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1 Introduction

The high temperature phase of string theory is ill understood [1–3]. Beyond a critical

temperature, the canonical ensemble is no longer well-defined. There is no known effective

theory that describes the physics of strings at temperatures above the Hagedorn tempera-

ture. The effective degrees of freedom are not known.

While the problem is universal to all perturbative string theories, we wish to concen-

trate on the heterotic superstring. Due to the off-set in the left and right level-matching

conditions, the momentum and winding of the heterotic string at finite temperature need

to be non-zero at zero oscillator excitation. Therefore, the potentially tachyonic mode will

become massive at both small and large radius. In fact, in the critical window only a single

perturbatively tachyonic mode can develop. That is a property unique to the heterotic

string. Moreover, the heterotic string has an enhanced gauge symmetry at self-dual radius.

The heterotic string at finite temperature has been studied before [1, 4–7]. It was ar-

gued on general grounds to exhibit a first order phase transition. Later on, non-perturbative

potentials were proposed to describe the lower-dimensional heterotic string at finite tem-

perature in a spontaneous supersymmetry breaking framework [8] and it was shown that

one can sidestep the phase transition by introducing background potentials [9, 10].

In this paper, we will further analyze properties of the perturbative heterotic string

at finite temperature and in equilibrium. Let us immediately remark that this is formally

equivalent to thinking of the heterotic string as being compactified on a circle with periodic

boundary conditions for the bosonic field theory degrees of freedom, and anti-periodic

boundary conditions for the fermionic ones. We will find the second picture more convenient

for the bulk of the paper, since it permits us to directly interpret all of the physical

excitations. Thus, we will think of heterotic string at finite temperature as a superstring

theory in which we broke supersymmetry through periodicity conditions (à la Scherk-

Schwarz).

We will calculate the quartic term in the tachyon effective potential at the critical

radius. To that end, we plough through some of the detailed calculations, fix all normal-

izations, perform a unitarity check, et cetera. We give the details here since we were not

able to extract them easily from the literature. We then use the experience gained to offer

speculative comments on what might happen beyond the Hagedorn radius.

2 The spectrum

In this section, we rederive the partition function of the theory under study, and its low-

energy modes in the regimes of interest to us.

2.1 Heterotic string theory at finite temperature

The partition function for a system at finite temperature and in equilibrium is given by

the path integral on space times a circle, with periodic boundary conditions for the bosonic

field theoretic degrees of freedom and anti-periodic boundary conditions for the fermionic

ones. The inverse radius of compactification is (2π times) the temperature (at least at
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temperatures low compared to the string scale). Equivalently, we can think rather of a

theory at zero temperature, compactified on a circle, with twisted periodicity conditions

that will break supersymmetry. The radius of compactification sets the supersymmetry

breaking scale. When discussing the problem at hand, we will mostly take the latter point

of view, such that we can truely pick a light-cone gauge, and talk about all excitations as

physical excitations of our system.

We determine the spectrum of the theory at generic radius of compactification R. We

do this on the one hand by analyzing the exact partition function, and on the other hand

by a hands-on analysis of the physical Hilbert space.

2.2 The partition function

2.2.1 The supersymmetric ten-dimensional partition function

We have that the toroidal partition function for heterotic string theory on R
9,1 is:

ZT 2 = iV10

∫

dτdτ̄

4τ2

1

(4π2α′τ2)5
1

|η|16
Γ16

η16

1

2

1
∑

a,b=0

(−1)a+b+ab

ϑ̄

[

a/2

b/2

]4

η̄4
. (2.1)

There is a prefactor corresponding to the integration over 10 zero-modes, and there are 8

sets of bosonic transverse oscillator excitations. The last factor corresponds to the GSO

projected right-moving worldsheet fermions. The factor (−1)b corresponds to the twist

by the right-moving worldsheet fermion number while the factor (−1)a is added to rep-

resent the minus sign due to a space-time fermion loop. The left-movers of the heterotic

superstring moreover exhibit a sixteen-dimensional charge lattice Γ16 for compact bosons

corresponding either to the E8 × E8 lattice or to the Spin(32)/Z2 lattice.

2.2.2 Compactification on a circle

These formulas represent the partition function containing all zero modes and all oscillator

excitations transverse to the light-cone. Compactification to a spatial circle with radius R

and periodic fields leads to the partition function:

ZT 2 = 2iπRV9

∫

dτdτ̄

4τ2

1

(4π2α′τ2)5
1

|η|16
Γ16

η16

1

2

1
∑

a,b=0

(−1)a+b+ab

ϑ̄

[

a/2

b/2

]4

η̄4

+∞
∑

m,w=−∞
e
−πR2|m−wτ |2

α′τ2 .

The quantum number w corresponds to the winding and the quantum number m is Poisson

dual to the momentum. The argument of the exponential represents the classical action of

the worldsheet that winds around the two cycles of the torus with modular parameter τ .

2.2.3 Twisting the periodicity conditions

We now wish to change the periodicity conditions on the fields. The field theory bosons

remain periodic while the field theory fermions are taken to be anti-periodic on the circle.

This breaks supersymmetry at the length scale R. It is equivalent to considering the

– 3 –
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partition sum of the system at equilibrium and at finite temperature. In the process, we

want to retain modular invariance of the integrand of the one loop vacuum amplitude.

These requirements lead to an extra phase factor depending on the sector of the theory

and the winding numbers of the string [1]:

Uab(m,w) =
1

2
(−1)ab

(

1 + (−1)a+w + (−1)b+m − (−1)a+b+m+w
)

. (2.2)

It gives rise to the partition function [1, 4, 5]:

ZT 2 = 2iπ RV9

∫

dτdτ̄

4τ2

1

(4π2α′τ2)5
1

|η|16
Γ16

η16

+∞
∑

m,w=−∞

1
∑

a,b=0

×1

4
(−1)a+b

(

1+(−1)a+w +(−1)b+m−(−1)a+b+m+w
)

ϑ̄

[

a/2

b/2

]4

η̄4
e
−πR2|m−wτ |2

α′τ2 . (2.3)

One can easily check that for zero winding number w = 0 (and for any even w), there

is no change due to the extra phase factor for the bosons (a = 0). For the fermions,

one obtains an extra factor of (−1)m in this sector, which corresponds to anti-periodic

fermions winding m times. This agrees with the requirements in the point particle limit.

The remaining phases are fixed by modular invariance. For bosons with odd winding w, we

find that the GSO projection is reversed (due to an extra phase (−1)b) and that an extra

phase (−1)m is added to the partition sum. After Poisson resummation on the summation

variable m, we find the partition sum in Hamiltonian form:

ZT 2 = iV9

∫

dτdτ̄

16 τ2

1

(4π2α′τ2)9/2

Γ16

η24 η̄12
(2.4)

×
( ∞

∑

n,w=−∞

((

1 + (−1)w
)

qα′p2
L/4q̄α′p2

R/4 +
(

1 − (−1)w
)

qα′p̃2
L/4q̄α′p̃2

R/4
)

ϑ̄4
3

−
∞
∑

n,w=−∞

((

1 + (−1)w
)

qα′p2
L/4q̄α′p2

R/4 +
(

− 1 + (−1)w
)

qα′p̃2
L/4q̄α′p̃2

R/4
)

ϑ̄4
4

−
∞
∑

n,w=−∞

((

1 − (−1)w
)

qα′p2
L/4q̄α′p2

R/4 +
(

1 + (−1)w
)

qα′p̃2
L/4q̄α′p̃2

R/4
)

ϑ̄4
2

)

where the momenta are defined by:

pL,R =
n

R
± wR

α′ , p̃L,R =
n− 1

2

R
± wR

α′ . (2.5)

We see that both the GSO projection and the momentum lattice in the right-moving NS

sector are standard at even winding number. When the winding is odd, however, we have

that the GSO projection is reversed in the right-moving NS sector, and that the momenta

are shifted by half.

– 4 –
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2.3 The spectrum hands-on

The mass shell conditions for the left-movers and the NS and R sector right-movers are:

m2 = − 4

α′ +
4N left

α′ +

(

n

R
+
wR

α′

)2

, (2.6)

m2 = − 2

α′ +
4N right

NS

α′ +

(

n

R
− wR

α′

)2

, (2.7)

m2 =
4N right

R

α′ +

(

n

R
− wR

α′

)2

. (2.8)

The sectors refer to the sectors for the worldsheet fermion superpartners of the ten space-

time coordinates. We will concentrate on the space-time bosons. These necessarily arise

from the right-moving NS sector. Thus we can concentrate on the left-movers, and the NS

sector right-movers. For these excitations, we necessarily have:

N right
NS −N left +

1

2
− nw = 0. (2.9)

For concreteness, we will concentrate on the Spin(32)/Z2 heterotic superstring in the follow-

ing. We introduce bosonic fields XA with oscillators αA, right-moving worldsheet fermions

ψA, and 32 left-moving worldsheet fermions λa. The latter can be periodic or anti-periodic

and are taken to satisfy eiπFλ = 1, in order to give rise to a partition function factor that

is modular invariant by itself. Note that the periodic fermions λ do not give rise to low-

lying excitations. We will split the space-time index A into the index µ running over the

non-compact directions 0, 1 . . . , 8 and the index 9, in the compactified direction.

In the left-moving sector, we have the low-lying modes:

N left m2 states

0 − 4
α′ +

(

n
R + wR

α′

)2 |n,w〉

1
(

n
R + wR

α′

)2
(

αµ,9
−1 or λa

−1/2λ
b
−1/2

)

|n,w〉.

In the right-moving NS sector we find:

N right
NS m2 states

0 − 2
α′ +

(

n
R − wR

α′

)2 |n,w〉
1
2

(

n
R − wR

α′

)2
ψµ,9
−1/2|n,w〉.

We tensor the left-movers with the right-moving NS sector to obtain level-matched states

in the spectrum, satisfying the modified GSO projection. We will look for states that can

be massless or tachyonic at a given radius R. We start out with the left and right ground

state. To level match, we need nw = 1/2. That gives two states labelled by (shifted)

– 5 –
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momenta (n,w) = ±(1/2, 1). They satisfy the (reversed) GSO projection. They represent

a complex scalar T± of mass squared:

m2 =
1

4R2
+
R2

α′2 − 3

α′ . (2.10)

The complex scalar is massless at the Hagedorn radii:

RH√
α′

= 1 ± 1√
2
. (2.11)

At a radius between these two values, the complex scalar is tachyonic, and we will loosely

refer to this scalar as the tachyon. When we attempt to combine the right-moving ground

state with the left-moving first excited state (at level one half), we cannot satisfy GSO and

the conditions on the fermionic excitations λ. The same is true if we reverse left and right.

If we take both to be at the first excited level, there will again be no solution satisfying all

consistency conditions.

The second set of states arises from the right-moving ground states, and the left-moving

state at level 1. We need nw = −1/2. There are two solutions, namely (n,w) = ±(1/2,−1).

The mass squared of the states is:

m2 =
(−2R2 + α)2

4R2α′2 . (2.12)

The states becomes massless at the self-dual radius:

Rsd√
α′

=
1√
2
. (2.13)

At this radius they have left-moving momentum equal to zero and right-moving momentum

p̃R =
√

2/α′. The states represent two vectors, a complex scalar and a complex scalar in

the adjoint of Spin(32)/Z2:

(

αµ
−1 or α9

−1 or λa
−1/2λ

b
−1/2

)

⊗ | ± 1

2
,∓1〉. (2.14)

The last possibility is to have the level 1/2 state on the right, and the level 1 state on

the left. We have then the constraint nw = 0, and we can concentrate on the solution

(n,w) = 0. This solution corresponds to the states:

(

αµ
−1 or α9

−1 or λa
−1/2λ

b
−1/2

)

⊗
(

ψν
−1/2 or ψ9

−1/2

)

|0, 0〉 (2.15)

which are the 9-dimensional graviton, dilaton and anti-symmetric two-tensor, as well as

two U(1) Kaluza-Klein vectors, a scalar radion, an scalar adjoint of Spin(32)/Z2 as well

as a vector in the adjoint of Spin(32)/Z2. There can be no second tachyonic mode at any

radius [11]. Going higher in oscillation number will automatically raise the mass squared

to a positive number.

It is straightforward to check that our hands-on description agrees with the first terms

in the expansion of the partition function in equation (2.4).

– 6 –
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2.4 Summary of the low-energy excitations

We summarize the low-energy excitations that we will be interested in.

2.4.1 At generic radius

We broke supersymmetry in the Spin(32)/Z2 heterotic superstring via compactification on

a circle of radius R with twisted periodicity conditions. The nine-dimensional field content

of the theory includes the nine-dimensional metric gµν , the anti-symmetric tensor field bµν ,

the Kaluza-Klein gauge fields Ag,b
µ as well as the ten-dimensional dilaton Φ and a radion

field e2σ = g99. We also have the Spin(32)/Z2 adjoint gauge field and adjoint scalar.

We also have a complex tachyon T± whose mass depends on the radius of compact-

ification. At the Hagedorn radii, it becomes massless. In the interval between Hagedorn

radii, the tachyon has negative mass squared.

2.4.2 At the self-dual radius

At the self-dual radius, we find two extra massless vector fields, two extra massless scalars

as well as two extra massless Spin(32)/Z2 adjoint scalars. The gauge group at the radius

Rsd =
√

α′/2 enhances to SU(2)R ×U(1)L × Spin(32)/Z2. At this radius, the tachyon left-

moving momentum is
√

2/α′ while the right-moving momentum is zero. The tachyon is a

U(1)L charged field and a SU(2)R singlet. The two extra massless scalars that we obtain

at this radius fill out a (3, 0, 1) multiplet1 of the group SU(2)R × U(1)L × Spin(32)/Z2.

Indeed, these states have the same transformation properties as the vectors that fill out an

adjoint of SU(2)R. The Spin(32)/Z2 adjoint scalars combine into a (3, 0, Adj) multiplet.

2.4.3 Remark

One of our motivations to study the Hagedorn problem in the heterotic superstring is the

fact that at most one tachyon occurs at generic radius [11].

2.5 A note on spontaneous supersymmetry breaking

While the Scherk-Schwarz reduction that we performed can be described as a theory in

which supersymmetry is broken spontaneously, a word of caution may be needed. Indeed,

the theory is supersymmetric at infinite radius (which we can think of as the vacuum

expectation value of a scalar field) and therefore supersymmetry is broken spontaneously

in the theory, by giving a finite vacuum expectation value to the radius field. But we must

note as well that certain fields are infinitely massive in the supersymmetric theory. Those

fields include all winding modes, and in particular the tachyon.

From the perspective of the original ten dimensional theory these modes are non-

local. These degrees of freedom are hard to describe in terms of a local supersymmetric

Lagrangian with supersymmetry spontaneously broken. This phenomenon is typical of

string theory (in contrast to field theory).

1We denote the dimension of the group, except for U(1)L, where we indicate the charge.

– 7 –
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3 Scattering amplitudes

Our next goal will be to understand aspects of the effective action for the low-energy

excitations of the theory. Interesting phenomena are bound to happen near the Hagedorn

radii, where the tachyon becomes massless, and at the point of enhanced symmetry. We

want to reconstruct the effective action for the low-energy excitations, and in particular

for the tachyons. When we concentrate on the Hagedorn radius RH/
√
α′ = 1 + 1/

√
2, the

tachyons are massless. The tachyons are charged under the gauge fields arising from the

reduction of the metric and the two-form. They are moreover coupled to the graviton,

the dilaton and the radion. We will compute the three-point amplitudes between the

tachyons and the other massless fields, to fix all normalizations in the effective action at

the Hagedorn point. We then also calculate the four point tachyon amplitude to determine

the coefficient of the quartic term in the effective tachyon potential. Additionally, we will

fix the overall normalization of the amplitudes through a unitarity check. We perform the

scattering amplitude calculations for a generic radius, and restrict to the Hagedorn point

when the time has come.

3.1 Vertex-operators

To compute the scattering amplitudes of tachyons and gravitational modes, we need their

vertex operators. The states and the vertex operators for the tachyons in the minus one

picture are:

|0; k;n =
1

2
, w = 1〉−1 : V −1

T+ =
1√
2πR

eikµXµ(z,z̄)eik9,LX9(z)+ik9,RX9(z̄)e−φ̃(z̄) ,

|0; k;n = −1

2
, w = −1〉−1 : V −1

T− =
1√
2πR

eikµXµ(z,z̄)e−ik9,LX9(z)−ik9,RX9(z̄)e−φ̃(z̄) . (3.1)

The state-operator map maps normalized states on the left to normalized vertex operators

on the right. On the right, we have added the extra factor 1√
2πR

because in normalizing the

vertex operator, we integrate over the compact direction. In a scattering amplitude, one

power of the ten-dimensional string coupling constant accompanies every vertex operator.

For the tachyon, we will take it to be g10
T =

√
2πRgT . For the gravitational sector we will

use g10
c =

√
2πRgc. Unitarity requires that the equality gc = gT holds. We will perform

this unitarity check.

The vertex operators for the metric, the dilaton, the anti-symmetric tensor, the Kaluza-

Klein gauge bosons and the radion in the minus one picture are:

|N = 1, Ñ =
1

2
; k;n = 0, w = 0〉−1 : i

(

2

α′

)1/2 1√
2πR

eµν∂X
µ
L(z)ψ̃ν(z̄)eikρXρ(z,z̄)e−φ̃(z̄) ,

i

(

2

α′

)1/2 1√
2πR

eµ9∂X
µ
L(z)ψ̃9(z̄)eikρXρ(z,z̄)e−φ̃(z̄) ,

i

(

2

α′

)1/2 1√
2πR

e9µ∂X
9
L(z)ψ̃µ(z̄)eikρXρ(z,z̄)e−φ̃(z̄) ,

i

(

2

α′

)1/2 1√
2πR

e99∂X
9
L(z)ψ̃9(z̄)eikρXρ(z,z̄)e−φ̃(z̄) (3.2)

– 8 –
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with µ = 0, . . . , 8. These operators need to be normalized by choosing polarization tensors

appropriately. We take eµνe
µν = 1 as well as e99e

99 = 1. For the radion, we can choose

e99 = 1. For a Kaluza-Klein vector field associated to the metric for instance, we can pick

e9µ = 1√
2
eµ = eµ9 and eµe

µ = 1. To simplify our notation we will refer to the Kaluza-Klein

origin of these fields, and organize parts of our calculation as a ten-dimensional one. For

large parts of the calculation, we can use ten-dimensional indices A = 0, 1, . . . , 9 and write

the vertex operators as:

V −1
T+(z, z̄) =

1√
2πR

eik
+

A,LXA(z)+ik+

A,RXA(z̄)e−φ̃(z̄) ,

V −1
T−(z, z̄) =

1√
2πR

eik
−
A,LXA(z)+ik−

A,RXA(z̄)e−φ̃(z̄) ,

V −1
g (z, z̄) = i

(

2

α′

)1/2 1√
2πR

eAB∂X
A
L (z)ψ̃B(z̄)eik

g
A,L

XA(z)+ikg
A,R

XA(z̄) (3.3)

with

k+
A,L/R = (kµ, k9,L/R)

k−A,L/R = (kµ,−k9,L/R)

kg
A,L/R = (kµ, 0) (3.4)

Note that the gravitational vertex operator V −1
g (z, z̄) in equation (3.3) is a sum of the four

operators listed in equation (3.2). In the following we will not always write the superscripts

+,−, g. Which momentum we mean should be clear from the context. We will also need

the tachyon vertex operators in the zero picture:

V 0
T+(z, z̄) = −

(

α′

2

)1/2 1√
2πR

ψ̃(z̄) · k+
Re

ik+

A,LXA(z)+ik+

A,RXA(z̄)

V 0
T−(z, z̄) =

(

α′

2

)1/2 1√
2πR

ψ̃(z̄) · k−Re
ik−

A,L
XA(z)+ik−

A,R
XA(z̄) (3.5)

The dot product refers to the ten-dimensional space. We note that the vertex operator is

normalized correctly since k± 2
R = 2

α′ . The relative sign in equations (3.5) makes sure that

the two-point function between these operators is positive. We have now enumerated all

vertex operators necessary to perform the scattering amplitude calculations.

3.2 Amplitudes

The calculation of the scattering amplitudes proceeds in standard fashion. In this section,

we summarize the results of these calculations.

3.2.1 Tachyon-tachyon-gravitational three-point amplitude

The three-point amplitudes feature two operators in the minus one picture and one operator

in the zero picture. The positions of the three vertex operators can be gauge fixed, and
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give rise to ghost operator insertions. The resulting amplitude is:

AT+T−g = gc g
2
T

〈

cc̃ V 0
T+(z1, z̄1) cc̃ V

−1
T−(z2, z̄2) cc̃ V

−1
g (z3, z̄3)

〉

= iπα′R CS2
gc g

2
T (2π)9δ9

(

3
∑

i=1

kµ
i

)

e3 AB kA+
1L kB−

2R

= iπα′R CS2
gc g

2
T (2π)9δ9

(

3
∑

i=1

kµ
i

)

×
(

e3 µν k
µ
1k

ν
2 − e3 µ9 k

µ
1 k

9
R + e3 9µ k

9
Lk

µ
2 − e3 99 k

9
Lk

9
R

)

. (3.6)

The overall factor CS2
is an overall normalization factor consisting of the normalization of

the XA, ψA matter and φ̃ ghost path integrals. We will fix it by demanding unitarity [12].

To derive the amplitude we used that the external particles are on-shell as well as the fact

that pure gauge modes decouple. Since the graviton couples universally to tachyons, we

expect the tachyon-tachyon-graviton coupling to be the same as in bosonic string theory,

and it is [13].

3.2.2 Tachyon four-point amplitude

The four-point tachyon amplitude with two negatively charged and two positively charged

tachyons features two zero and two minus one picture operators. We order them as AT 4 =

〈T+(k1)T
−(k2)T

+(k3)T
−(k4)〉. We integrate over the position of one of them, and the

integral gives rise to a ratio of Γ-functions:

AT 4 = −i (2π)2 CS2
R (gT )4 (2π)9 δ9

(

4
∑

i=1

kµ
i

)

×
Γ
(

−1 − α′

4 s
)

Γ
(

−1 − α′

4 t+ α′k2
9,L

)

Γ
(

−1 − α′

4 u
)

Γ
(

1 + α′

4 s
)

Γ
(

3 + α′

4 t− α′k2
9,L

)

Γ
(

1 + α′

4 u
)

. (3.7)

The amplitude has the expected pole structure:

• s-channel poles at α′s = 0, 4, 8, . . .

• t-channel poles at α′t = 4
(

−1 + α′k2
L,9

)

= 4
(

1 + α′k2
R,9

)

, . . .

• u-channel poles at α′u = 0, 4, 8, . . .

The amplitude is symmetric between the s and u-channel. The lowest mass states in

these channels are the modes arising from the ten-dimensional metric, dilaton and anti-

symmetric tensor. In the t-channel, there can be no massless exchange, due to momentum

and winding number conservation.

3.2.3 Unitarity and normalization

To compute the constant CS2
, we use the unitarity relation which requires that a pole in

the s-channel (say) is indeed given by the corresponding particle being exchanged through
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cubic vertices. We should therefore demand that:

AT 4|s=0 = − i(2π)9π2RCS2
(g9

T )4(4 + α′u)(8 + α′u)

α′s
+ . . .

= i

∫

d9k

(2π)9
AT+T−GAT+T−G

s
= −

i(2π)9π2R2C2
S2

(g9
c )

2(g9
T )4(4 + α′u)(8 + α′u)

4s
+ . . .

which fixes the constant to be [13, 14]:

CS2
=

4

α′g2
c R

=
8π

α′ (g10
c )2

. (3.8)

3.2.4 Tachyon-Tachyon-Gravitational-Gravitational four-point amplitude

As a cross-check on our understanding of the calculation of the amplitudes, we wish to

confirm that each vertex operator should be accompanied by one and the same coupling

constant. To that end, we compute the two tachyon two graviton four-point amplitude

and find:

AT+T−gg = −i(2π)11RCS2
g2
cg

2
T δ9

(

4
∑

i=1

kµ
i

)

e3 AB e4 CD ×

×
{

α′ (f(u) − 1) kA
1L

(

(f(t) − 1) kC
1L + f(u)kC

2L

)

×α′ (f(t) − 1) kA
2L

(

f(t)kC
1L + (f(u) − 1) kC

2L

)

+ 2 (f(t) − 1) (f(u) − 1) ηAC
}

×
{

α′ (f(t) − 1) kB
2Rk

D
1R + α′ (f(u) − 1) kB

1Rk
D
2R + 2 (f(t) − 1) (f(u) − 1) ηBD

}

×Γ (1 − f(t) − f(u)) Γ (−1 + f(t)) Γ (−1 + f(u))

Γ (−1 + f(t) + f(u)) Γ (2 − f(t)) Γ (2 − f(u))
, (3.9)

where the function f is defined by the formula:

f(x) = −α
′

4

(

x+ k2
L,9

)

. (3.10)

The t-channel pole structure is:

AT+T−gg

∣

∣

∣

t=k2
L,9−4/α′

= −4i(2π)11α′RCS2
g2
c g

2
T e4CD kA

1Lk
B
1R e3AB k

C
2Lk

D
2R

t− k2
L,9 + 4/α′

+ terms analytic at k2 = −k2
L,9 + 4/α′. (3.11)

This is reproduced by tachyon exchange in the t-channel:

i

∫

d9k

(2π)9
AT+T−g AT+T−g

t− k2
L,9 + 4/α′ = −

i(2π)11α′2R2C2
S2
g2
c g

4
T e3ABk

A
1Lk

B
1R e4CDk

C
2Lk

D
2R

t− k2
L,9 + 4/α′ , (3.12)

on the condition that we have gc = gT , as expected in any string theory.
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3.2.5 Summary

The three amplitudes can be simplified, using that g = gc = gT and using the value for the

constant CS2
:

AT+T−g = 4iπg(2π)9δ9

(

3
∑

i=1

kµ
i

)

e3AB kA+
1L kB−

2R , (3.13)

AT 4 = −16iπ2g2

α′ (2π)9 δ9

(

4
∑

i=1

kµ
i

)

×
Γ
(

−1 − α′

4 s
)

Γ
(

−1 − α′

4 t+ α′k2
9,L

)

Γ
(

−1 − α′

4 u
)

Γ
(

1 + α′

4 s
)

Γ
(

3 + α′

4 t− α′k2
9,L

)

Γ
(

1 + α′

4 u
)

, (3.14)

AT+T−g2 = −16iπ2g2

α′ (2π)9 δ9

(

4
∑

i=1

kµ
i

)

e3AB e4CD

×
(

α′ (f(u)−1) kA
1L

(

(f(t)−1) kC
1L + f(u)kC

2L

)

+α′ (f(t)−1) kA
2L

(

f(t)kC
1L + (f(u)−1) kC

2L

)

+ 2 (f(t)−1) (f(u)−1) ηAC

)

×
(

α′ (f(t)−1) kB
2R k

D
1R + α′ (f(u)−1) kB

1R k
D
2R + 2 (f(t)−1) (f(u)−1) ηBD

)

×Γ (1 − f(t) − f(u)) Γ (−1 + f(t)) Γ (−1 + f(u))

Γ (−1 + f(t) + f(u)) Γ (2 − f(t)) Γ (2 − f(u))
. (3.15)

The above amplitudes are valid at any radius.

4 The effective action

In this section, we will use the on-shell scattering amplitudes computed in section 3 to fix

terms in the low-energy effective action. We start out by analyzing the effective action

at the Hagedorn point(s). We will fix cubic and quartic couplings using the scattering

amplitudes.

4.1 The action

At the Hagedorn radius, we have the low-energy excitations arising from Kaluza-Klein re-

duction from ten dimensions, supplemented with the massless complex tachyon. We can

obtain terms in the effective Lagrangian through dimensional reduction. The reduced ac-

tion will contain a graviton, an anti-symmetric tensor, two scalar fields, and two Maxwell

gauge fields. We then need to couple in the tachyon. We ignore the Spin(32)/Z2 gauge the-

ory sector. We follow the conventions of [13] and write the ten-dimensional string metric as:

ds2 = gµνdx
µdxν + g99(dx

9 +Ag
µdx

µ)2, (4.1)
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and we will also write the nine-nine component of the metric in terms of a radion field σ,

g99 = eσ. The vector field Ag
µ is the metric Kaluza-Klein gauge field. In this section, we

take the ninth direction to be at the Hagedorn radius x9 ≡ x9 + 2πRH .

In the Einstein frame defined by gE
µν = e−

4Φ9
D−2gµν (and D = 9), we have the following

dimensionally reduced action:

S9 (E) =
1

2κ2
9

∫

d8+1
√

−gE
9

(

R(9) − 4

D − 2
∂µΦ9∂

µΦ9 − ∂µσ∂
µσ − 1

4
e2σe−

4Φ9
D−2F g

µνF
gµν

−1

4
e−2σe−

4Φ9
D−2F b

µνF
bµν − 2κ2

9DµT
+DµT− − 2κ2

9e
4Φ9
D−2V (σ, |T |)

)

. (4.2)

We added in a canonically normalized kinetic and potential term for the complex tachyon.

By virtue of its momentum and winding charge, the tachyon is charged under both Kaluza-

Klein gauge fields, and the kinetic term features gauge covariant derivatives:

Dµ = ∂µ + iqgAg
µ + iqbAb

µ . (4.3)

We can fix part of the potential by using our knowledge of the tachyon mass squared as

a function of the radion vacuum expectation value. We therefore must have the following

interaction term between the radion and the tachyon:

Sm2 = −
∫

d8+1x
√−gm2(R = eσRH)T+T−

= −
∫

d8+1x
√−g

(

− 4

α′ +

(

1

2R
+
R

α′

)2
)

T+T−

= −
∫

d8+1x
√−g

(

− 4

α′ +

(

e−σ

2RH
+
eσRH

α′

)2
)

T+T−. (4.4)

We parameterize the potential term quartic in the tachyon as follows:

Squartic = −
∫

d8+1λ

4
|T |4. (4.5)

4.2 Expansion of the action around the flat background

We expand the action around the flat background, with constant dilaton, the radius at the

Hagedorn point, zero tachyon vacuum expectation value, etcetera. We will parameterize

the fluctuation in the Einstein metric by: gµν = ηµν −2κ9hµν and will use the field variable

to parameterize the fluctuations for other fields. As a result of expanding the effective

action to cubic order, we find:

S9 cub =

∫

d8+1x

(

− 1

2
∂µhνρ∂

µhνρ − 2κ9

(

hµν − 1

2
hρ

ρηµν
)

∂µT
+∂νT

−

+
1

2κ2
9

(

− 4

D − 2
∂µΦ9∂

µΦ9 − ∂µσ∂
µσ − 1

4
F g

µνF
gµν − 1

4
F b

µνF
bµν

)

− i

κ2
9

(

qgAg
µ + qbAb

µ

)

T [+∂µT−] − 4
√

2

α′ σ T
+T−

)

. (4.6)
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The normalization of the kinetic term of the gauge field and the Kaluza-Klein momenta of

the tachyon imply that we must identify the charges in these equations as the momentum

and winding around the Kaluza-Klein circle:

qg =
1

2
(kL,9 + kR,9) =

n

R
, qb =

1

2
(kL,9 − kR,9) =

wR

α′ . (4.7)

In the following, we will sometimes refer to the canonically normalized radion σ′ = σ
κ9

and

the canonically normalized vector bosons A′
µ = 1√

2κ9

Aµ.

4.3 Cubic couplings

We now check the coefficients of the cubic couplings in the effective action against the

string theory three-point amplitudes evaluated at low energy and at the Hagedorn point

RH/
√
α′ = 1 + 1/

√
2. To compare the three-point amplitudes in equation (3.13) to the

effective action, we rewrite them using left- and right-momentum conservation, as well as

the Ward identities. We also use the values of the ten-dimensional momenta:

kA
1L = (kµ

1 , k
9
L) , kA

2L = (kµ
2 ,−k9

L) ,

kA
1R = (kµ

1 , k
9
R) , kA

2R = (kµ
2 ,−k9

R) ,

kA
3 = (kµ

3 , 0) , (4.8)

and we obtain

4iπgc e3 AB kA
1L kB

2R = 2iπgc e3AB

(

kA
1Lk

B
2R + kA

2Lk
B
1R

)

= 2iπgc

(

e3µν

(

kµ
1 k

ν
2 +kµ

2 k
ν
1

)

+
(

kµ
2 −k

µ
1

)(

k9
Le3 9µ+k9

Re3 µ9

)

−2e3 99k
9
Lk

9
R

)

. (4.9)

To read the effective action terms from the amplitude, we use the correspondence between

the Fourier coefficients of the fields in the effective action and the momentum dependent

polarization tensors used in the string amplitude computation:

e(µν) −
1

D − 2
eρρδ

⊥
µν → hµν(k)

e[µν] → bµν(k)

1√
D − 2

eµµ → Φ′
9(k)

1√
2

(e9µ ± eµ9) → A
′ g/b
µ (k)

e99 → σ′(k) (4.10)

with δ⊥µν = ηµν − kµnν − nµkν and where a reference momentum n is chosen such that it

satisfies n2 = 0 and k · n = 1. The normalized vertex operators correspond to fields Φ′
9,

A
′ g/b
µ and σ′ that have canonically normalized kinetic terms.
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Next, we note that we have the following matches between the cubic couplings and

terms in the effective action:

4πig e3µνk
µ
1 k

ν
2 → −2κ9 h

µν∂µT
+∂νT

−

πig (kL,9 ± kR,9) (e9µ ± eµ9) (kµ
2 − kµ

1 ) → −2
√

2iκ9 q
g/bA

′ g/b µT [+∂µT
−]

−4πig kL,9kR,9 → −2κ9 kL,9kR,9 σ
′T+T−

(4.11)

if we identify

2πg = κ9. (4.12)

Our conventions are such that the cubic three-point amplitudes for three particles corre-

sponding to the fields Ai are given by:

〈A1(k1)A2(k3)A3(k3)〉cubic =
iδ3S

δA1(k1)δA2(k2)δA3(k3)

∣

∣

∣

∣

Ai=0

, (4.13)

which applied to the effective action terms gives the low-energy limit of the three-point

string amplitudes.

4.4 Remark

We note that the couplings σ∂µT
+∂µT− and φ∂µT

+∂µT− do not contribute to the on-

shell three-point amplitude at the Hagedorn point. We can fix them through the following

requirement and reasoning. Firstly, we assumed that the tachyon kinetic term is canonical

at any radius. Thus, we chose a basis of fields such that the term σ∂µT
+∂µT− is absent from

the Lagrangian. Otherwise, a non-zero vacuum expectation value for the radion σ would

lead to a non-canonical kinetic term for the tachyon. Secondly, by the universality of the

dependence of the string effective action on the dilaton, we note that after going to Einstein

frame, the tachyon kinetic term is dilaton independent. Thus, the term φ∂µT
+∂µT− is also

absent from the Lagrangian.

4.5 A quartic coupling

In this subsection, we want to determine the quartic term in the tachyon potential. The

tachyon four-point amplitude in string theory, expanded under the assumptions uα′ ≪
1, sα′ ≪ 1 gives rise to poles, constant terms and terms of higher order in the momenta:

AT 4 ≈ −32i κ2
9

α′2

(

3

4
α′ +

1

s

(

1 +
α′

4
u

)(

1 +
α′

8
u

)

+
1

u

(

1 +
α′

4
s

)(

1 +
α′

8
s

))

+ . . .

≈ −iκ2
9

(

24

α′ +

(

u2

s
+
s2

u

)

+
12

α′

(u

s
+
s

u

)

+
32

α′2

(

1

s
+

1

u

)

+ . . .

)

. (4.14)

As a cross-check on the overall sign, we note that the graviton exchange is as in the Virasoro-

Shapiro amplitude in bosonic string theory [13]. The pole contributions of the amplitude

correspond to the exchange of massless particles. These exchange contributions can also

give rise to constant contributions that we need to subtract in order to isolate the contri-

bution from the quartic contact term. Above we have fixed a choice of fields and associated

cubic couplings, so that the exchange contribution is now fixed. Let’s compute it.
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4.5.1 Massless exchange contributions to the four-point tachyon amplitude

The massless states that can be exchanged by the tachyons are the graviton, the radion, the

dilaton and the two gauge bosons. We compute the amplitude for the exchange diagrams

using the expression

AA1A2→B1B2
= i

δ3S

δA1(k1)δA2(k2)δA3(k3)
∆−1

A3A3
i

δ3S

δA3(k4)δB1(k5)δB2(k6)
(4.15)

for the exchange amplitude, where ∆−1 is the propagator of the exchanged state. Due to

the fact that both the σ∂µT
+∂µT− and the Φ9∂µT

+∂µT− term are absent in our effective

Lagrangian, we can concentrate on the non-derivative cubic terms in the action for the

radion and the dilaton. Due to the fact that the tachyon is massless, there is moreover no

Φ9T
+T− term in the action. We therefore can concentrate on the exchange of the graviton,

the radion and the two gauge fields.

• We compute the graviton exchange in the harmonic gauge using the propagator:

∆−1
µν,ρσ = −i

(1

2
ηµρηνσ +

1

2
ηµσηνρ −

1

D − 2
ηµνηρσ

) 1

k2
. (4.16)

The s-channel contribution is:

As−channel
T+T−→T+T− =

(

2iκ9

(

kµ
1 k

ν
2 − 1

2
ηµνk1 · k2

)

)

∆−1
µν,ρσ

(

2iκ9

(

kρ
3k

σ
4 − 1

2
ηρσk3 · k4

)

)

= −iκ2
9

(

u2

s
+ u

)

. (4.17)

Summing over s− and u-channels gives:

Agraviton exchange
T+T−→T+T− = −iκ2

9

(

u2

s
+
s2

u
+ s+ u

)

. (4.18)

• The terms in the action relevant to the normalized radion exchange are:

S = −1

2

∫

d8+1x

(

∂µσ
′∂µσ′ + κ9

8
√

2

α′ σ
′T+T−

)

. (4.19)

The radion propagator is ∆σ′ = − i
k2 , such that we obtain the radion exchange

contribution to the tachyon four-point amplitude:

Aradion exchange
T+T−→T+T− = −32i κ2

9

α′2

(

1

s
+

1

u

)

. (4.20)

• Both the metric gauge field Ag and the anti-symmetric tensor gauge field Ab are

exchanged. Since the terms in the action are the same up to the charge, we find an

exchange contribution proportional to the respective charges squared. The canoni-

cally normalized fields have an action equal to:

∫

d8+1x

(

− 1

4
F

′ g
µν F

′ gµν −
√

2iκ9 q
gA

′g
µ

(

T+∂µT− − T−∂µT+
)

)

. (4.21)
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Using the propagator

∆−1
µν = − iηµν

k2
, (4.22)

we then find the total contribution of both gauge bosons to the tachyon four-point

amplitude summed over s- and u-channel to be:

Aboson exchange
T+T−→T+T− = −2iκ2

9

(

q2g + q2b
)

(

2s

u
+

2u

s
+ 2

)

= −iκ2
9

12

α′

( s

u
+
u

s
+ 1
)

, (4.23)

where in the last step we inserted the value of the charges at the Hagedorn radius

qg/b = 1√
α′

(

1 ± 1√
2

)

.

• In summary, the sum of the exchange contributions of all massless states in both

channels are:

Aall exchanges
T+T−→T+T− = −iκ2

9

(

(

u2

s
+
s2

u
+ s+ u

)

+
32

α′2

(

1

s
+

1

u

)

+
12

α′

( s

u
+
u

s
+ 1
)

)

.

(4.24)

The contributions match the terms in the expansion of the amplitude AT 4 in equation

(4.14) near small momenta uα′ ≪ 1, sα′ ≪ 1. Note that the gauge boson exchange gives

rise to a constant term. Indeed, the pole can be cancelled by the two cubic one-derivative

interactions. We also remark that the scalars don’t give rise to a constant term because of

the absence of cubic one-derivative couplings.

4.5.2 The quartic term in the tachyon potential

The contact contribution to the amplitude arising from the quartic term in the effective

action for the tachyon is given by:

− iλ. (4.25)

To obtain the value of the coupling constant λ we subtract the contributions from the

exchange diagrams in equation (4.24) from the expansion of the amplitude AT 4 in equa-

tion (4.14) near small momenta. We find:

λ =
12κ2

9

α′ . (4.26)

The potential due to the contact term is a repulsive delta-function potential.

4.5.3 Remark

We believe it is an interesting result to have determined the quartic tachyon potential in our

choice of field basis. For the order of the phase transition at the Hagedorn point though,

the cubic interaction between the radion and the tachyon is sufficient to argue it is of first

order [1]. One reason to nevertheless go through this elaborate determination of the quartic

potential at the Hagedorn point is that it can be determined rigorously at this point. We

will attempt to draw lessons from this exercise in the next, more exploratory section.
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5 The effective action at smaller radii

In this section, we want to speculate about what happens at smaller radii, and in particular

at the most symmetric point, namely the self-dual radius. We face a generic problem that

plagues our understanding of the physics at the self-dual radius, which is that on-shell, the

tachyon momentum will be of order one over the string scale, thus rendering invalid the

derivative expansion in the effective action. Only for very short time scales would one be

able to trust the effective action near flat space. In this section, we therefore concentrate on

enumerating some generic expected properties of the effective action, and we will explore

one avenue to get a handle on the physics at small radii.

5.1 The effective action at the self-dual radius

At self-dual radius, we will have an enhanced SU(2)R × U(1)L × Spin(32)/Z2 gauge sym-

metry. The radion joins a (3, 0, 1) triplet, and the Spin(32)/Z2 adjoint scalar also becomes

part of a triplet. The SU(2)R triplet will presumably give rise to a quartic commutator

square potential. The triplet and the tachyon will also give rise to a quartic term, and we

may expect a potential in terms of the tachyon only as well. We can also have a commu-

tator squared term for a mix of the two SU(2)R triplets. We note that the cubic potential

term σT+T− is absent at the self-dual radius, since the self-dual radius corresponds to the

minimal value of the tachyon mass squared.

For concreteness, let us focus on the term in the potential that depends on the complex

tachyon only. For starters, we note that the tachyon vertex operator in the zero picture

has a term proportional to the space-time momentum, and a term proportional to the

chiral compact momentum pR on the supersymmetric side of the heterotic string. The

momentum pR is zero at the self-dual point. Furthermore, the tachyon N -point function

with N larger or equal than two contains at least one zero picture tachyon vertex operator.

Therefore, all the N -point amplitudes will be proportional to at least one factor of the

space-time momentum. In fact, by Lorentz symmetry, they will be proportional to at least

the space-time momentum squared. However, we cannot use this property to exclude a

tachyon potential, since the integration over the positions of the tachyon vertex operators

leads to extra poles in the amplitude. We will proceed differently to understand how the

tachyon potential depends on the radius.

5.2 A universal behaviour

In fact, if we attempt to identify universal properties of the tachyon four-point amplitude

at any radius, we can proceed as follows. Since the mass squared of the tachyon is ra-

dius dependent, we are tempted to eliminate it using the on-shell relation.2 After this

elimination, we wind up with a four-point amplitude:

AT 4 = −16iπ2g2

α′ (2π)9 δ9

(

4
∑

i=1

kµ
i

)

Γ
(

−1 − α′

4 s
)

Γ
(

1 + α′

4 (s+ u)
)

Γ
(

−1 − α′

4 u
)

Γ
(

1 + α′

4 s
)

Γ
(

1 − α′

4 (u+ s)
)

Γ
(

1 + α′

4 u
) (5.1)

2Our procedure is inspired by [15].
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which depends on the Mandelstam invariants s and u only. These are the Mandelstam

variables which exhibit massless poles. The only radial dependence in the amplitude is an

overall factor. Since the amplitude no longer depends on the mass squared of the tachyon,

we can attempt to interpret this amplitude as being off-shell. We could think of it as a

function of s, t, u which happens to be independent of t, with no kinematic constraint on

the variables. A justification of this off-shell extension would have to come from a heterotic

string field theory.

We now wish to venture even further, and we will attempt to identify the quartic

tachyon potential term coded in this amplitude.

5.3 Field theory exchange diagrams

We will take a pedestrian approach here, and discuss the same field theory exchange di-

agrams that we already identified before, in an optimistic analogy to the effective action

approach valid at the Hagedorn radius. We do take into account the change in the mass

squared of the tachyons, the extra couplings this generates to the dilaton, the trace of the

metric, and the change in the gauge couplings of the tachyon. We also note that the tachyon

is an SU(2)R singlet, which dictates that no new massless gauge bosons are exchanged.

The cubic tachyon coupling to the graviton, and to the dilaton acquire extra terms

that can be read off from the expansion:

S9(E) =

∫

d8+1x
√−g

(

− 1

κ2
9

2

D − 2
∂µΦ9∂

µΦ9 − e
4Φ9
D−2m2T+T− + . . .

)

≈
∫

d8+1x

(

− 1

2
∂µΦ′

9∂
µΦ′

9 −
2m2

√
D − 2

κ9Φ
′
9T

+T− + κ9m
2hµ

µT
+T− + . . .

)

, (5.2)

with Φ′
9 = 1

κ9

2√
D−2

Φ9 (and D = 9 in our case). The cubic coupling to the dilaton and the

trace of the metric are proportional as determined by the universal prefactor e−2Φ9
√−g to

the potential term in the string frame. The full cubic vertices become:

VT+T−h = 2iκ9

(

kµ
1k

ν
2 − 1

2
ηµν(k1 · k2 −m2)

)

,

VT+T−Φ′
9

= − 2im2κ9√
D − 2

. (5.3)

The graviton and the dilaton exchange then sum up to:

Ah+Φ′ exchange = −2iκ2
9

(

1

s

(

k1 · k3 k2 · k4 + k1 · k4 k2 · k3 −
(

k1 · k2 −m2
) (

k3 · k4 −m2
)

)

+
1

u

(

k1 · k3 k2 · k4 + k1 · k2 k3 · k4 −
(

k1 · k4 −m2
) (

k2 · k3 −m2
)

)

)

= −iκ2
9

(

u2

s
+
s2

u
+u+s+4m2

(

−1−
(u

s
+
s

u

)

+m2

(

1

s
+

1

u

)))

. (5.4)
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Note that D-dependence drops out. The gauge boson exchange gives rise to the amplitude:

AA exchnage = −4iκ2
9

(

q2g + q2b
)

(

1

s
(k1 · k3 − k1 · k4) +

1

u
(k1 · k3 − k1 · k2)

)

= −iκ9

(

12

α′ + 4m2

)(

1 +
u

s
+
s

u
− 2m2

(

1

s
+

1

u

))

. (5.5)

The radion exchange contribution becomes:

Aσ exchnage = −4iκ2
9 k

2
Lk

2
R

(

1

s
+

1

u

)

= −4iκ2
9

(

m2 +
4

α′

)(

m2 +
2

α′

)(

1

s
+

1

u

)

= −iκ2
9

(

4m4 +
24m2

α′ +
32

α′2

)(

1

s
+

1

u

)

. (5.6)

All exchanges summed up give:

Aall exchanges
T+T−→T+T− = −iκ2

9

(

(

u2

s
+
s2

u
+ s+ u

)

+
32

α′2

(

1

s
+

1

u

)

+
12

α′

( s

u
+
u

s
+ 1
)

)

. (5.7)

We note that the mass squared dependence of the exchange diagrams drops out in the total

exchange contribution. For the singular terms in the Mandelstam variables s and u, this

has to be the case, as they need to reproduce the mass squared independent singular terms

in the string scattering amplitude. We find that also the constant term is independent of

the mass squared in our frame.

5.3.1 Universality

As a consequence of the independence of the mass squared of both the amplitude and the ex-

change contribution as a function of the Mandelstam variables s and u, the quartic tachyon

potential contact term will remain λ = 12κ2
9/α

′ at all radii. One needs more information

to conclude that there is a new locally stable minimum (e.g. at the self-dual radius).

6 Conclusions and speculations

We have reviewed the spectrum of the heterotic superstring at high temperature compared

to the string scale. Equivalently, we have analyzed the theory after compactification on a

circle with supersymmetry breaking periodicity conditions. We determined the coefficient

of the quartic term in the tachyon potential at the Hagedorn radius. The calculation was

presented in great detail, including normalized vertex operators, a unitarity check, and

careful subtraction of the exchange diagrams.

We argued that a description of the physics in terms of a spontaneously broken su-

persymmetric theory needs to take into account winding modes that generically will not

fit into supermultiplets. This phenomenon is typical of string theories. We also showed

that naively extending the range of validity of the effective action to string scale regions

leads us to a tachyon quartic potential that has a coefficient independent of the radius of

compactification.
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If we let both the radion and the dilaton fluctuate, then Yukawa type interactions

will ensure a first order phase transition. If we fix the radius at the self-dual value, and

ignore the runaway dilaton, we find a quartic tachyon potential with string scale symmetry

breaking minima. Massive stringy modes, higher tachyon potential terms, and higher

derivative terms will then become important and they could either stabilize or destabilize

the new phase.

If we take the view where we compactify a space-like circle with supersymmetry break-

ing periodicity conditions, then the winding tachyon is a straightforward physical excitation

that can obtain a new vacuum expectation value. We find it interesting to speculate that

below the Hagedorn radius, the tachyon might condense entirely homogeneously in the rest

of space-time, leading to a winding-momentum condensate of fundamental strings in the

compactified direction. The true vacuum would have at least a SO(8, 1) space-time isom-

etry. The U(1)L of the circle would be broken by a tachyon condensate, and the SU(2)R
would be unbroken. In the new phase, the energy of space-time is lower than in the old

phase, and we might expect a homogeneous negative cosmological constant. A new back-

ground of the form AdS9 at string scale is consistent with these expectations. There would

be space-time symmetry enhancement. The background would be complemented with a

tachyon expectation value. Massive string modes and Kaluza-Klein excitations would mix,

and would result in a stringy geometry. One can attempt to demonstrate the existence of

these backgrounds directly. See e.g. [16, 17].

To get a handle on this phase it might be necessary to have a practical formulation

of heterotic string field theory. Since for the heterotic string the most tachyonic direction

is easily identified by spectral analysis, the problem seems worthy of attention. String

field theory was extremely useful in furthering our understanding of open string tachyon

condensation [18, 19].

Another avenue of research would be to analyze in this Scherk-Schwarz model how

tachyon condensation influences ultraviolet properties of the spectrum through the UV/IR

connection in the closed string torus amplitude [20, 21].3
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