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Abstract − Vibrio parahaemolyticus is a common pathogenic
bacterium in marine and estuarine waters. To investigate
interactions between V. parahaemolyticus and co-occurring red-
tide dinoflagellates, we monitored the daily abundance of 5
common red tide dinoflagellates in laboratory culture;
Amphidinium carterae, Cochlodinium ploykrikoides, Gymnodinium
impudicum, Prorocentrum micans, and P. minimum. Additionally,
we measured the ingestion rate of each dinoflagellate on V.
parahaemolyticus as a function of prey concentration. Each of
the dinoflagellates responded differently to the abundance of V.
parahaemolyticus. The abundances of A. carterae and P. micans
were not lowered by V. parahaemolyticus, whereas that of C.
polykrikodes was lowered considerably. The harmful effect
depended on bacterial concentration and incubation time. Most
C. polykrikoides cells died after 1 hour incubation when the V.
parahaemolyticus concentration was 1.4×107 cells ml-1, while
cells died within 2 days of incubation when the bacterial
concentration was 1.5×106 cells ml-1. With increasing V.
parahaemolyticus concentration, ingestion rates of P. micans, P.
minimum, and A. carterae on the prey increased, whereas that
on C. polykrikoides decreased. The maximum or highest
ingestion rates of P. micans, P. minimum, and A. carterae on V.
parahaemolyticus were 55, 5, and 2 cells alga-1 h-1, respectively.
The results of the present study suggest that V. parahaemolyticus
can be both the killer and prey for some red tide dinoflagellates.
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1. Introduction

Bacteria and red-tide dinoflagellates are major components
of marine ecosystems (Azam 1998; Doucette et al. 1998).

They usually co-occur, thus most studies have investigated
their joint interactions (Lee 1990; Doucette et al. 1999;
Mayali and Azam, 2004). Some bacteria are known to kill
red tide dinoflagellates such as algicidal bacteria (Kitaguchi
et al. 2001; Amaro et al. 2005). A number of algicidal
bacteria have been reported since the 1990s (Imai et al.
1993, 2001; Doucette et al. 1998; Park et al. 1998; Kim et
al. 1999; Byun et al. 2002; Mayali and Azam 2004; Imai
and Kimura 2008). Lysis of algae by algicidal bacteria is
known to play an important role in terminating red tides
(Skerratt et al. 2002). On the contrary, bacteria have been
revealed to be eaten by red-tide dinoflagellates (Nygaard
and Tobiesen, 1993; Seong et al. 2006). Additionally, some
bacteria are known to live inside red tide dinoflagellates in a
symbiotic relationship (Green et al. 2004; Hackett et al.
2004; Jasti et al. 2005). Thus, interactions between bacteria
and red tide dinoflagella can be complicated.

Vibrio parahaemolyticus is a common pathogenic bacterium
in marine and estuarine waters (Hervio-Heath et al. 2002;
Makino et al. 2003; Yeung and Boor 2004). This bacterium,
when ingested, causes watery diarrhea often with abdominal
cramping, nausea, vomiting, fever, and chills (Dadisman et
al. 1972). V. parahaemolyticus can also cause an infection
of the skin when an open wound is exposed to warm
seawater (Wright et al. 2009). V. parahaemolyticus is sometimes
abundant during red tides dominated by dinoflagellates
(Romalde et al. 1990; Eiler et al. 2006). However, there are
very few studies on interactions between V. parahaemolyticus
and red-tide dinoflagellates (Bienfang et al. 2011), which
makes the exploration of this topic worthwhile.

We isolated and established a clonal culture of V.*Corresponding author. E-mail: scaway@kunsan.ac.kr

Article

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81542787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


106 Seong, K.A. and Jeong, H.J.

parahaemolyticus from seawater to investigate interactions
between V. parahaemolyticus and co-occurring red-tide
dinoflagellates. In particular, we monitored the abundance
of 5 common red tide dinoflagellates and measured the
growth and ingestion rates of the dinoflagellates on V.
parahaemolyticus as a function of the prey concentration on
the daily basis. The results of the present study provide a
basis for understanding interactions between V. para-
haemolyticus and red tide dinoflagellates and dynamics of
these two components in marine ecosystems.

2. Materials and Methods

Preparation of experimental organisms
Red-tide dinoflagellates were grown at 20 oC in enriched

f/2 seawater media (Guillard and Ryther, 1962) without
silicate under a 14h light:10h dark cycle of 30 µE m-2s-1.
The mean equivalent spherical diameter (ESD) ± standard
deviation was measured by an electronic particle counter
(Coulter Multisizer II, Coulter Corporation, Miami, Florida,
USA) (Table 1).

For isolation of Vibrio parahaemolyticus, water samples
were collected from surface waters of Shiwha Bay, Korea,
in September 2005. Samples were immediately transferred
to the laboratory with a temperature of below 4 oC.
Subsequently, 0.2 ml of each diluted sample was inoculated
on to Marine agar plate (Difco 2216, Franklin lakes, NJ).

Samples in the plate were incubated at 37 oC for a week
under dark condition. To isolate the colony separately, each
colony was streaked on the new plate. Again, each colony
was isolated and transferred to 50 ml of Na broth (Andersen
et al. 1974). Isolated bacterial cultures were incubated until
the stationary phase (approximately 2-3 d) on a shaker at
70 rpm at 37 oC. V. parahaemolyticus was identified by
analyzing the sequence of 16S rDNA. Its sequence shows 99%
similarity with species of V. parahaemolyticus.

Harmful effects of Vibrio parahaemolyticus
Experiment 1 was designed to assess whether dense

culture or filtrate of V. parahaemolyticus is able to kill red-
tide dinoflagellates Amphidinium carterae, Cochlodinium
polykrikoides, Gymnodinium impudicum, Prorocentrum
micans, and P. minimum in laboratory culture.

A dense culture of the target dinoflagellate (20,000-
400,000 cells) was added to each well of 6 well plate
chambers. A dense culture of V. parahaemolyticus (ca,
8×105-8×108 cells) was added to each well of the chambers
(Two final concentrations = 106 and 107 cells ml-1). Triplicate
experimental wells for each V. parahaemolyticus final
concentration (mixture of target dinoflagellate and V.
parahaemolyticus) and triplicate control wells (target
dinoflagellate only) were set up. After 0.5, 1, 2, 4, and 6 h of
incubation, swimming behaviors of target dinoflagellate
cells in each well were examined under an inverted light

Table 1. Dinoflagellate species used as predators on and/or victims by target algicidal bacteria. Mean equivalent spherical diameter
(ESD, µm) (± Standard deviation) was measured by an electronic particle counter measured before these experiment; n>2000
for each species. MIR: Maximum ingestion rate of the dinoflagellates on Vibrio parahaemolyticus (Vp, cells alga-1h-1).
LCBKD: Lowest concentration of algicidal bacteria for killing the target dinoflagellate (in bacterial cells ml-1). NHE: No
Harmful Effect

             Species ESD (±SD) MIR          Target bacterium LCBKD       References
Amphidinium carterae 6.6 (1.5) 1.2 Vibrio parahaemolyticus NHE This study
Amphidinium carterae Vibrio harveyi

V. alginolyticus
V. parahaemolyticus

NHE Nayak et al. 2000

Prorocentrum minimum 12.1 (2.5) 5.1 V. parahaemolyticus 1.4×107 This study
Prorocentrum minimum Psedoalteromonas haloplanktis 2.5×104 (cfu ml-1) Kim et al. 2009
Prorocentrum minimum Shewanella IRI-160 ∼109 Hare et al. 2005
Prorocentrum micans 26.6 (2.8) 55 V. parahaemolyticus 1.4×107 This study
Prorocentrum micans Psedomonas sp. LG-2 1.3×106 Lee and Park, 1998
Gymnodinium impudicum 17.8 (2.6) 1.6 V. parahaemolyticus 1.4×107 This study
Gymnodinium nagasakiense Flavobacterium sp. > 106 Fukami et al. 1992
Cochlodinium polykrikoides 25.9 (2.9) ND V. parahaemolyticus 8.8x105 This study
Cochlodinium polykrikoides 25.9 (2.9) ND Alteromonas sp. 

Psedoalteromonas sp
<105~107 Imai and Kimura 2008

Cochlodinium polykrikoides 25.9 (2.9) ND Alteromonas sp. 9.0×105 Lee et al. 2008
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microscope.
To test the harmful effects of the filtrate from V.

parahaemolyticus culture on each dinoflagellate, dense
cultures (106 and 107 cells ml-1) of exponentially growing V.
parahaemolyticus were transferred to centrifuge tubes.
After 20 min of centrifugation at 20,000 g, the supernatant
(suspended aliquot) was filtered through a 0.2 µm pore-
sized filter (Whatmann, Polycarbonate, Maidstone, UK) to
remove bacteria cells. Filtered supernatants (0.01-0.1 ml-1)
were transferred into each of the triplicate wells containing
the target dinoflagellate. Additionally, triplicate control
wells (target dinoflagellate only without added filtrate)
were set up. After 0.5, 1, 2, 4, and 6 h of incubation, swimming
behaviors of target dinoflagellate cells were examined as
described above. 

Numerical response by dinoflagellates to Vibrio con-
centration

Experiment 2 was designed to investigate numerical
responses by red-tide dinoflagellates Amphidinium carterae,
Cochlodinium polykrikoides, Gymnodinium impudicum, P.
minimum, and Prorocentrum micans to the concentration of
V. parahaemolyticus as a function of elapsed incubation time.

Dense cultures of each red tide alga (80,000-1,600,000
cells) and/or V. parahaemolyticus (ca, 8×105-8×108 cells)
were transferred to 80 ml PC bottles. Triplicate experimental
bottles (mixture of target dinoflagellate and V. parah-
aemolyticus) and triplicate control bottles (target dinoflagellate
only) were established at each V. parahaemolyticus concen-
tration. The initial concentrations of V. parahaemolyticus
were 1×104, 1×105, 8×105, 1×106, 1×107 cells ml-1. The
bottles were filled to capacity with freshly filtered seawater,
and then placed on the shelf (30 µE m-2s-1). From day 0 to
day 6, a 4 ml aliquot was removed from each bottle everyday
and fixed with 5% Lugol’s solution, while another 4 ml
aliquot were fixed with 4% formalin. All or >300 predator
cells, fixed in Lugol’s solution, in three 1 ml Sedqwick-
Rafter counting chambers were enumerated. The aliquots
fixed with formalin were filtered onto 0.2 µm pore sized, 25
mm PC black membrane filters and then the concentrated cells
on the membranes were observed under an epifluorescence
microscope (Olympus BX51) with UV-light excitation at a
magnification of 1000x to determine the concentration of
bacteria stained using 4’6’-diamidino-2-phenylindole (DAPI.
final con.:1 µM).

The specific growth rate of target dinoflagellate, µ (d-1),

was calculated by averaging the growth rates obtained at
each interval as follows:

µ = [Ln (Gt/G0)] (1)

Where G0 is the initial concentration of the dinoflagellate
at the beginning of each day and Gt is the final concentration
at the end of the day. The first and last days in this calculation
were Day 2 and Day 5, respectively. 

Ingestion rate of dinoflagellates on Vibrio
Experiment 3 was designed to measure the ingestion rates

of Amphidinium carterae, Cochlodinium polykrikoides,
Gymnodinium impudicum, Prorocentrum micans, and P.
minimum on V. parahaemolyticus as a function of the prey
concentration.

One or two days before this experiment, V. parahaemolyticus
cells collected from centrifugation were fluorescently
labeled using the method of Sherr et al. (1987), and the
fluorescently labeled bacteria (FLB) were added to triplicate
80 ml PC experimental bottles containing mixtures of V.
parahaemolyticus (1×106-2×109 cells) and target dinoflagellate
(80,000-1,600,000 cells). The abundance of the FLB was
30% of total bacteria. Triplicate control bottles containing
only target dinoflagellate were also established. All bottles
were filled to capacity with freshly filtered and autoclaved
seawater, capped, placed on a shelf and incubated at 20 oC
under continuous illumination of 30 µE m-2s-1 of cool white
fluorescent light. After 1, 5, 10, 20, and 30 min incubation
periods, 8 ml aliquots were removed from each bottle,
transferred 20 ml vials, and then fixed with borate-buffered
formalin (final concentration=3%). The fixed samples were
stained using 4’6’-diamidino-2-phenylindole (DAPI. final
con.: 1 µM), and then filtered onto 3 µm pore size PC
white-membrane filters. The FLB inside a dinoflagellate
cell were enumerated under an epifluorescence microscope
with blue light excitation. Bacteria (both FLB and non
FLB) outside dinoflagellates were also enumerated under
an epifluorescence microscope with UV light excitation for
non-FLB and blue light excitation for FLB. After subsampling,
the bottles were capped, placed on a shelf, and incubated
again, as described above. Each value of the ingestion rate
(cells alga-1 h-1) was obtained. The relationship of ingestion
rates to prey abundance was fitted to a Michaelis-Menten
equation:

IR = Imax(x)/[KIR + (x)] (2)
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Where Imax is the maximum ingestion rate (cells alga-1h-1); x
the prey concentration (cells ml-1), and KIR the prey
concentration sustaining 1/2 Imax. The prey concentration is
the sum of living bacteria and FLBs. 

A feeding experiment of C. polikrikoides on V. par-
ahaemolyticus was also performed for 30 min. However, C.
polikrikoides was killed within 30 min in high density of V.
parahaemolyticus during this experiment. Thus, we could
not measure the ingestion rate at the V. parahaemolyticus
concentrations > 105 cells ml-1.

Before these experiments were conducted, bacteria in the
original dinoflagellate cultures were eliminated down to
1.4×104 cell ml-1 with a dilution method using filtered and
autoclaved seawater. 

3. Results

Effects of V. parahaemolyticus concentration and incubation
time

The red tide dinoflagellates tested in the present study
responded differently to a dense culture of V. parahaemolyticus
or its filtrate. The body of C. polikrikoides was decomposed
within 20 min after the addition of either dense V.
parahaemolyticus culture (1×107 cells ml-1) or filtrate of the
culture (Fig. 1). However, the shape of P. micans did not
changed by either V. parahaemolyticus nor the filtrate (Fig.
2). The shape of P.minimum and A.carterae did not change
likewise. Gymnoninium impudicum, having a similar shape
with C. polykrikoides was decomposed after 1 hour. 

The abundance of all dinoflagellates tested in the present
study was affected by V. parahaemolyticus (Fig. 3-7).
However, the degree of effectiveness (i.e. growth rate) was
species-dependent. In addition, the concentrations of V.
parahaemolyticus in which each of the red tide dinoflagellates
was killed were also different among the species. 

With increasing incubation time, the abundances of A.
carterae in control and at all V. parahaemolyticus
concentrations increased (Fig. 3A). However, the growth
rate of A. carterae at all V. parahaemolyticus concentrations
provided here were not significantly different from that in
the control (p>0.1, one-tailed t test; Fig. 3B). This evidence
suggests that the growth of A. carterae may be not significantly
affected by V. parahaemolyticus. 

With increasing incubation time, the abundances of
Prorocentrum minimum increased at all V. parahaemolyticus
concentrations, except the control and the highest
concentration (Fig. 4A). The growth rate of P. minimum at
V. parahaemolyticus concentration of 8.8×105 cells ml-1 was
significantly higher than that in the control (p<0.05, one-
tailed t test). However, the growth rates of P. minimum at the
other V. parahaemolyticus concentrations were not significantly
different from that in the control (p>0.1, one-tailed t test;
Fig. 4B). This evidence suggests that the growth of P.
minimum may only be stimulated by V. parahaemolyticus at
concentrations of 8.8×105 cells ml-1.

With increasing incubation time, the abundances of
Prorocentrum micans increased in the control and at all V.

Fig. 1. The body shape of Cochlodinium polykrikoides cells at the beginning of the experiment (A) and 40 minute (B) and 1 hour later
after addition of 1×107 cells ml-1 Vibrio parahaemolyticus. Scale bar=10 µm

Fig. 2. The body shape of Prorocentrum micans cells at the
beginning of the experiment (A) and 1 hour later after
addition of 1×107 cells ml-1 Vibrio parahaemolyticus.
Scale bar=10 µm
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parahaemolyticus concentrations, except at the highest
concentration, (Fig. 5A). The growth rates of P. micans at
all V. parahaemolyticus concentrations were not significantly
different from that in the control (p > 0.1, one-tailed t test;
Fig. 5B). This evidence suggests that the growth of P.
micans may be not affected by V. parahaemolyticus. 

With increasing incubation time, the abundances of G.
impudicum increased in the control and at the V.
parahaemolyticus concentrations ≤ 1.5×106 cells ml-1, but
decreased at the V. parahaemolyticus concentration of
1.4×107 cells ml-1 (Fig. 6A). The growth rate of G. impudicum at
the V. parahaemolyticus concentration of 1.4×107 was
significantly lower than that in the control (p<0.05, one-
tailed t test), while growth rates at the other V. parahaemolyticus
concentrations were higher than in the control (p<0.05, one-
tailed t test; Fig. 6B). This evidence suggests that the
growth of G. impudicum may be negatively affected by V.

parahaemolyticus at the concentration of 1.4×107 cells ml-1,
but it may be positively affected at lower bacterial concen-
trations.

With increasing incubation time, the abundances of
Cochlodinium polykrikoides in control and at the V.
parahaemolyticus concentration of 1.7×104-8.8×105 cells
ml-1 did not markedly change, while those at the higher
concentrations decreased (Fig. 7A). Most C. polykrikoides
cells died after 1 day of incubation when the V. parahaemolyticus
concentration was 1.4×107 cells ml-1, while cells died within
2 days of incubation when the bacterial concentration was
1.5×106 cells ml-1. The growth rates of C. polykrikoides at
the V. parahaemolyticus concentration of 1.7×104-8.8×105

cells ml-1 was not significantly different from that in the
control (p>0.1, one-tailed t test; Fig. 7B). However, the
growth rates of C. polykrikoides at the V. parahaemolyticus
concentrations of 1.5×106 and 1.4×107 cells ml-1 were -0.6

Fig. 3. The abundance (A) and growth rate (B) of Amphidinium
carterae as functions of the abundance of Vibrio
parahaemolyticus and elapsed incubation time. Legends
represent the concentration of V. parahaemolyticus.
Control: without V. parahaemolyticus. Symbols represent
means ± standard errors. See text for calculation of the
growth rate

Fig. 4. The abundance (A) and growth rate (B) of Prorocentrum
minimum as functions of the abundance of Vibrio
parahaemolyticus and elapsed incubation time. Legends
represent the concentration of V. parahaemolyticus.
Control: without V. parahaemolyticus. Symbols represent
means ± standard errors. See text for calculation of the
growth rate
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and -1.0 d-1, respectively. This evidence suggests that the
growth of C. polykrikoides may be negatively affected by V.
parahaemolyticus at the bacterial concentrations ≥1.5×106

cells ml-1.

Ingestion rates of dinoflagellates on V. parahaemolyticus
The functional response of each of the 5 red tide

dinoflagellates to V. parahaemolyticus concentration was
different from that of the other dinoflagellates (Fig. 8). With
increasing V. parahaemolyticus concentration, the ingestion
rates of A. carterae and P. minimum increased rapidly at
prey concentrations of < 1-3×106 cells ml-1 and slowly at
higher prey concentrations (Fig. 8A,B). When the data were
fitted to Eq. (2), the maximum ingestion rates of A. carterae
and P. minimum on V. parahaemolyticus were 1.2 and 5.1
cells alga-1 h-1, respectively. The maximum clearance rates
of A. carterae and P. minimum on V. parahaemolyticus were
0.1 and 0.3 nl alga-1h-1, respectively.

With prey concentrations of < 1.4×107 cells ml-1, the

ingestion rate of P. micans on V. parahaemolyticus increased
linearly (Fig. 8C). The highest value among the ingestion
rates was 55 cells alga-1h-1. The maximum clearance rate of
P. micans on V. parahaemolyticus was 3.7 nl algae-1h-1.

The ingestion rates of Gymnodinium impudicum on V.
parahaemolyticus were between 1.5-2.5 cells alga-1h-1

without any particular pattern (Fig. 8D).
With increasing prey concentrations, the ingestion rate of

C. polykrikoides on V. parahaemolyticus decreased (Fig. 8E).
The rate was not detected at prey concentrations of
< 1.5×106 cells ml-1.

4. Discussion

Vibrio parahaemolyticus as a killer
The results of the present study show that the harmful

pathogenic bacterium V. parahaemolyticus can be a killer
and/or prey for red tide dinoflagellates. At V. parahaemolyticus
concentrations of ≤1.5×106 cells ml-1, C. polykrikoides is a

Fig. 5. The abundance (A) and growth rate (B) of Prorocentrum
micans as functions of the abundance of Vibrio
parahaemolyticus and elapsed incubation time. Legends
represent the concentration of V. parahaemolyticus. Control:
without V. parahaemolyticus. Symbols represent means ±
standard errors. See text for calculation of the growth rate

Fig. 6. The abundance (A) and growth rate (B) of Gymnodinium
impudicum as functions of the abundance of Vibrio
parahaemolyticus and elapsed incubation time. Legends
represent the concentration of V. parahaemolyticus. Control:
without V. parahaemolyticus. Symbols represent means ±
standard errors. See text for calculation of the growth rate
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victim of V. parahaemolyticus. Additionally, at the V.
parahaemolyticus concentration of 1.4×107 cells ml-1,
G.impudicum was also a victim. However, A.carterae, P.
minimum, and P. micans are mainly grazers on V.
parahaemolyticus at V. parahaemolyticus concentrations of
≤1.5×106 cells ml-1, while they could be victims as well as
grazers at the higher V. parahaemolyticus concentrations.
Nayak et al. (2000) reported that the concentrations of
Vibrio harveyi, V. alginolyticus, and V. parahaemolyticus,
which was incubated with A. carterae, gradually decreased.
A. carterae was likely to feed on these Vibrios, even though
the authors did not mention this possibility. 

Algicidal bacteria have been known to kill algae or inhibit
their growth through direct contact with algal cells (Manage
et al. 2000; Furusawa et al. 2003), or indirectly through
release of toxic compounds into the ambient environment
(Holmstrom and Kjelleberg, 1999; Nakashima et al. 2006).
Psedomonas sp. Flavobacteria sp., Alteromonas spp.,

Psedoalteromonas spp., Bacillus sp., and Hahella chejuensis
spp. are known to produce extracellular algicidal substances
(Kim et al. 2008). Most of them are able to secrete metabolic
compounds and might be used as biological control agent in
natural seawater (Fukami et al. 1992; Wang et al. 2005). C.
polikrikoides was decomposed within 20 min after the
addition of either dense V. parahaemolyticus culture or
filtrate of the culture. Thus, C. polikrikoides may be killed
by direct physical contact and/or potential extracellular
substances. C. polykrikoides has a thin surface membrane,
while A. carterae and G. impudicum have relatively thick
surface membrane, so called amphiesmal vesicles (Fraga et
al. 1995). Furthermore, P. minimum and P. micans have
theca (Roberts et al. 1995). Thus, V. parahaemolyticus or its
excreting materials may easily penetrate and kill C.
polykrikoides cells, while it has difficulty in penetrating and
killing the cells of the other dinoflagellates. V. parahaem-
olyticus may deter the outbreak of red tides dominated by C.
polykrikoides and/or accelerate the decline of red tides.
Differential harmful effects by V. parahaemolyticus on C.
polykrikoides compared to the other dinoflagellates may
cause predominance by the other dinoflagellates over C.
polykrikoides. 

Red tides dominated by C. polykrikoides have caused
great losses in many countries (Gárate-Lizárraga et al.
2004; Kim et al. 2004; Kim et al. 2007; Richlen et al. 2010).
For example, its red tides have caused losses of up to USD $
60 million per year in the Korean aquaculture industry
(NFRDI 1998). Thus, diverse methods of controlling the
outbreak and persistence of red tides dominated by C.
polykrikoides and thereby reducing their economic impacts
have been suggested (Jeong et al. 2002, 2008). Use of
algicidal bacteria is one of the methods widely suggested
(e.g. Imai et al. 1995). The bacterium Micrococcus sp. LG-5
and Psedomonas sp. LG-2 have also been reported to kill C.
polikrikoides (Jeong et al. 2000; Lee et al. 2008). However,
these bacteria also killed several other red tide dinoflagellates.
Thus, V. parahaemolyticus can be the only effective algicidal
bacterium against C. polikrikoides, and not the other red
tide dinoflagellates (i.e. semi-species specific).

The bacterium Psedoalteromonas haloplanktis AFMB-
008041 has been known to kill P. minimum, while Micrococcus
sp. LG-5 and Psedomonas sp. LG-2 kill P. micans (Jeong et
al. 2000; Kim et al. 2009; Table 1). However, the bacterium
Alteromonas sp. which killed Akashiwo sanguinea, C.
polykrikoides, Gymnodinium catenatum, and Heterocapsa

Fig. 7. The abundance (A) and growth rate (B) of Cochlodinium
polykrikoides as functions of the abundance of Vibrio
parahaemolyticus and elapsed incubation time. Legends
represent the concentration of V. parahaemolyticus.
Control: without V. parahaemolyticus. Symbols represent
means ± standard errors. See text for calculation of the
growth rate
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triquetra did not kill P. minimum and P. micans (Lee et al.
2008). Therefore, the impact of algicidal activities on
red tide algae including P. minimum and P. micans is

Psedoalteromonas haloplanktis AFMB-008041, Micrococcus
sp. LG-5, and Psedomonas sp. LG-2 > Alteromonas sp. > V.
parahaemolyticus. 

Fig. 8. Ingestion rate (cells alga h-1) of Prorocentrum minimum (A), Amphidinium carterae (B), P. micans (C), Gymnodinium impudicum
(D), and C. polykrikoides(E) on Vibrio parahaemolyticus a function of the initial bacterial concentration (x, cells ml-1). Each
ingestion rates was calculated by exploration from a linear regression curve on the number of prey cells inside a dinoflagellate
predator cell over incubation time. Symbols represent treatment mean ± 1 SE. The curves were fitted by a Michaelis-Menten
equation (Eq 2) in (A) and (B) and a linear equation in (C) using all treatments in the experiment. Ingestion rate (IR, cells
dinoflagellate-1h-1)=5.1 [x/(1,700,000+x)], r2=0.991 in (A), IR=1.2 [x/(270,000+x)], r2=0.435 in (B), IR=5.378x+0.319, r2=0.968
in (C)
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Vibrio parahaemolyticus as prey
All red tide dinoflagellates tested in the present study

were able to feed on V. parahaemolyticus. However, C.
polikrikoides was not able to feed on this bacterium at
bacterial concentrations of ≤1.5×106 cells ml-1 because the
dinoflagellate was killed at this concentration.

The maximum ingestion rate of P. minimum on V.
parahaemolyticus (5.1 cells alga-1h-1) were considerably
lower than that on mixed bacteria, which originally lived in
dinoflagellate culture (21.9 cells alga -1h-1; Seong et al.
2006). Furthermore, the maximum ingestion rate of C.
polikrikoides on V. parahaemolyticus (1.3 cells alga-1h-1)
was also much lower than that on mixed bacteria in Masan
Bay (17.4 cells alga-1h-1; Seong et al. 2006). The size of V.
parahaemolyticus used in the present study was similar to
that of bacteria used in Seong et al. (2006). Thus, for the red
tide dinoflagellate predators, V. parahaemolyticus may not
be as good prey as mixed bacteria used in Seong et al.
(2006). 

The growth rate of P. minimum at the V. parahaemolyticus
concentration of 8.8×105 was significantly higher than that
in the control. The daily acquired bacterial carbon by P.
minimum from V. parahaemolyticus [8.2 pg C (5.1×24×
0.067 pgC)] was only 6.3% of the body carbon of P.
minimum. Thus, V. parahaemolyticus cannot only support
the positive growth of P. minimum. However, V.
parahaemolyticus may stimulate or partially support the
growth of P. minimum. Another bacterium, Alteromonas sp.
strain A14, was known to stimulate the growth of P.
minimum at the prey concentration of ~106 cell ml-1 (Lee et
al. 2008). 

In conclusion, V. parahaemolyticus can be killer and
simultaneous prey for all red tide dinoflagellates tested in
the present study; V. parahaemolyticus induces the most
harmful effects on C. polykrikoies; Bacterial concentration
and incubation time were important factors; With
increasing V. parahaemolyticus concentration, ingestion
rates of P. minimum, P. micans, and A. carterae on the prey
increased, whereas ingestion rates on C. polykrikoides
decreased.
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