, y) =
c( f (x), y) on its co-domain. It is easy to check that the isomorphism (17) respects
ordinary right Clifford multiplication (because the grading γ can be built out of
left Clifford multiplication) whence we have a G-equivariant isomorphism of right
C0 (X,Cliff(E))-modules respecting left Clifford multiplication. This shows that the
twisted Clifford multiplication that appears in Θ̃X

E ⊗P X
E

[ f !] is isomorphic to the
standard Clifford multiplication on sign( f )⊗ Cliff(E). Thus

Θ̃X
E ⊗P X

E
[ f !] = [sign( f )] ⊗C0(X) Θ̃

X
E .

Since DX
E = (Θ̃X

E )
−1 by the untwisted Thom isomorphism, the product with DX

E
yields the class of sign( f ) in RKKG

0 (X;C0(X),C0(X)). �	

5.3 Computing the Lefschetz invariant

Now we compute the Lefschetz map for a smooth G-equivariant mapψ : X → X that
satisfies the prerequisites of Theorem 2, using the Kasparov dual involving Clifford
algebras described above.

Throughout this section, we let Y := Fix(ψ); this is a closed submanifold of X by
assumption. Let ν be its normal bundle; this is a vector bundle over Y via the projection
map π : ν → Y . Since Y is a closed submanifold, it has a tubular neighbourhood V ,
that is, V ∼= ν via a G-equivariant diffeomorphism whose restriction to Y is the zero
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Equivariant Lefschetz maps 627

section of ν. Extending functions by 0 outside V , we get canonical embeddings such
as

j : C0(ν) → C0(X), j : C0 (ν,Cliff(T X |ν)) → C0(X,Cliff(T X)
) = P.

Recall that

Lef(ψ) = Θ ⊗C0(X)⊗P [µψ ] ⊗P D.

Lemma 1 shows that µψ : C0(X,P) ∼= C0(X)⊗ P → P is given by

µψ(ϕ)(x) = ϕ(ψ(x), x) ∈ Cliff(Tx X) for all ϕ ∈ C0(X,P), x ∈ X .

We are going to compose this ∗-homomorphism with Θ and simplify the result:

Lemma 6 The composition Θ ⊗C0(X)⊗P [µψ ] ∈ KKG
0 (C0(X),P) is equal to the

composite

C0(X)
rY−→ C0(Y )

sign(idν−Dνψ)−−−−−−−−−→ C0(Y )
Θ̃Y
ν−−→ C0 (ν,Cliff(ν))

i−→ C0 (ν,Cliff(T X |ν)) j−→ C0 (X,Cliff(T X)) = P

Here rY is the restriction map; sign(idν − Dνψ) ∈ KKG
0 (C0(Y ),C0(Y )) is the class

associated to the corresponding line bundle; Θ̃Y
ν is as in Sect. 5.2; the map i is induced

by the embedding

Cliff(ν) → Cliff(ν)⊗ Cliff(T Y ) ∼= Cliff(ν ⊕ T Y ) ∼= Cliff(T X |ν),

where the first map uses the unit element in Cliff(T Y ); and j is induced by the embed-
ding of ν in X.

Proof We have described Θ and hence Θ by an explicit cycle. To get

Θ ⊗C0(X,P) [µψ ] ∈ KKG
0 (C0(X),P),

we restrict this cycle to the graph ofψ . Recall thatΘ is supported in a certain G-invari-
ant open neighbourhood U of the diagonal of X in X × X . We let

U ′ := {x ∈ X | (x, ψx) ∈ U };

this is a G-invariant neighbourhood of the fixed point submanifold Y := Fix(ψ).
Restriction to the graph of ψ replaces JU by the ideal

J ′
U := {

f ∈ C0 (X,Cliff(T X))
∣∣ f (x) = 0 unless (x, ψ(x)) ∈ U

}
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in P . The group G acts on J ′
U in the obvious way, and C0(X) acts on J ′

U by pointwise
multiplication: ( f · ϕ)(x) := f (x) · ϕ(x). The multiplier F described in Sect. 5.1
yields the multiplier

F ′(x) := F(x, ψx) ∈ Tx X ⊆ Cliff(Tx X),

where F(x, ψx) is the pre-image of ψ(x) under a suitably rescaled exponential map
at x .

In the construction of the Kasparov dual for X , we may choose U to be an arbitrarily
small neighbourhood of the diagonal. For a suitable choice of U , the neighbourhood U ′
of Y will be contained in V , a tubular neighbourhood around Y . We assume this from
now on.

Let π : V ∼= ν → Y be the retraction from the Tubular Neighbourhood Theorem.
Since this is a G-equivariant deformation retraction, pointwise multiplication by f (x)
and f ◦ π(x) is G-equivariantly homotopic. Therefore, we may replace the action of
C0(X) on J ′

U by the one of pointwise multiplication with f ◦ π for f ∈ C0(X). This
factors Θ ⊗C0(X,P) [µψ ] through the restriction map C0(X) → C0(Y ).

Equip ν with some Euclidean inner product and transport the resulting norm to V
via the diffeomorphism V ∼= ν. Since U is a neighbourhood of the diagonal, U ′ is a
neighbourhood of Y in X . Let � : Y → R>0 be a G-invariant function with x ∈ U ′
for all x ∈ V with ‖x‖ ≤ � ◦ π(x). Since F (x, ψ(x)) does not vanish unless x ∈ Y ,
we can rescale F ′ such that F ′(x)2 = 1 for all x ∈ U ′ with ‖x‖ ≥ � ◦ π(y). This
yields a homotopic cycle. Now we may restrict J ′

U to the smaller ideal of elements
of P supported in

U ′′ := {x ∈ V | ‖x‖ < � ◦ π(x)}

because the operator F ′ has become unitary on the complement, resulting in our
Kasparov cycle being degenerate there. This neighbourhood is another tubular neigh-
bourhood of Y by a rescaling. Changing our tubular neighbourhood, we can therefore
achieve that � becomes the constant function 1 to simplify.

We define another function

F̃ : V ∼= ν → T X, F̃(y, ξ) := (id − Dψ)(ξ)

for y ∈ Y , ξ ∈ νy ; here we use some G-equivariant section for the quotient map T X �
ν. We join F̃ and F ′ by the linear homotopy t F ′ +(1− t)F̃ . Sinceψ(x) ≈ x + Dψ(x)
for x near Y , there is a neighbourhood Ṽ of Y such that t F ′ + (1− t)F̃ is invertible on
Ṽ \Y . Rescaling F̃ and F ′ first, so that they become unitary outside Ṽ , and also rescal-
ing the above homotopy, we connect our Kasparov cycle to (P|Ṽ , F̃), with C0(X)
acting by pointwise multiplication combined with π : ( f1 · f2)(x) = f1 ◦π(x) · f2(x).

Our computation so far shows that the cycle that defines Θ ⊗C0(X)⊗P [µψ ] is
homotopic to rY ⊗C0(Y ) Θ̃

Y
ν ⊗C0(ν,Cliff(ν)) [(idν − Dνψ)!] ⊗C0(ν,Cliff(ν)) ( j ◦ i) – the

changes in our choice of the tubular neighbourhood above do not matter. Finally,
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Proposition 1 yields

Θ̃Y
ν ⊗C0(ν,Cliff(ν)) [(idν − Dνψ)

!] = sign(idν − Dνψ)⊗C0(Y ) Θ̃
Y
ν

because Θ̃Y
ν and DY

ν are inverse to each other. �	
To get Lef(ψ), we must compose the product computed in Lemma 6 with D ∈

KKG
0 (P,1). To begin with, we compose D with the class of the ∗-homomorphism

j ◦ i : C0 (ν,Cliff(ν)) → P . This yields the class of the operator DdR on the space of
sections L2

(
Λ∗

C
(T ∗ X)

)
over X of the bundleΛ∗

C
(T ∗ X), with C0 (ν,Cliff(ν)) acting

by left multiplication; here we extend such functions by 0 outside ν ∼= V and use
the embedding Cliff(ν) → Cliff(T X |ν). This Kasparov cycle is highly degenerate:
we may restrict to the subspace of differential forms in L2

(
Λ∗

C
(T ∗ X)

)
that vanish

outside ν; the result is isomorphic to the bundle of forms on ν with respect to a com-
plete Riemannian metric on ν. The restriction of DdR to differential forms on X which
are supported in ν is homotopic to the Euler operator for ν because both operators
are pseudodifferential and have the same principal symbol, up to the isomorphism
involved in changing the metric. Thus we now want to compose the Euler operator
on ν with Θ̃ν

Y .
We may split the class of the Euler operator on ν as a Kasparov product of the class

DY
ν ∈ KKG

0 (C0 (ν,Cliff(ν)) ,C0(Y )) and the class in KKG
0 (C0(Y ),1) of the Euler

operator for Y :

( j i)∗(D) = DY
ν ⊗C0(Y ) EulY .

This is proved like the corresponding assertion for Dirac operators and amounts again
to the corresponding fact about the symbols. Finally, the class DY

ν cancels Θ̃Y
ν in

Lemma 6 and yields Lef(ψ) = rY ⊗C0(Y ) [sign(idν − Dνψ)]⊗C0(Y ) EulY as asserted.
This finishes the proof of Theorem 2.

6 Conclusion and outlook

We have used duality in bivariant KK-theory to refine the Lefschetz number of a self-
map to an equivariant K-homology class, and we have computed this invariant for
suitable self-maps of simplicial complexes and smooth manifolds. In both cases, the
Lefschetz invariant only sees a small neighbourhood of the fixed point subset.

In the simplicial case, the equivariant Lefschetz invariant is a 0-dimensional object
in the sense that it is a difference of two equivariant ∗-homomorphisms to a C∗-algebra
of compact operators. This is a special feature of Lefschetz invariants of self-maps.
Therefore, it is interesting to extend the computation of the Lefschetz invariant to
more general classes in KKG∗ (C0(X),C0(X)) or even RKKG∗ (X;C0(X),C). Since
the Lefschetz map is a split surjection on the latter group, this will necessarily lead to
more complicated K-homology classes.

A geometric computation of the Lefschetz map in this case requires descriptions of
the relevant Kasparov groups in terms of geometric cycles, and the use of a dual that
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is appropriate to this situation. This geometric computation of the Lefschetz invariant
will be the subject of a forthcoming article.

Acknowledgments This research was supported by the National Science and Engineering Research
Council of Canada Discovery Grant program, the Marie Curie Action Noncommutative Geometry and
Quantum Groups (Contract MKTD-CT-2004-509794), and by the German Research Foundation [Deutsche
Forschungsgemeinschaft (DFG)] through the Institutional Strategy of the University of Göttingen.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Baum, P., Block, J.: Equivariant bicycles on singular spaces. C. R. Acad. Sci. Paris Sér. I Math. 311(2),
115–120 (1990) (English, with French summary). MR 1065441

2. Baum, P., Douglas, R.G.: K -homology and index theory. Operator algebras and applications, Part I
(Kingston, Ont., 1980). In: Proc. Sympos. Pure Math., vol. 38, pp. 117–173. American Mathematical
Society, Providence (1982). MR 679698

3. Connes, A., Skandalis, G.: The longitudinal index theorem for foliations. Publ. Res. Inst. Math. Sci.,
20(6), 1139–1183 (1984). MR 775126

4. Echterhoff, S., Emerson, H., Kim, H.-J.: Fixed point formulas for proper actions (2007, to appear).
arXiv: 0708.4279

5. Emerson, H., Meyer, R.: Euler characteristics and Gysin sequences for group actions on boundaries.
Math. Ann. 334(4), 853–904 (2006). MR 2209260

6. Emerson, H., Meyer, R.: Dualities in equivariant Kasparov theory (2007). eprint. arXiv: 0711.0025
7. Illman, S.: Existence and uniqueness of equivariant triangulations of smooth proper G-manifolds with

some applications to equivariant Whitehead torsion. J. Reine Angew. Math. 524 (2000), 129–183. MR
1770606

8. Kasparov, G.G.: Equivariant K K -theory and the Novikov conjecture. Invent. Math. 91(1), 147–201
(1988). MR 918241

9. Kasparov, G.G., Skandalis, G.: Groups acting on buildings, operator K -theory, and Novikov’s conjec-
ture, K -Theory, 4(4), 303–337 (1991). MR 1115824

10. Lück, W., Rosenberg, J.: The equivariant Lefschetz fixed point theorem for proper cocompact G-man-
ifolds. High-dimensional manifold topology, pp. 322–361. World Scientific Publication, River Edge
(2003). MR 2048727

11. Le Gall, P.-Y.: Théorie de Kasparov équivariante et groupoïdes. I. K -Theory, 16(4), 361–390 (1999)
(French, with English and French summaries). MR 1686846

12. Weber, J.: The universal functorial equivariant Lefschetz invariant. K -Theory, 36(1–2), 169–207
(2006). MR 2274162

123


	Equivariant Lefschetz maps for simplicial complexes and smooth manifolds
	Abstract
	1 Introduction
	2 Kasparov duality and the Lefschetz map
	3 Statement of the main results
	3.1 The combinatorial Lefschetz map
	3.2 The K-orientation of a vector bundle automorphism
	3.3 The smooth Lefschetz map
	3.4 The Lefschetz formula: comparing the two computations

	4 Lefschetz invariants for simplicial complexes
	4.1 Description of the combinatorial dual
	4.2 Computing the Lefschetz invariant

	5 Lefschetz invariants for smooth manifolds
	5.1 Description of the Clifford algebra dual
	5.2 A twisted Thom isomorphism
	5.3 Computing the Lefschetz invariant

	6 Conclusion and outlook
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


