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Abstract We study various bootstrap and permutation
methods for matched pairs, whose distributions can have
different shapes even under the null hypothesis of no treat-
ment effect. Although the data may not be exchangeable un-
der the null, we investigate different permutation approaches
as valid procedures for finite sample sizes. It will be shown
that permutation or bootstrap schemes, which neglect the
dependency structure in the data, are asymptotically valid.
Simulation studies show that these new tests improve the
power of the t-test under non-normality.

Keywords Bootstrap · Heteroscedasticity · Matched pairs ·
Permutation tests

1 Introduction

In many psychological, biological and medical experiments,
data are collected in terms of a matched pairs design, e.g.
when a homogeneous group of subjects is repeatedly ob-
served under two conditions called time points in the termi-
nology of repeated measures designs. Hereby different vari-
ances of the observations occur in a natural way, e.g. when
data are collected over time. The data of such trials can be
modeled by independent and identically distributed random
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vectors

Xi = (Xi,1,Xi,2)
′, i = 1, . . . , n, (1.1)

with expectation E(X1) = μ = (μ1,μ2)
′ and an arbitrary

positive definite covariance matrix Var(X1) = Σ . Our aim is
to test the null hypothesis H0 : μ1 = μ2, or H

(1)
0 : μ1 ≤ μ2,

in this semi-parametric framework.
The paired t-test type statistic |Tn,stud | with

Tn,stud = √
n Dn/Vn (1.2)

is the commonly used statistic for testing H0, where Di =
Xi,1 − Xi,2 denote the differences of the pairs for i =
1, . . . , n, Dn = n−1 ∑n

i=1 Di = X1 − X2 is the difference
of the means, and V 2

n = (n − 1)−1 ∑n
i=1(Di − Dn)

2 de-
notes the sample variance of the Di ’s. As commonly known,
Tn,stud is exactly T (n − 1)-distributed under H0, if the
differences are normal, even for arbitrary Σ . Under non-
normality, the distribution of Tn,stud may be approximated
by a T (n − 1)-distribution, which follows from the central
limit theorem. For large sample sizes, the null hypothesis
H0 : μ1 = μ2 will be rejected if |Tn,stud | ≥ t1−α/2, where
t1−α/2 denotes the (1 − α/2)-quantile from the T (n − 1)-
distribution. Thus, the t-test can be equivalently written as

ϕt = 1(t1−α/2,∞)

(|Tn,stud |). (1.3)

For testing H
(1)
0 the t-test ϕt can be redefined by using

Tn,stud as the test statistic in (1.3) and replacing the critical
value t1−α/2 by t1−α . In a variety of papers and applications,
however, it has already been shown that the rate of conver-
gence from Tn,stud to its asymptotic normality is rather slow,
particularly for skewed distributions of the differences. For
a detailed explanation we refer the reader to Munzel (1999).
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It is the aim of the present paper to discuss the limit
behaviour of various resampling versions of Tn,stud to im-
prove its small sample properties under non-normality. Spe-
cific examples are all kind of bootstrap and permutation re-
sampling statistics. Although the data may not be exchange-
able in model (1.1), an accurate and (asymptotically) valid
level α resampling test for H0 can be derived if (i) the re-
sampling distribution of the statistic is asymptotically in-
dependent from the distribution of the data; (ii) the resam-
pling distribution has a limit; and (iii) if the distribution of
the test statistic and the conditional resampling distribution
(asymptotically) coincide, see Janssen (1997, 1999a, 1999b,
2005), Janssen and Pauls (2003, 2005), Neubert and Brun-
ner (2007), Pauly (2011) or Omelka and Pauly (2012). The
items (i)–(iii) will be referred to the permanence property of
resampling tests.

More details on theory and applications of bootstrap and
permutation tests can be found in the monographs of Basso
et al. (2009), Good (2005) as well as Pesarin and Salmaso
(2010b). Moreover, when comparing more than one aspect
of the data, Brombin et al. (2011) also discuss permutation
tests for paired observations with an useful application. In
particular, permutation approaches for multivariate data are
intensively discussed by Pesarin and Salmaso (2012) and
Brombin and Salmaso (2009). Both papers provide a de-
tailed summary of existing procedures and some new de-
velopments. Regarding repeated measures designs, Pesarin
and Salmaso (2010a) apply permutation tests by investigat-
ing finite-sample properties.

The intuitive resampling or permutation strategy is to
draw the differences with replacement Di from the data, or
to permute the variables Xi,1 and Xi,2 within the pairs, re-
spectively. The lack of both resampling schemes is that only
a few permutations (2n) are available, or that a small vari-
ety within the resamplings occurs when n is rather small.
The counterintuitive resampling or permutation strategies
are either drawing the variables Xi,s with replacement from
all 2n observations X1,1, . . . ,Xn,2, drawing the variables
Xi,s − Xs with replacement from each marginal sample
X1,s , . . . ,Xn,s, s = 1,2, separately, or to permute all 2n ob-
servations in X = (X1,1,X1,2, . . . ,Xn,2)

′, and then repeat-
edly compute (e.g. 10,000 times) the paired t-test statistic.
On the one hand, these counterintuitive resampling meth-
ods increase the resampling variability, on the other hand,
the dependency structure within the pairs is neglected. In
this paper, it will be shown that both kinds of the intuitive
and also the counterintuitive resampling strategies, which
neglect the dependency structure in the data, fulfill the per-
manence property, and thus, the corresponding resampling
tests are asymptotically valid. Extensive simulation studies
show that especially permutation-based approaches improve
the paired t-test, even for extremely small sample sizes. The
paper is organized as follows: In Sect. 2 we explain how re-
sampling and permutation tests work and explain in detail

why the resulting tests are asymptotically valid. In Sect. 3
extensive simulations are conducted to compare the differ-
ent resamplings with the paired t-test. The paper closes with
a discussion of the results. All technical details and proofs
are given in the Appendix.

2 How do paired bootstrap and permutation tests
work?

In this section we will study various resampling versions of
the paired t-Test. Among others we like to point out why
special bootstrap and permutation tests, which neglect the
dependency structure of the data within their resampling
scheme, are asymptotically valid level α tests for H0. Let
X∗ = (X∗

1, . . . ,X∗
n)

′, with X∗
i = (X∗

i,1,X
∗
i,2), denote n re-

sampling vectors for i = 1, . . . , n, given the original data X,
where

(I) X∗ is a random permutation of all data X = (X1,1,X1,2,

. . . ,Xn,2)
′, or

(II) X∗
i is a random permutation of the sample unit X′

i =
(Xi,1,Xi,2), or

(III) X∗
i,s is randomly drawn with replacement from all data

X, or
(IV) X∗

i,s is randomly drawn with replacement from each

centered marginal sample Xs = (X1,s −Xs, . . . ,Xn,s −
Xs)

′, s = 1,2, respectively.

The conditional resampling statistic of Tn,stud is then given
by

T ∗
n,stud = √

n D
∗
n/V ∗

n , (2.1)

where D∗
i = X∗

i,1 − X∗
i,2 denotes the differences of the re-

sampling variables for i = 1, . . . , n, D
∗
n = n−1 ∑n

i=1 D∗
i de-

notes their mean, and V ∗2
n = (n − 1)−1 ∑n

i=1(D
∗
i − D

∗
n)

2

denotes the sample variance of the differences D∗
i .

Here we like to point out that the denominator in (2.1)
is part of the resampling procedures, which is in accordance
with the guidelines for bootstrap testing, see Hall and Wil-
son (1991), Beran (1997), Bickel and Freedman (1981), and
Janssen (2005). Delaigle et al. (2011) have further shown
that studentized resampling t-statistics are more robust and
accurate than non-studentized statistics. The following gives
an explanation how the corresponding resampling tests can
be computed.

The introduced conditional resampling tests rely on a
reference distribution L(T ∗

n,stud |X) given the data X. This
means that the data are treated as fixed values, and quantiles
from the conditional resampling distribution of T ∗

n,stud are
estimated to compute critical values. Denote by c∗

n(1 − α)

the (1 −α)-quantile of L(T ∗
n,stud |X). Then, according to the
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definition of the paired t-test in (1.3), conditional resam-
pling tests can be written as

ϕ∗
n = 1(−∞,c∗

n(α/2))(Tn,stud) + 1(c∗
n(1−α/2),∞)(Tn,stud). (2.2)

Next we will prove that T ∗
n,stud as given in (2.1) is asymptot-

ically standard normal under all of the different resampling
schemes described above. In particular, we will show that
the permanence property is fulfilled, thus, ϕ∗

n is an asymp-
totically valid test for H0. Its asymptotic normality is par-
ticularly derived under arbitrary alternatives, i.e. we do not
assume that H0 is true. To give an answer to the question
“How do paired Bootstrap and Permutation tests work?”
we will introduce the following criterion from Janssen and
Pauly (2010), which uses the paired t-test as a benchmark
for the resampling procedures.

Definition 2.1 The conditional tests ϕ∗
n defined in (2.2) are

called

(i) asymptotically effective under H0 with respect to the
paired t-test, iff

E
(∣
∣ϕ∗

n − ϕt

∣
∣
) −→ 0 as n → ∞, and (2.3)

(ii) consistent iff

E
(
ϕ∗

n

) −→ 1{μ1 > μ2} (2.4)

for μ1 	= μ2 as n → ∞.

Now we can formulate

Theorem 2.1 The resampling tests ϕ∗
n defined in (2.1) are

asymptotically effective with respect to ϕt and consistent un-
der all resampling schemes (I) through (IV).

From the proof it can be seen that a similar result also
holds for one-sided versions of the tests. For further de-
tails see the Appendix. Specifically, Theorem 2.1 shows that
the counterintuitive resampling procedures (I), (III) and (IV)
are asymptotically valid, because studentized statistics are
resampled. Roughly speaking, the studentization of the re-
sampling variables “deletes” the dependency structure in the
data when n is sufficiently large.

2.1 Resampling the differences Di

In this subsection we will also introduce resampling meth-
ods, particularly wild boostrap methods, which are based on
the differences Di . The wild bootstrap technique is moti-
vated by the residual bootstrap commonly applied in regres-
sion analysis, see Wu (1986), Mammen (1992) and Beran
(1997), and in time-series testing problems, see Kreiss and
Paparoditis (2011). It is also proposed in the context of sur-
vival analysis, see Lin (1997) or Beyersmann et al. (2012).

Here, we adapt the wild bootstrap to the simple matched
pairs design and we will compare the accuracy of the re-
sulting test procedures with the resampling tests in (2.1) in
extensive simulation studies. Let D∗

i denote n resampling
variables given the original differences D = (D1, . . . ,Dn)

′,
where D∗

i denotes the observed value from

(V) drawing with replacement from all differences D, or
(VI) from a wild bootstrap method with D∗

i = WiDi , where
Wi, i = 1, . . . , n, denote independent and identically
distributed random variables, which are independent
from the Di ’s, with E(W1) = 0 and Var(W1) = 1.

The corresponding resampling tests are then defined as in
(2.2) with the paired t-test type resampling statistic

T ∗
n,stud = √

n D
∗
n/V ∗

n , (2.5)

where now D
∗
n = n−1 ∑n

i=1 D∗
i denotes the mean of the re-

sampled differences, and V ∗2
n = (n−1)−1 ∑n

i=1(D
∗
i −D

∗
n)

2

denotes the sample variance of the D∗
i ’s. The effectiveness

of these resampling procedures is given in the next theorem.

Theorem 2.2 The resampling tests ϕ∗
n defined in (2.5) are

asymptotically effective with respect to ϕt and consistent un-
der both resampling schemes (V) and (VI).

Example and Remark 2.1 In our simulation study in Sect. 3,
we will focus on the following weight examples. However,
there are of course others that may be of interest for partic-
ular situations.

(a) Wi, i = 1, . . . , n is a sequence of symmetric indepen-
dent and identically distributed random variables with

P

(

W1 = 1 + √
5

2

)

=
√

5 − 1

2
√

5
and

P

(

W1 = 1 − √
5

2

)

=
√

5 + 1

2
√

5
.

In this case it even holds that E(W 3
1 ) = 1. These wild

bootstrap weights are typically used for studentized test
statistics, see e.g. Kreiss and Paparoditis (2011). We will
call the corresponding test Rademacher wild bootstrap.

(b) Wi, i = 1, . . . , n, is a sequence of independent and iden-
tically distributed Gaussian random variables, i.e. Wi ∼
N(0,1). This corresponds to the resampling procedure
proposed by Lin (1997).

We note that Arlot et al. (2010a, 2010b) investigate wild
bootstrap methods for multiple comparisons and confi-
dence intervals in high-dimensional data using random signs
Wi, i = 1, . . . , n, with distribution P(W1 = −1) = P(W1 =
1) = 1/2. This resampling method, however, is equivalent
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to the resampling scheme (II). For further details we refer
the reader to Janssen (1999b).

Theorems 2.1 and 2.2 state that all the considered proce-
dures fulfill the permanence property, thus, the correspond-
ing tests ϕ∗

n are asymptotically valid. The numerical algo-
rithm for the computation of the p-value is as follows

(1) Given the data X, compute the paired t-test statistic
Tn,stud as given in (1.2).

(2) Repeat the resampling steps N times (e.g. N = 10,000),
compute the values T ∗

n,stud and save them in A1, . . . ,

AN .
(3) Estimate the two-sided p-value by

p-value = min{2p1,2 − 2p1},

where p1 = 1

N

N∑

�=1

1{A� ≤ Tn,stud}.

In comparison to that the one-sided p-value is given by
p1.

3 Simulations

For testing the two-sided null hypothesis H0 : μ1 = μ2

formulated above, we consider the unconditional t-test ϕt

based on the T (n − 1)-approximation of the statistic Tn,stud

in (1.2) and the various conditional resampling tests ϕ∗
n

based on the resampling schemes (I) through (VI) as de-
scribed in Sect. 2. The simulation studies are performed to
investigate their behaviour with regard to maintaining the
pre-assigned type-I error level under the hypothesis, and
the power of the statistics under alternatives. The obser-
vations Xi = (Xi,1,Xi,2)

′, i = 1, . . . , n, were generated us-
ing marginal distributions Fs and varying correlations ρ ∈
(−1,1). We hereby generate exchangeable matched pairs
having a bivariate normal, exponential, log-normal or uni-
form distribution, each with correlation ρ ∈ (−1,1), as well
as non-exchangeable data by simulating

(a) F1 = N(0,1) and F2 = N(0,2),
(b) F1 = N(0,1) and F2 = N(0,4),
(c) F1 = N(3,4) and F2 = χ2

3 , and
(d) F1 = N(exp(0.5),3) and F2 = LN(0,1),

each with correlation ρ, respectively. Routine calculations
show that μ1 = μ2 is fulfilled in all of these considera-
tions. We only consider the small sample sizes n = 7 and
n = 10 throughout this paper. All simulations were con-
ducted with the help of R-computing environment, version
2.13.2 (www.r-project.org), each with nsim = 10,000 and
N = 10,000 bootstrap runs. The simulation results for ex-
changeable normally, exponentially, log-normally, and uni-
formly distributed matched pairs with the very small sample

size of n = 7 and different correlations ρ are displayed in
Table 1.

It follows from Table 1 that the paired t-test is an accu-
rate procedure for symmetric distributions (normal and uni-
form), even for the very small sample size of n = 7. When
the data are skewed (exponential and log-normal), the t-test
tends to be conservative. It is apparent that both the wild
bootstrap methods using the Rademacher weights as defined
in Remark 2.1(b) and the Gaussian weights given in Re-
mark 2.1(c) are inappropriate tests for such small sample
sizes. The resampling test with Rademacher weights is very
liberal. This can be explained by the fact that these weights
are very skewed distributed. Roughly speaking, both wild
bootstrap resampling distributions are too far away from the
distribution of Tn,stud , when n is rather small and the origi-
nal data are not resampled. Simply drawing the differences
from the data with replacement can not be recommended ei-
ther. The corresponding test tends to be quite liberal when
the data are skewed. This occurs, because the resampling
variability (i.e. the variability within the resampling vari-
ables D∗

i ) is rather small when n = 7. However, drawing
with replacement from either all 2n observations or from
each marginal separately, results in more accurate test deci-
sions. Comparing these results with the permutation based
approaches, it is easily seen that both kind of permutation
tests (i.e. to permute all data, or to permute within the sam-
ple unit) control the type-I error level for all distributions
and all dependencies ρ in the data. Next we investigate the
behaviour of the different resampling tests for larger n = 10.
The simulation results are displayed in Table 2.

From Table 2 an interesting phenomenon of replacement
procedures with resampling scheme (IV) and (V) can be ob-
served: The rejection rates do not converge linearly in n to α.
The tests are more liberal with n = 10 than with n = 7. Their
liberality increases with an increasing n up to the break-
point n ≈ 15. With larger n (e.g. n ≥ 30), all resampling
test based on drawing with replacements are accurate. The
liberality of the wild bootstrap tests using Rademacher or
Gaussian weights decrease. Both kind of permutation ap-
proaches, however, are still the most accurate procedures.

Now we investigate how accurate the tests control the
type-I error level when both marginal distributions are dif-
ferent. The simulation results for different non-exchangeable
distributions (a) through (d) with n = 7 and varying correla-
tions are displayed in Table 3.

It follows from Table 3 that both the permutation ap-
proaches are accurate, even for non-exchangeable distribu-
tions, n = 7, and permutations of all data X. When two
distributions with extremely different shapes and negative
correlations (normal versus log-normal) are compared, they
tend to be slightly liberal. The same conclusions, however,
can be drawn for the t-test. In Table 4 the simulation results
for n = 10 and the same non-exchangeable distributions are
given.

http://www.r-project.org
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For larger n = 10, both permutation approaches are accu-
rate and demonstrate a similar behaviour to the t-test.

To compare the power of the tests, we generate bivari-
ate normally and log-normally distributed matched pairs
with n = 10 and n = 20, respectively, each with correla-
tion ρ = 1/2. Hereby, we shifted the data under time-point
2 with δ ∈ (0,1). The simulation results for n = 10 are dis-
played in Table 5. Although both the wild bootstrap methods
using Rademacher and Gaussian weights, as well as the re-
sampling tests based on scheme (III)–(V) were quite liberal
in these situations, we included them in the power simula-
tion study. However, to give a fair comparison between the
procedures, we will not grade them in detail and concentrate
on the t-test and the permutation based approaches.

It follows from Table 5 that both the permutation ap-
proaches have a comparable power to the t-test under nor-
mality. Under non-normality, the power of the permutation
based approaches is remarkably higher. The same conclu-
sions can be drawn for n = 20, as can be seen from Table 6.

4 Discussion

We analyzed two different permutation approaches for test-
ing H0 : μ1 = μ2 with paired data under non-normality. Par-
ticularly, we demonstrated that the usual assumption of ex-
changeability is not necessary for the construction of per-
mutation tests. We have analytically shown that permuta-
tion approaches, which are based on permutations of all ob-
served data (i.e. neglecting the dependency structure), are
asymptotically valid procedures. The results are obtained
by investigating the conditional permutation distribution of
studentized statistics. All results in this paper would not
hold without the studentization. The investigation of permu-
tation techniques in heteroscedastic repeated measures de-
signs will be part of future research.

In this paper, only mean based approaches were consid-
ered. Rank-based studentized permutation tests are proposed
by Konietschke and Pauly (2012).
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Appendix

The next Lemma explains that it suffices to analyze the limit
of the conditional distribution for proving all theorems. In

the sequel ‘
P−→ ’ will denote convergence in probability as

n → ∞.

Lemma 5.1 Let ϕ∗
n be one of the resampling tests (I)–(VI)

defined as in (2.2). If we have convergence

c∗
n(1 − α)

P−→Φ−1(1 − α) (5.1)

for all α ∈ (0,1) and general μ ∈ R
2, the test ϕ∗

n is asymp-
totically effective with respect to ϕt and consistent.

Proof For completeness we start by giving a short proof for
the asymptotic exactness of ϕt : By the multivariate central
limit theorem we have for E(X1) = μ convergence in dis-
tribution

Sn := 1√
n

n∑

i=1

(Xi − μ)
D−→Y = (Y1, Y2)

′ ∼ N(0,Σ).

Since Tn = (1,−1)Sn is a linear transformation of Sn

we get from the continuous mapping theorem and Polya’s
Theorem that under H0 : μ1 = μ2 supx∈R |P(Tn ≤ x) −
Φ(x/σ)| → 0, where σ 2 = (1,−1)Σ(1,−1)T = σ 2

1 −
2σ12 + σ 2

2 = Var(D1) with σ 2
j := Var(X1,j ), j = 1,2 and

σ12 = Cov(X1,1,X1,2). Since V 2
n is a consistent estimator

of σ 2 the result follows from Slutzky’s Theorem.
Note that by (5.1) Lemma 1 in Janssen and Pauls (2003)

implies (2.3). Moreover, since the convergence (5.1) also
holds under alternatives μ1 	= μ2, the result follows from
the convergence

Tn,stud(X) = Tn,stud

(
(Xi − μ)1≤i≤n

) + √
n
(μ1 − μ2)

Vn

P−→ sign(μ1 − μ2)∞. �

In the following we will apply Lemma 5.1. Note, that in
order to prove (5.1) it suffices to show that the conditional
resampling distribution converges weakly to a standard nor-
mal distribution in probability, i.e.

sup
x∈R

∣
∣P

(
T ∗

n,stud ≤ x
) − Φ(x)

∣
∣ P−→0. (5.2)

Proof of Theorem 2.1 We start by analyzing the resampling
scheme (I) which is based on permuting the pooled sample:

Let Z1, . . . ,Z2n with Zi = Xi,1 for 1 ≤ i ≤ n and Zi =
Xi,2 for n+1 ≤ i ≤ 2n denote the pooled sample. For study-
ing the permutation test based on the resampling scheme
(I) let π be a random permutation of (1, . . . ,2n), i.e. a ran-
dom variable that is uniformly distributed on the symmetric
group S2n, that is independent from X. Consider the modi-
fied studentized version of Tn,stud

T̃n,stud := √
n Dn

(

(n − 1)−1

[
n∑

i=1

(Xi,1 − X1)
2
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+
n∑

i=1

(Xi,2 − X2)
2

])−1/2

=: Tn

Ṽn

,

see Eqs. (4.1)–(4.2) in Janssen (2005). We will complete the
proof for (I) as follows: First we prove that the permutation
version of Tn

Ṽn
derived from (I) fulfills (5.2). After that we

argue that T ∗
n,stud has the same asymptotic limit behaviour

by discussing the different permutation versions of the stan-
dardizations. For the first part we apply Theorem 4.1. in
Janssen (2005). Note, that we have convergences in prob-
ability

1

2n

2n∑

i=1

(

Zi − 1

2n

2n∑

j=1

Zj

)2

= 1

2n

n∑

i=1

X2
i,1 + 1

2n

n∑

i=1

X2
i,2

−
(

1

2n

n∑

i=1

Xi,1 + 1

2n

n∑

i=1

Xi,2

)2

P−→ 1

2

(
σ 2

1 + σ 2
2

) + 1

4
(μ1 + μ2)

2 > 0,

by the law of large numbers, and

1√
2n

max
1≤i≤2n

∣
∣
∣
∣
∣
Zi − 1

2n

2n∑

j=1

Zj

∣
∣
∣
∣
∣

≤ 4√
n

(
max

1≤i≤n
|Xi,1| + max

1≤i≤n
|Xi,2|

)
P−→0, (5.3)

by the fact that (Xi,j /
√

n )1≤i≤n fulfill the Lindeberg con-
dition for each j = 1,2, which is more restrictive. Hence
Condition (1.12) in his paper is fulfilled and Theorem 4.1 in
Janssen (2005) implies a conditional central limit theorem
for the permutation version of T̃n,stud

sup
x∈R

∣
∣P

(
T̃n,stud

(
(Zπ(i))1≤i≤2n

) ≤ x
) − Φ(x)

∣
∣ P−→0.

Note that Tn,stud and T̃n,stud only differ in their standardiza-
tions. Hence, to complete the proof, we have to show that
the difference Ṽ 2

n ((Zπ(i))1≤i≤2n) − V 2
n ((Zπ(i))1≤i≤2n) con-

verges in probability to zero (note that both are positive on
a set with probability tending to 1). Straightforward calcula-
tions show that

Ṽ 2
n

(
(Zπ(i))1≤i≤2n

) − V 2
n

(
(Zπ(i))1≤i≤2n

)

= 2

[
1

n − 1

n∑

i=1

Zπ(i)Zπ(n+i)

−
(

1

n

n∑

j=1

Zπ(j)

)(
1

n

n∑

j=1

Zπ(n+j)

)]

=: 2
(
Rπ

n,1 − Rπ
n,2

)
.

We will first study Rπ
n,1. The conditional expectation fulfills

n − 1

n
E

(
Rπ

n,1

∣
∣X

)

= 1

2n(2n − 1)

∑

1≤i 	=j≤2n

ZiZj

= 2n

2n − 1

(
1

2n

2n∑

j=1

Zi

)2

+ 1

2n(2n − 1)

2n∑

i=1

Z2
i

= 1

4
(μ1 + μ2)

2 + oP (1).

Here oP (1) stands for a sequence that converges in probabil-
ity to zero as n → ∞. Moreover, for the conditional second
moment we have by the law of large numbers

n − 1

1
E

((
Rπ

n,1

)2∣∣X
)

= 1

n2

∑

1≤i 	=j≤n

E(Zπ(j)Zπ(n+j)Zπ(i)Zπ(n+i)|X)

+ 1

n2

n∑

k=1

E
(
Z2

π(k)Z
2
π(n+k)

∣
∣X

)

= n − 1

n

1

2n(2n − 1)(2n − 2)(2n − 3)

×
∑

1≤i1,i2,i3,i4≤2n

all 	=

Zi1 · · ·Zi4

+ 1

n

1

2n(2n − 1)

∑

1≤i 	=j≤2n

Z2
i Z

2
j

= 1

2n

(
2n∑

i=1

Zi

)4

+ oP (1)

=
(

1

2
(μ1 + μ2)

)4

+ oP (1)

= E
(
Rπ

n,1

∣
∣X

)2 + oP (1).

Note that the third step comprised iterated applications of
the law of large numbers together with inequalities that in-

volve the convergence in probability max1≤i≤2n Z2
i /n

P−→ 0.

Altogether this shows Var(Rπ
n,1)

P−→ 0 so that Rπ
n,1 con-

verges in probability to 1
4 (μ1 + μ2)

2. For Rπ
n,2 similar cal-
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culations as above show that

E

(
1

n

n∑

j=1

Zπ(j)

∣
∣
∣
∣
∣
X

)
P−→ 1

2
(μ1 + μ2) and

Var

(
1

n

n∑

j=1

Zπ(j)

∣
∣
∣
∣
∣
X

)
P−→0.

Thus 1
n

∑n
j=1 Zπ(j) converges in probability to 1

2 (μ1 +μ2).

Since the same holds true for ( 1
n

∑n
j=1 Zπ(n+j)) it follows

that Rn,2 converges in probability to 1
4 (μ1 + μ2)

2 which
completes the proof for the resampling scheme (I).

The proof for scheme (III), where we draw the resample
with replacement from the pooled sample, can be obtained
with similar methods.

Since case (II) is a special example of (VI), see Re-
mark 2.1 above, the result follows from Theorem 2.2. Hence
it remains to prove (IV). Therefore we can again proceed
as in the proof of (I). First it follows from Theorem 4.2.
in Janssen (2005) that T̃ ∗

n,stud = T̃n,stud(X∗) is asymptoti-
cally standard normal, i.e. (5.2) holds with T ∗

n,stud replaced

by T̃ ∗
n,stud . Again the asymptotic equivalence of the different

studentizations follows as in case (I). �

Proof of Theorem 2.2 We start by verifying the result for
(V). Therefore we will apply Theorem 3.1. in Janssen (2005)
with the array Xn,i := Di/

√
n. Note that by Eq. (3.4)

in his paper the result follows from the convergences
∑n

i=1(Xn,i − X)2 = 1
n

∑n
i=1 D2

i − D
2
n

P−→ Var(D1) and

max1≤i≤n |Xn,i | P−→ 0. Here the last convergence is a con-
sequence of (5.3). This finishes the proof for (V).

For the last case (VI) we analyze foremost the conditional
distribution of the enumerator of the wild bootstrap t-type
statistic

√
nD

∗
n. Note, that given the data X

Wn,i := 1√
n

WiDi, 1 ≤ i ≤ n

defines an array of row-wise independent random variables.
It fulfills

E(Wn,i |X) = 0 and Var(Wn,i |X) = 1

n
D2

i .

Hence the conditional variance of
√

nD
∗
n fulfills

Var
(√

nD
∗
n

∣
∣X

) = 1

n

n∑

i=1

D2
i

P−→E
(
D2

1

) =: σ 2
W .

Since we also have

n∑

i=1

E
(
W 2

n,i1
{|Wn,i | ≥ ε

}∣
∣X

)

≤ E
(
W 2

1 1
{

max
1≤i≤n

|Wi | ≥ ε
√

n
})

−→ 0

for all ε > 0 by the dominated convergence theorem, Linde-
berg’s central limit theorem implies

sup
x∈R

∣
∣P

(√
nD

∗
n ≤ x

∣
∣X

) − Φ(x/σW )
∣
∣ P−→0.

By Slutzky’s Lemma it remains to prove that V ∗2
n converges

in probability to σ 2
W . But this follows from the law of large

numbers since

n − 1

n
V ∗2

n = 1

n

n∑

i=1

(WiDi)
2 −

(
1

n

n∑

j=1

WjDj

)2

converges in probability to E((W1D1)
2) − E(W1D1)

2 =
E(W 2

1 )E(D2
1) = σ 2

W . �
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