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Abstract

Background: The study of genomic variation has provided key insights into the functional role of mutations.
Predominantly, studies have focused on single nucleotide variants (SNV), which are relatively easy to detect and can
be described with rich mathematical models. However, it has been observed that genomes are highly plastic, and
that whole regions can be moved, removed or duplicated in bulk. These structural variants (SV) have been shown to
have significant impact on phenotype, but their study has been held back by the combinatorial complexity of the
underlying models.

Results: We describe here a general model of structural variation that encompasses both balanced rearrangements
and arbitrary copy-number variants (CNV).

Conclusions: In this model, we show that the space of possible evolutionary histories that explain the structural
differences between any two genomes can be sampled ergodically.

Keywords: Rearrangement, Structural variation, Copy-number variation, DCJ

Background
Genomic studies, especially in the field of human health,
generally do not focus on the majority of bases which
are common to all individuals, but instead on the minute
differences which are shown to be associated to a vari-
able phenotype [1–4]. These variants are caused by
diverse processes, which modify the genome in different
ways. One common task is to find the evolutionary his-
tory which most parsimoniously explains the differences
between an ancestral genome and a derived genome.
The best known variants are short single nucleotide

variants (SNV) or multiple nucleotide variants (MNVs),
which affect at most a handful of consecutive bases. These
few bases are substituted, inserted or deleted, without
affecting the neighbouring bases or the overall struc-
ture of the genome. Especially when only substitutions
are taken into consideration, this process can be fully
understood using mathematical tools [5]: not only is it
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trivial to describe a parsimonious history that explains
the appearance of these variants with a minimum num-
ber of mutational events, but posterior likelihoods can be
computed across the space of all possible histories.
However, rearrangement events sometimes change the

overall structure of the genome without changing a base.
Rearrangements can be decomposed into sequences of
basic operations, known as double cut and joins (DCJ) [6].
In a DCJ operation the DNA polymer is cleaved at two
loci then ligated again, so as to produce a new sequence
from the same bases. A DCJ operation can further be
decomposed into single cuts or joins (SCJ) [7]. The DCJ
operation creates balanced rearrangements, i.e. without
loss or gain of material. However, coupled with the loss
or insertion of detached fragments, these DCJ operations
can explain all structural variants, including copy-number
variants (CNV) [8]. These SVs are known to have sig-
nificant impact on phenotype and health [9, 10], but the
combinatorial complexity of rearrangement models has
restricted their study.
In the absence of CNVs, it is possible to compute a

parsimonious history in polynomial time [6, 7, 11, 12],
but computing its posterior likelihood against all possible
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histories is computationally prohibitive, as it supposes a
randomMarkov walk across the symmetric group of order
2n, where n is the number of bases in the genome [13].
However, in the presence of CNVs, even computing

a parsimonious history is difficult, and several teams
have approached this problem with slightly different
assumptions. Promising results were constructed around
a model with a single whole genome duplication and local
rearrangements, known as the Genome Halving Problem
[14–18]. Some studies did not allow for duplicated regions
[19, 20]. Others allowed for duplications, considered as
independent events on atomic regions, and focusing on
the problem of matching segmental copies [8, 21–24].
Bader generalized this model further [25, 26], allowing
for larger duplications of contiguous regions along the
original genome.
Other studies extended the SCJ model with an approxi-

mate algorithm based on a restricted model of cuts, joins,
duplications and deletions [27]. Zeira and Shamir demon-
strated the NP-hardness of computing an optimal history
with fewest duplications [28]. They nonetheless presented
a linear time solution to an SCJ version of the Genome
Halving Problem.
We described in [29] the history graph. This data struc-

ture represents genomes and their evolutionary relation-
ships, allowing for substitutions as well as rearrangements
and copy-number changes to occur, much like the tra-
jectory graph defined by Shao [24]. This data structure
explicitly represents genomic structure, and assumes that
the extant and imputed ancestral genomes are phased,
and therefore directly representable as sets of nucleotide
sequences. In this model, we were able to compute,
between bounds, the number of DCJ events separating
two genomes with uneven content, allowing for whole-
chromosome duplications and deletions, which are free of
cost. This model is extremely general, as it allows segmen-
tal duplication and deletion event to occur at any point in
the evolutionary history and over any contiguous region
at that time point. It also allows duplicate copies to be
created then lost during the course of evolution.
However, in practice, it is much easier to estimate copy-

number in a sample, using for example shotgun sequenc-
ing fragment density with regard to a reference, than it
is to construct the underlying genomes. We therefore ask
whether it is possible to evaluate the number of rearrange-
ments between a sample and a supposed ancestral genome
using copy-numbers and breakpoints alone. By evaluating
the number of rearrangements, we are indirectly propos-
ing to simultaneously infer the rearrangement events, and
thus assemble the sample’s genome, using evolutionary
parsimony.
We describe here a general model of structural variation

which encompasses both balanced rearrangements and
arbitrary copy-numbers variants (CNV). In this model,

we show that the difference between any two genomes
can be decomposed into a sequence of smaller optimiza-
tion problems. Mathematically speaking, we represent
genomes as points in a Z-module of elements that we
call flows, and histories as differences between flows. The
overall problem of finding a parsimonious history is then
replaced by that of finding an optimal decomposition of
the problem, which we address with an ergodic sampling
strategy.

Results
Directed history graphs
We refer the reader to [29] for complete definitions
of bidirected history graphs, layered histories and his-
tory epochs. In summary, a bidirected graph is a graph
where each end of an edge has an independent ori-
entation, it is said to connect to the head or tail of
the incident node. Atomic DNA fragments, called seg-
ments, are represented as vertices. Ligations connecting
the ends of these fragments are represented by bidirected
edges, called adjacencies. Genomic sequences are rep-
resented by threads, simple disjoint chains of segments
and adjacencies. Directed edges, called branches, con-
nect each segment to at most one ancestral segment.
Together, threads and branches form a bidirected his-
tory graph. A history graph is called a layered history
if each thread can be assigned a positive integer depth,
such that any segment in a thread of depth d has an
ancestor in a thread of depth d − 1 or none at all. We
assume here that all segments with no ancestors occur
in a single root layer. For d ≥ 0, the subgraph com-
posed of the union of threads of depth d and d + 1, as
well as all the interconnecting branches form a history
epoch. See Fig. 1 for an example bidirected layered history
graph.
Given a bidirected history graph H we construct its

directed history graph H ′ as follows: each segment vertex
is replaced by a segment edge from a tail to a head vertex,
which are distinct. The orientation can be chosen arbitrar-
ily, so long as the DNA label reflects the sequence that will
be read when traversing from tail to head. The bi-directed
adjacencies incident on the head side of the segment are
connected to the head vertex of the segment, likewise for
the tail of the segment. If a branch connects two segments
inH, a branch similarly connects their head vertices inH ′,
and another branch their tail vertices.
A directed history graph is trivially equivalent to its

bidirected counterpart, so we will use the two concepts
interchangeably. Because a vertex in a directed history
graph can be incident with at most one adjacency edge
and at most one segment edge, each connected compo-
nent of segment and adjacency edges inH ′ is a simple path
of alternating segment and adjacency edges, which we call
a thread.
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Fig. 1 Left, a layered bidirected history graph, where the segments are represented as arrows, thus indicating their head and tail sides. Right, the
corresponding sequence graph, where the segments are represented as thick, curved lines, and the adjacencies as thin straight lines. The copy
number weighting, taken from the bottom thread of the layered history graph on the left, is indicated between parentheses for the segment and
adjacency edges

Sequence graphs and copy-number
Henceforth we assume all threads in a layered history
are circular, as in Fig. 1, thus removing corner cases.
The sequence graph G obtained from a layered history is
constructed by contracting all the branches of H (Fig. 1,
right side). Duplicate edges between two vertices of G are
merged together. This defines a projection from each edge
of H onto the edge of G it is merged into. For a given
thread t inH, its copy-number weighting onG is the func-
tion which assigns to each edge e ofG the number of times
t traverses a thread edge that projects onto e.
From here onwards, G is assumed to be a sequence

graph, and E the set of its edges. Using shotgun sequenc-
ing read density and breakpoint analysis, an approxi-
mate sequence graph for a thread-structured genome is
obtained far more easily than the genome itself, motivat-
ing the analysis of such structures.

Flow functions
We examine the properties of copy-number weightings on
sequence graphs. The edge space R

E denotes the set of
real-valued weightings on the set of edges E.RE is a vector
space isomorphic to R

|E|.
A flow on G is a weighting in R

E such that at each ver-
tex the total weight of segment edge incidences equals the
total weight of adjacency edge incidences. This equality
on all of the vertices is called the balance condition, which
characterizes flows. It is essential to distinguish between
an edge and an edge incidence. In particular, if an adjacency
edge connects a vertex v to itself, its weight is contributed
twice to v. Let F(G) denote the set of all flows on G.
Because the balance condition is conserved by addition
and multiplication by a real scalar, F(G) is a subspace
of RE .
Let FZ(G) denote the set of integer-valued flows

on G and F+
Z

(G) the cone of non-negative integer

flows. FZ(G) is a Z-modular lattice of the vector space
F(G).

Copy-number and flow functions
Lemma 1 The copy-number of a circular thread is nec-

essarily a flow in F+
Z

(G).

Proof A circular thread describes a cycle that alternates
between adjacency and segment edges.

In a layered history graph H, the flow of a layer is the
sum of copy-number weightings of the threads in that
layer. The flow sequence s(H) of a layered history H is
the sequence of its layer flows, and conversely H is called
a realization of s(H). See Fig. 2 for an example flow
sequence.
A valid flow sequence is a sequence of non-negative inte-

ger flows (f1, . . . , fk) in F+
Z

(G)k such that for any segment
edge e, if there exists i such that fi(e) = 0 then fj(e) = 0
for all i ≤ j ≤ k. In addition, for every segment edge e,
f1(e) = 1. This ensures that if the number of copies of a
segment falls to zero, then it can not be recreated in any
subsequent stage of the history, and that at the start of the
flow sequence there is exactly one copy of each segment.
A cycle traversal is a closed walk through the graph, pos-

sibly with edge re-use, with an explicit starting vertex. A
cycle is an equivalence class of cycle traversals defined by
a common circular permutation of edges and its reverse.

Lemma 2 Any layered history has a valid flow sequence,
and any valid flow sequence has a realization as a layered
history.

Proof The first part follows easily from Lemma 1. To
prove the second part, we first decompose each flow in
the sequence into a set of threads. To decompose a flow



Zerbino et al. BMC Bioinformatics  (2016) 17:400 Page 4 of 16

of F+
Z

(G) into a sum of circular thread flows, we color the
edges of G that have non-zero weight such that segments
edge are green, and adjacencies orange. Edges with weight
0 are removed. Each edge with weight of absolute value
n > 1 is replaced by n identical edges of weight 1, creat-
ing a multigraph G′. This defines a trivial mapping from
the edges of G′ to those of G. By construction, G′ is a bal-
anced bi-edge-colored graph (as defined in [30]), therefore
it is possible to find an edge-covering composed of color-
alternating cycles. This can be done in polynomial time
by a procedure akin to the typical greedy construction
on balanced non-colored graphs [30, 31]. By the map-
ping defined above, we defined a set C of cycles in G that
alternate between segment and adjacency edges. By con-
struction, each edge ofG has asmany cycle edgesmapping
to it as its flow weight.
We now demonstrate by induction that we can con-

struct a history graph H from this set of cycle decom-
positions. If the flow sequence has length 1, we simply
construct threads that correspond to the cycles in C.
Because each segment has a flow of exactly 1, there is
a bijection between the newly created segments and the
segments of G. Now let us assume the property demon-
strated for all flow sequences of length k or less. Given a
flow sequence (f1, . . . , fk+1), we first construct a realisa-
tion H ′ of (f1, . . . , fk). We then choose for every segment
edge e in G for which fk(e) is strictly positive a segment
edge in the leaf layer of H ′ that maps to it. We create
under this chosen segment copy fk+1(e) novel descendant
segment edges, and assign them an arbitrary order. We
decompose fk+1 into a set of cycles in G as described
above. For each cycle (picked in any order), we pick a
random traversal and create a thread, greedily using up
available segments. Once connected by adjacencies, these
segments form a thread. By construction, each edge e is
visited as many times in the set of cycles as newly created
segments map to it, so this process is guaranteed to use up
all the newly created segments. By construction, the total
flow of these threads is equal to fk+1. The history graph
thus extended is a realisation of (f1, . . . , fk+1).

In [29], we defined the minimum rearrangement cost
r(G) of a layered history graphG as the minimum number
of DCJ operations it would require to account for all the
changes that occur in that layered history graph, assum-
ing that whole chromosome duplications and deletions are
free of cost. We demonstrated that this cost is NP-hard to
compute, but provided upper and lower bounds for it that
can be computed in polynomial time.
In particular, for any directed history graph G, we assign

to each vertex v a lifting ancestor A(v) that is its most
recent ancestor with an adjacency edge incidence, else it
is a new artificial root node if no ancestor of v has an adja-
cency edge incidence. By adding for each adjacency edge
(u, v) a lifted edge (A(u),A(v)) we obtain a lifted graph
L(G). A lifted edge is trivial if it corresponds to an exist-
ing adjacency edge, else it is non-trivial. By removing the
segment edges and branches from L(G), we obtain the
module graph M(G), whose connected components are
called modules. As demonstrated in [29], a lower bound
on the rearrangement cost of a directed history graph G is

rl(G) =
∑

M∈M(G)

(⌈
VM
2

⌉
− 1

)

where the sum is over the modules in M(G), and for each
moduleM, VM is the number of its vertices, and an upper
bound on the rearrangement cost of G is the number of
non-trivial lifted adjacency edges in L(G) minus the num-
ber of simple modules, i.e. modules in M(G) in which
every vertex has exactly one incident non-trivial lifted
adjacency edge.
The lower bound is closely related to earlier results

[6, 25].
By extension, we define the minimum rearrangement

cost of a valid flow sequence as the minimum rear-
rangement cost across all of its realizations, and seek to
demonstrate the existence of tractable bounds on this
value.
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Fig. 2 The flow sequence associated to the layered history graph in Fig. 1
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Within a flow sequence s = (f1, . . . , fk) ∈ F+
Z

(G)
k , k ≥

2, for any index 1 ≤ i < k, the pair (fi, fi+1) is called a flow
transition. Its lower complexity Clfi,fi+1

is defined as:

Clfi,fi+1
= |V | − p − |C|

Where:

• V is the set of vertices of G.
• p is the number of adjacency edges e where fi(e) > 0.
• C is the set of active components, i.e. connected

components of vertices and adjacency edges e where
fi(e) + fi+1(e) > 0

Theorem 1 Given a layered history H, decomposed into
bilayered history graphs (g1, . . . , gk−1), with flow sequence
(f1, . . . , fk), and any index i < k,

Clfi,fi+1
≤ r(gi)

Proof We will prove this by induction on the sequence
length k. For k = 2, by definition of valid flow sequences,
f1 is equal to 1 on all segment edges, and each vertex is
incident on exactly one segment edge, thus every vertex is
incident on exactly one adjacency e where f1(e) > 0. This
means that in each active component c ∈ C, the number
of vertices vc is exactly twice the number pc of adjacencies
e of c where f1(e) > 0. In the unique bilayered graph we
therefore have:

|V | − p − |C| =
∑

c∈C
(vc − pc − 1) =

∑

c∈C

(⌈vc
2

⌉
− 1

)

The lower complexity is therefore a reformulation of the
bound rl given above.
If k > 2, to prove the theorem for the flow sequence

(f1, . . . , fk) on (g1, . . . , gk−1), we remove g1 from H, and
obtain a reduced history graphH ′ composed of bi-layered
sequence graphs (g2, . . . , gk−1), and its sequence graphG′.
The sequence graph G′ is slightly different from G, in that
each segment edge of G′ has a copy-number of 1 in f2,
whereas each segment edge of G has a copy-number of 1
in f1. However, there exists a mapping from the vertices
of the second layer of H to the first, implicitly defining
a mapping � from the vertices of G′ to the vertices of
G such that for any edge e in G and any i ≥ 2, fi(e) =∑

e′:�(e′)=e f ′
i (e′). On G′ we compute the flow sequence of

H ′, s′ = (f ′
2, . . . , f ′

k). These flows are all in F+
Z

(G′)
By the inductive hypothesis, the rearrangement cost of

gi+1 is greater than Clf ′
i ,f

′
i+1

, as computed on G′. We now

compare Clf ′
i ,f

′
i+1

to Clfi,fi+1
, which is computed on G. For

simplicity, we create a sequence of graphs (G1,G2, . . . ,Gq)
of an arbitrary length q, describing an evolution from
G1 = G′ to Gq = G, and decomposing � into a sequence
of projections. At each step of the sequence, exactly two
nodes are merged. Note that elements of this sequence are

not necessarily valid graphs. Edge labels (segment or adja-
cency) are preserved, and two edges between the same
vertices and having the same label are merged together.
Projecting fi and fi+1 across this sequence of graphs, we
compute Cl at each step. At each step, the number of ver-
tices V decreases by 1. If the vertices belong to two differ-
ent active components, the number of active components
decreases by 1 and p remains unchanged. Otherwise, the
number of active components remains unchanged and p
decreases by at most 1, as two edges could be merged
into one. The sequence of values of Cl therefore decreases,
hence Clfi,fi+1

≤ Clf ′
i ,f

′
i+1

≤ r(gi+1).

We define an upper complexity formula as follows: the
duplication count Di is a weighting equal to min(fi, fi+1 −
fi) on each edge of G. In other words, it is the number
of additional copies of each edge in fi+1 beyond that in fi,
up to a maximum of doubling the number of copies. The
supra-duplication count Si is the sum across all adjacency
edges ofmax((fi+1 − fi) −Di, 0) = max(fi+1 − 2fi, 0). The
de novo edge count Ni is equal to fi+1(e) if fi(e) = 0, else
0. For any vertex v we denote by Dv the sum of Di on all
adjacencies incident on v and by Nv the sum of Ni on all
adjacencies incident on v. The imbalance of a segment s
between two vertices a and b is equal tomax(Da − (Db +
Nb),Db − (Da + Na), 0) The global imbalance Ii is the
sum of imbalances across all segment edges. Finally, li is
the number of perfect components, where a perfect com-
ponent is a component c ∈ C such that every vertex of c is
incident upon exactly one adjacency e with fi(e) = 0 and
fi+1(e) = 1, and exactly one adjacency e′ with fi(e′) > 0.
The upper complexity Cufi,fi+1

is:

Cufi,fi+1
= Si + Ii − li

See Fig. 3 for an example calculation of this upper
complexity.

Theorem 2 Given a flow sequence s = (f1, . . . , fk) ∈
F+
Z

(G)
k, and an index i < k, it is possible to find a

realisation H with bilayered subgraphs (g1, . . . , gk−1) such
that:

r(gi) ≤ Cufi,fi+1

Proof We will construct gi directly. For every segment
edge s of G, we create fi(s) top layer segments, images of
s. In the following, each vertex in gi is assigned an adja-
cency to a partner vertex in G, on the assumption that our
construction algorithm determines independently which
specific image in gi it is connected to.
We start by creating the segment edges of gi. On both

ends of a segment s, we compute D + N and choose the
smaller value ms. We select ms images of s to be marked
for duplication. The duplicated images of s are assigned 2
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Fig. 3 Computing the upper bound on a sequence graph. Note the
existence of a perfect component connecting segment C to the rest
of the sequence graph, containing nodes n3, n4, n5 and n6. In total,
we obtain S = 3, I = 0, l = 1, hence an upper bound of 2

descendants each. If fi(s) = ms, an additional fi+1(s)−2ms
descendant segments are assigned at random to the dupli-
cated segments, otherwise the fi(s) − ms non-duplicated
segments copies are assigned fi+1(s) − 2ms descendant
segments as evenly as possible, such that the difference
in number of descendants between any two of those seg-
ments is never greater than 1. At the end of this process,
segment copies with 0 descendants are marked for dele-
tion. Segments which are marked neither for deletion nor
duplication are undetermined.
Let d be the weighting on G equal to min(0, fi − fi+1),

i.e. the number of images of an edge of G which are lost
between the two layers of gi. By extension, for any vertex
v, dv is the sum of d across all adjacencies incident on v.
We then connect the top segments. For every adja-

cency e of G with d(e) > 0 we create d(e) images in
gi marked for deletion, attached in priority to segments
also marked for deletion. By conservation of flow bal-
ance we obtain, s being a segment incident on vertex
v on G:

fi+1(s) − fi(s) = Dv + Sv − dv

The number of segment images marked for deletion is
therefore:

fi(s) − (
fi+1(s) − ms

) ≤ fi(s) − fi+1(s) + Dv + Nv

≤ fi(s) − fi+1(s) + Dv + Sv

< dv

Hence all top layer segments marked for deletion can be
connected to adjacencies marked for deletion. For every
adjacency edge e with a duplication count D(e) > 0, we
create D(e) duplicated images of this edge, connected in
priority to duplicated copies of s, then to undetermined
segments. We already connected all segments marked
for deletion, hence duplicated adjacencies are connected
exclusively to duplicated or undetermined segments. For
every adjacency edge e with no flow change in G, we cre-
ate fi(e) images of this edge connected to the remaining
unattached segments.
We finally connect the bottom segments. If two dupli-

cated segments are connected by a duplicated edge, then
two of their descendant segments are connected by adja-
cencies, thus creating two trivial lifting adjacencies in gi.
Otherwise, for each segment which is incident on an adja-
cency not marked for deletion, it necessarily has at least
one descendant segment, which is connected by an adja-
cency to a descendant of its partner, thus creating one
trivial lifting adjacency in gi. All remaining bottom seg-
ments are connected at random, conditional on respecting
the adjacency counts specified by fi+1.
We now evaluate the upper bound rearrangement com-

plexity of the corresponding DNA history graph as quoted
above from [29]. By construction, deleted adjacencies and
adjacencies with no flow change do not create non-trivial
lifted edges in gi. Therefore only adjacencies e in G such
that fi+1(e) > fi(e) give rise to non-trivial lifted edges in
gi, unless they are connected to two duplicated segments.
The number of duplicated adjacencies incident on a seg-
ment s which are not connected to a duplicated segment
is bounded by its imbalance, hence there are at most Ii
adjacencies of this type across the graph. In addition, there
are Si bottom layer adjacencies which were added at ran-
dom. Hence the total number of non-trivial lifted edges is
bounded by Ii+Si. The construction algorithm guarantees
that each perfect component in G gives rise to a simple
module in G, hence, by the upper bound from [29], the
cost is bounded by Si + Ii − li.

Primary extensions
We say that a valid flow transition (FA, FB) is a lookup if
Cl
FA,FB = Cu

FA,FB . In this case it is easy to compute the rear-
rangement cost of the transition. If a transition is not a
lookup, then one way to assess its cost is to sample flow
sequences with the same initial and final flows that are
separated by smaller, more incremental changes.
A valid sub-sequence s2 of a given valid flow sequence

s1 with the same initial and final elements is called a
reduction of s1, and conversely s1 is an extension of s2.
It is convenient to look at this in terms of flow differ-

ences, which are themselves flows. A valid flow transition
(FA, FB) defines a flow that is the difference between flows
FA and FB, i.e. the flow �F = FB − FA. Likewise, a valid
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extension (F1, . . . , Fk+1) of (FA, FB) defines a sequence of
nonzero flow differences δF1, . . . , δFk , where δFi = Fi+1 −
Fi, such that:

k∑

i=1
δFi = �F

We call the multiset of nonzero flows δf1, . . . , δfk a
decomposition of �F .
If, for each i, either the flow transition (Fi, Fi+1) is a

lookup or at least simple enough so that we can compute
the transition cost in reasonable time, then by sampling
decompositions of the overall flow difference �F , we can
arrange these into extensions of this flow difference, and
evaluate these extensions efficiently, keeping track of the
cheapest one we find. This provides a sampling strat-
egy for producing plausible explanations for complicated
observed flow transitions. To make this work in practice,
we introduce the notion of a primary (or near-primary)
flow, and demonstrate how to decompose a flow differ-
ence f into a sum of primary or near-primary flows. The
primary or near-primary flow differences we get are usu-
ally a lookup, and if not, the time required to compute
their cost is reasonable.
We first introduce primary flows, which are a generating

set of FZ(G), then a superset of these, the near-primary
flows, which can be sampled ergodically with a simple
algorithm.
We measure the elements of FZ(G) with the L1 norm,

defined by ‖f ‖1 = ∑
e∈E |f (e)|. A non-zero flow f is pri-

mary if there do not exist two non-zero integer flows f1
and f2 such that f = f1 + f2 and ‖f ‖1 = ‖f1‖1 + ‖f2‖1.

Theorem 3 Primary flows are a generating set ofFZ(G).

Proof We will decompose a flow f by induction. For k ≥
1, we will define a set Sk of k non-zero flows (f k1 , . . . , f

k
k )

(allowing for duplicate flows), such that f = ∑
f ′∈Sk f

′
and ‖f ‖1 = ∑

f ′∈Sk ‖f ′‖1. At the start, S1 = (f ). If there
exists i ≤ k such that f ki is not primary, then there
exist two non-zero integer flows fb and fc such that f ki =
fb + fc and ‖f ki ‖1 = ‖fb‖1 + ‖fc‖1. We define Sk+1 =
(f k1 , . . . , f

k
i−1, fb, fc, f

k
i+1, . . . , f

k
k ). It is straightforward to ver-

ify that f = ∑
f ′∈Sk+1

f ′ and ‖f ‖1 = ∑
f ′∈Sk+1

‖f ′‖1. We
proceed until no non-primary flows remain. In that case,
then f was successfully decomposed as a sum of primary
flows. Since the L1 norm of a non-zero flow is necessarily
a non-zero integer, the total number k of flows we cre-
ate in this way is bounded by ‖f ‖1. The non-zero flow
f was therefore decomposed as a finite sum of primary
flows.

A valid primary flow sequence is a valid flow sequence
s = (f1, . . . , fk) such that for each flow transition,

(fi, fi+1), its associated flow change (fi+1 − fi) is a primary
flow.

Corollary 1 Any valid sequence of flows in FZ(G) can
be extended into a valid primary flow sequence.

Proof We decompose the flow changes of a valid
sequence into primary flow changes using the approach
described in Theorem 3. At each step, a flow change f is
replaced by two flows f1 and f2 such that a) f = f1 + f2 and
b) ‖f ‖1 = ‖f1‖1 +‖f2‖1. From equality a), it follows that at
every edge e we have 0 < |f (e)| ≤ |f1(e)| + |f2(e)|. Given
equality b) we have at every edge e |f (e)| = |f1(e)|+|f2(e)|,
hence f1 and f2 have the same sign as f. Therefore if f is
the flow change between two non-negative genome flows
FA and FB, FA + f1 = FB − f2 is also non-negative.
The extended flow sequence (. . . , FA, FA + f1, FB, . . .),
with flow changes (. . . , f1, f2, . . .), is also a valid flow
sequence.

By the above result, any flow change f can always be
decomposed, not necessarily uniquely, into primary flow
changes (fi)i=1..k such that f = ∑k

i=1 fi where ‖f ‖1 =∑k
i=1 ‖fi‖1. This type of decomposition is fast to compute,

and useful to create instances of primary flow sequences.
However, these decompositions are intrinsically limited

in scope. In particular, the second condition implies that
when the flow change f is, say, positive on a given edge
e, then ∀i < k, fi(e) ≥ 0. This forbids edge re-use,
i.e. cases where adjacencies are temporarily created, then
deleted, or segments temporarily duplicated, then deleted.
Edge reuse is common in actual rearrangement histories,
including minimum cost histories, so we do not always
want to impose this second condition.
Given a flow f, a primary extension of f is a set

{c1f1, . . . , cnfn}, such that {c1, . . . , cn} ∈ N
∗n and f1, . . . , fn

are primary flows, such that f = ∑n
i=1 cifi and the com-

ponent flows f1, . . . , fn are linearly independent, i.e. no
component can be written as a linear combination of the
others. Note that since the dimension of the subspace of
all flows is at most ‖E‖, where E is the set of edges in the
graph, no primary extension can havemore than ‖E‖ com-
ponents. Further, since the components fi are required
to be linearly independent, once these are specified for a
given f, the coefficients ci are uniquely determined.
This definition eliminates trivially non-parsimonious

cases where a simpler decomposition could be obtained
with a strict subset of the component flows. This amounts
to forbidding a some cases of homeoplasy, i.e. we allow
a simple rearrangement event to happen multiple times,
in which case the component is assigned a weight greater
than 1, for example in the case of tandem duplications,
but we don’t allow distinct sets of components to have
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identical or inverse flow changes, creating a new configu-
ration and then undoing it again for no net effect.

Characterising the space of primary flows
We now demonstrate the ties between primary flows and
the space of even length cycles.
For any weighting f inRE , its conjugate weighting f̂ is the

real-valued function on the edges of E defined by:

f̂ : E 	→ R

e →
{

f (e) if e is a segment edge
−f (e) otherwise

See Fig. 4 for an example (a) even-length cycle, (b) its
alternating weighting and (c) the conjugate of that weight-
ing. The conjugate transformation is a linear involution,
i.e.: ˆ̂f = f and ∀(f1, f2) ∈ FZ(G)2, ∀(p, q) ∈ R

2, ̂pf1 + qf2 =
pf̂1 + qf̂2.
If a weighting is such that the sum of incident weights

at every vertex is 0, it is said to satisfy the conjugate bal-
ance condition. A weighting f is a flow if and only if (iff ) f̂
satisfies the conjugate balance condition.
For each edge e, let δe be the weighting that assigns 1 to

e, and 0 to all other edges. The set {δe}e∈E forms a trivial
spanning set of ZE .
Given the cycle traversal t = (v, {ei}i=1..2n) ∈ V ×

E2n of an even length cycle c (possibly with edge re-use,
possibly with 2 or more consecutive adjacency or seg-
ment edges), its associated alternating weighting is w(t) =∑2n

i=1(−1)iδei . Because the weights of the edges in the
cycle alternate between 1 and -1 along an even length
cycle, an alternating weighting satisfies the conjugate bal-
ance condition, see Fig. 4b).
The alternating flow f of an even-length cycle traver-

sal t is the conjugate of its alternating weighting, i.e. f =
ŵ(t) = ∑2n

i=1(−1)iδ̂ei . Conversely, t is a traversal of f.
Because an alternating flow is conjugate to a weighting
that satisfies the conjugate balance condition, it satisfies

the balance condition defined above, and hence is a flow.
See Fig. 4c.
For the next few definitions, we assume that t =

(v, {ei}i=1..2n) ∈ V × E2n) is an even length cycle traversal
on G.
Two distinct indices i and j are said to coincide if ei and

ej end on the same vertex of G. The traversal t is synchro-
nized if whenever two distinct indices i and j coincide,
then (i − j) is odd. See Fig. 5 for an example of a non-
synchronized cycle traversal being split into synchronized
cycles. Note that a synchronized traversal cannot have
more than two edges that end on the same vertex because
for any three integers at least two are even or two are odd,
and hence at least one of the pairwise differences among
any three integers is even. Hence, a synchronized traversal
visits each vertex at most twice.
A set of pairs of integers P is nested if there does not

exist (i1, j1), (i2, j2) ∈ P2 such that i1 < i2 < j1 < j2.
The traversal t is nested if the set of pairs of coinciding
indices of t is nested. See Fig. 6 for a counter-example and
an example.
The traversal t is tight if ei = ej implies that (i − j) is

even. See Fig. 7 for a counter-example and an example.

Lemma 3 A cycle traversal t is tight iff ‖ŵ(t)‖1 = |t|, the
length of t.

Proof For an edge e of G, let Ne be the (possibly empty)
set of indices i such that ei = e. Let us suppose that t is
tight. This means that ∀e ∈ E, ∀(i, j) ∈ N2

e , (−1)i = (−1)j.
We then have:

‖ŵ(t)‖1 =
∑

e∈E

∣∣∣∣∣∣

∑

i∈Ne

(−1)i
∣∣∣∣∣∣
=

∑

e∈E
|Ne| = |t|

Conversely, let us suppose that there exists p and q such
that ep = eq yet p− q is odd. This means that (−1)p = −
(−1)q, we therefore have:

(a) (b) (c)

D

B

A C

e4

e1

e10

e8

e9

e7

e5

e3

e2

e6

D

B

A C

+1

-1

+1
+1

-1

-1

-1

-1

+1

+1

D

B

A C

-1

-1

-1
-1

+1

+1

+1

-1

-1

-1

Fig. 4 a An even length cycle traversal, composed of darker edges indexed by their order in the cycle, (b) its alternating weighting, and (c) the
conjugate of the alternating weighting (i.e. the alternating flow of the cycle traversal). Note how the alternating weighting in (b) respects the
conjugate balance condition and the alternating flow in (c) respects the balance condition
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e6

e5

e1

e10

e4

e3

e2 e9

e8e7
2

1

e1
6

e4

e3

e2 5

4
3

Fig. 5 On the left, a non-synchronized cycle traversal: edges e4 and e10 coincide, although (10-4) is even. A simple operation transforms it into two
synchronized cycles, such that the sum of alternating flows is unchanged. Note that one of the two remaining cycles has edges e′2 and e′5 coincide.
It is nonetheless synchronized and cannot be split into two even length cycle traversals since (5 − 2) is odd

∥∥ŵ(t)
∥∥
1 =

∑

e∈E

∣∣∣∣∣∣

∑

i∈Ne

(−1)i
∣∣∣∣∣∣

≤
⎡

⎣
∑

e∈E\{ep}
|Ne|

⎤

⎦ + (|Nep | − 2)

≤ l − 2
< |t|

Lemma 4 A cycle traversal t that is both nested and
synchronized is necessarily tight.

Proof Assuming by contradiction that t is not tight,
there exists two indices i < j such that ei = ej and j − i is
odd. They cannot be traversed in opposite directions, else
ei and ej−1 would coincide at their endpoints, even though
(j−1)−i is even, which contradicts synchronization. They
cannot either be traversed in the same direction, else ei
and ej on one hand and ei−1 and ej−1 on the other would
coincide, which contradicts the nesting constraint.

A simple cycle is a cycle without vertex reuse. A cac-
tus graph is a graph in which any two simple cycles
intersect in at most one vertex, which may be called an
intersection point [32]. A connected graph is 2-edge con-
nected if for any two distinct vertices A and B, two edge
removals are sufficient to disconnect the vertices. It is
well-known that a connected graph is a cactus graph iff

it is 2-edge connected. A cutpoint in a graph is a vertex
that if removed splits the connected component in which
it resides into two or more connected components called
subcomponents.

Lemma 5 Given a simple cycle C, one of its traversals t =
(v, {ei}i=1..l) and a set of properly nested pairs of indices in
[ 1, l]2, merging the vertices at the end of the edges indicated
by the index pairs creates a cactus graph.

Proof Wewill demonstrate that the graph is 2-edge con-
nected. Let A and B be vertices in the graph. Both A and
B can be traced to the merging of two sets of vertices
in C. Let I(A) be the sets of indices of original vertices
merged into A, likewise for B. Both sets cannot overlap,
else they would be identical and A and B would not be
distinct. Because of the nesting constraint, no vertex in
[min(I(B)),max(I(B))] can be merged to a vertex out-
side this interval, therefore cutting the edges at indices
min(I(B)) and max(I(B)) + 1 breaks the graph into two
components. Because all the indices of I(B) belong to the
interval, whereas all the indices of I(A) are outside of this
interval, A is disconnected from B. Thus, the graph is
2-edge connected, in other words it is a cactus graph.

See Fig. 8 for an example.

Theorem 4 The set of primary flows is identical to the
set of alternating flows of nested and synchronized cycle
traversals.

e4

e1 e2

e3e5

e6 e7

e8

e2

e'1 e'2

e3e1

e'4 e'3

e4

Fig. 6 On the left, a non-nested cycle traversal: coinciding index pairs (2, 7) and (5, 8) are such that 2 < 5 < 7 < 8. A simple operation transforms it
into two nested cycles such that the sum of alternating flows is unchanged
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e1

e2

e3

e4

e5

e6 e1

e2 e3

e4

Fig. 7 On the left, a non-tight cycle traversal: e2 and e5 overlap, although (2–5) is odd. A simple operation transforms it into a tight cycle traversal
with identical alternating flow

Proof Let f be a primary flow, and t = (v, {ei}i=1..l) be
a cycle traversal in G that alternates between edges where
f is strictly positive and edges where f is strictly negative.
We will demonstrate by contradiction that t is nested and
synchronized.
We will first assume that t is not synchronized, i.e.

there exist distinct indices i and j such that i and j coin-
cide, yet (i − j) is even. Without loss of generality, we
assume that i < j. Let t1 = {ei+1, . . . , ej} and t2 =
{e1, . . . , ei, ej+1, . . . , el}. As i − j is even, both are even
length, primary cycles. It follows that ŵ(t1) + ŵ(t2) =
ŵ(t) = f , and obviously |t1| + |t2| = l. Since t alter-
nates between edges where f is positive and negative,
ei = ej implies i − j is even, hence t is tight. It is obvi-
ous that this property is preserved in t1 and t2. Hence, by
Lemma 3, ‖ŵ(t1)‖1 + ‖ŵ(t2)‖1 = |t1| + |t2| = l. There-
fore ‖f ‖1 = ‖ŵ(t1)‖1 + ‖ŵ(t2)‖1, hence f could not be
minimal. Figure 5 gives an example.
We then assume that t is synchronized, but not nested,

i.e. that there exist indices i < p < j < q such that (i, j) and
(p, q) are pairs of coinciding indices. Then the traversals

t1 = (
v,

{
e1, . . . , ei, ej, ej−1 . . . , ep+1, eq+1, eq+2 . . . , el

})

and

t2 = (
v′,

{
ei+1, ei+2 . . . , ep, eq, eq−1 . . . , ej+1

})
,

where v′ is the (i+ 1)th vertex traversed by t, can similarly
be used as a decomposition of f, verifying that f could not
be minimal (Fig. 6). Thus, t is nested and synchronized.
Let t = (v, {ei}i=1..l) be a nested and synchronized cycle

traversal, we will demonstrate that its alternating flow f is
primary. By Lemma 5, because t is nested, the subgraph of
G it traverses is a cactus graph. Because it is impossible to
find three indices i, j and k such that (i−j), (j−k) and (k−i)
are all odd, t can visit any vertex at most twice. Because
all the edges in this cactus graph can be traversed in a sin-
gle cycle traversal, it can be edge-partitioned into a set of
simples cycles or chains such that at each vertex at most
two components intersect. Because t is synchronized, if
f = f1 + f2 is a decomposition of f and t1 is a traversal
of f1, t1 must necessarily switch between edges in differ-
ent simple cycles whenever it reaches a cutpoint vertex,
else the resulting cycle would not be even-length. Thus t1
traverses all of the edges at least once, and is equal to t.
Therefore f is primary (see Fig. 7 for an illustration).

e1 e2 e3 e4 e5 e6 e7 e8 e9

e10

e6 e7
e8

e9e10e1
e2

e3

e4
e5

Fig. 8 Transforming a traversal by merging the end-points of nested coinciding pairs of edges (in this case (e1, e4), (e5, e10), (e6, e9)), shown with
dotted lines) into a cactus graph
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Near-primary extensions
Although very useful to describe the extensions of a flow f,
the ergodic exploration of primary extensions is difficult.
Figure 9 provides an example where there is no straight-
forward manner to transform one primary extension into
another.
Instead, we focus on a superset of primary flows.

A flow derived from a tight and nested traversal is
called a near-primary flow. Following Lemma 4, pri-
mary flows are a subset of near-primary flows. To illus-
trate the difference between the two sets, on Fig. 5,
the left traversal is near-primary, the right one is
primary.
A near-primary extension of a flow f is a set

(c1f1, . . . , cnfn) for some integer constants (c1, . . . , cn)
and near-primary flows (f1, . . . , fn) such that f =∑n

i=1 cifi and the component flows f1, . . . , fn are linearly
independent.

Lemma 6 The number of possible near-primary exten-
sions of a flow sequence is finite.

Proof Because a synchronized traversal visits each edge
at most twice, there are only a finite number of syn-
chronized traversals, and hence a finite number of
near-primary flows. Since the flows in a decomposition
(c1f1, . . . , cnfn) of any flow f are linearly independent, n is
at most |E|, and since we must have f = c1f1 + . . . + cnfn,
the coefficients c1, . . . , cn are uniquely determined by the
choice of f1, . . . , fn. Hence the number of decompositions
is finite.

This implies that any scoring scheme can be used to
construct a valid probability mass function on the set
of near-primary extensions of a flow sequence, which
constitute a natural set of flow histories.

Collapsing equivalent solutions
Let K be the set of edges with zero overall flow change,
and � the set of vertices which are only incident to K.
To prevent a combinatorial explosion because of equiv-
alent cycles going through �, � is collapsed into a
universal connector vertex, ω, connected to all other
vertices in the graph. In other words, if an alternating
flow traversal has edges incident with vertices of �, it
is represented as going to ω, self-looping on that ver-
tex, then continuing out. This ensures that otherwise
equivalent histories are not distinguished because of irrel-
evant labeling differences between interchangeable ver-
tices. Any alternating flow traversal which self-loops from
ω to itself more than once can be automatically simpli-
fied into a simple flow traversal with lesser complexity,
avoiding extrapolating useless operations on the edges
of K.
Given a valid flow decomposition, if an edge of K is

duplicated then deleted, leaving no final CNV change,
then the flows of the two events are summed up into
a single flow. This constrains partially the space of pos-
sible histories, as it precludes a third event from being
timed between the two combined events, but it reduces
the search space. To mitigate this, this constraint is only
applied to the end results of the sampling, as during the
sampling stage we allow for events to have non-zero flow
over edges of K.
After these two transformations, a valid flow decompo-

sition is said to be collapsed.

Ergodic sampling of near-primary extensions
If there exist tight and synchronized cycle traversals t1 =
(v, {e1, e2 . . . , e2n}) and t2 = (v, {ε1, ε2 . . . , ε2ν}) such that
they start at the same vertex v and overlap over their last
p ≥ 0 edges, but e1 �= ε1, we produce a third cycle
traversal:

Fig. 9 In this graph, represented twice, a conjugate flow f̂ is represented with the edge colors. On red edges, f̂ = 1, on blue edges f̂ = −1. There
are exactly two ways of decomposing this conjugate flow as a sum of synchronized and nested alternating weightings, as indicated by the circular
arrows. Transforming the righthand decomposition into the lefthand one requires simultaneous modifications of all flows
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t3 = (
v,

{
e1, e2, . . . , e2n−p, ε2ν−p, ε2ν−p−1, . . . , ε1

})
.

Subsequently, the traversal t3 is broken up into a set
of near-primary cycle traversals T = {t′1, . . . , t′k}, using
the transformations illustrated in Figs. 7 and 6. A merge
consists in replacing {t1, t2} with {t1, t′1, . . . , t′k}. Because

ŵ(t′1) + . . . + ŵ(t′k) = ŵ(t3) = ŵ(t1) − ŵ(t2)

we have ∀(α,β) ∈ R
2:

αŵ(t1)+βŵ(t2) = (α+β)ŵ(t1)−β(ŵ(t′1)+. . .+ŵ(t′k))

Thus the space spanned by {t1, t2} is spanned by
{t1, t′1, . . . , t′k}. See Fig. 10 for an example.
Given two tight cycle traversals (v, {ei}i=1..2n) and

(v, {εi}i=1..2ν) that overlap over their first l edges, such that
l is odd, we can construct three new cycle traversals:

t′1 = (
v′,

{
E1,E2,E3, el+1 . . . e2n

})

t′2 = (
v′,

{
E1,E2,E3, εl+1 . . . ε2ν

})

t′3 = (v, {e1, . . . el,E3,E2,E1})
where E1,E2 and E3 are adjacency edges such that E1 con-
nects v′ to ω, E2 connects ω to ω and E3 connects ω to
v.
If l is even and greater than zero, then we can construct

the following cycle traversals:

t′1 = (
v′,

{
E1,E2, el+1 . . . e2n

})

t′2 = (
v′,

{
E1,E2, εl+1 . . . ε2ν

})

t′3 = (v, {e1, . . . el,E2,E1})
where E1 is a (possibly new) adjacency edge that connects
the destination vertex of el, v′, to ω, and E2 is a (possibly
new) adjacency edge that connects ω to the starting vertex
of e1, v.
This transformation is referred to as a split, since it sep-

arates out the edges e1, e2, . . . el, used in two cycles, into
a separate cycle, that uses them only once. See Fig. 11
for an example. As in the case of a merge, the resulting
traversals are then further broken down into independent
near-primary flows. Because

ŵ(t′1) + ŵ(t′2) + ŵ(t′3) = ŵ(t1) + ŵ(t2)

we have ∀(α,β) ∈ R
2:

αŵ(t1) + βŵ(t2) = αŵ(t′1) + βŵ(t′2) + (α + β)ŵ(t′3))

Thus the space spanned by {t1, t2} is spanned by
{t1, t′1, . . . , t′k}. See Fig. 10 for an example.

Theorem 5 The process of applying random merges and
splits provides an ergodic exploration of all possible near-
primary collapsed extensions of a given flow transition.

Proof We are given a near-primary collapsed extension
H of a flow transition (f1, f2) ∈ F(G)2, and wish to reach
another near-primary collapsed extension H◦ that also
spans �f = f2 − f1. Because they are both collapsed, H◦
andH cover exactly the same set of vertices, namely E \�.
We choose at random a near-primary component flow

δf ◦ of H◦, and one of its tight traversals t◦. Since H and
H◦ cover the same set of edges, it is possible to greed-
ily define a sequence of flows of H that cover each of the
edges of t◦. The flows can be sequentially merged, since
each shares an overlap of at least one vertex with a previ-
ously defined flow. Following the greedy merge, they may
be greedily split to recover δf ◦. It is thus possible to recon-
struct any near-primary component flow ofH◦ with splits
and merges between the vectors in H.

Fixing invalid flow sequences
A flow sequence is a sequence of positive flows, from
which a sequence of flow changes can be derived. How-
ever, a near-primary extension of a positive flow can not
necessarily be ordered to define a valid flow sequence
because cumulatively adding up the flow changes can
produce negative values.
Imposing that each flow of a flow sequence is a positive

flow would require much computation and possibly break
the ergodicity of themethod described below. For this rea-
son we preferred to impose a softer constraint, namely
increasing the cost of a history showing inconsistencies.
For every segment edge which goes from non-negative to
negative or from 0 to positive flow, a penalty charge of 2
events is added to the history. This cost corresponds to the
cost of temporarily duplicating a region then deleting it.

Fig. 10 Two overlapping flows t1 and t2 transformed by a merge. Here T = {t3} = {(v, {e′1, . . . , e′6})}. In parentheses are indicated the weightings
required to maintain equality of conjugate flow, namely, αŵ(t1) + βŵ(t2) = (α + β)ŵ(t1) − βŵ(t3)
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Fig. 11 Two overlapping flows t1 and t2 transformed by a split into t′1 = (v, {e′1 . . . e′2n}), t′2 = (v, {ε′
1 . . . ε′

2ν}) and t′3 = (v, {e′′1 . . . e′′4}). In parentheses
are indicated the weightings required to maintain equality of conjugate flow, namely, αŵ(t1) + βŵ(t2) = αŵ(t′1) + βŵ(t′2) + (α + β)ŵ(t′3)

Simulations
Measuring accuracies of solutions
To test our model, we created 90 artificial rearrange-
ment histories. Each simulated history begins with a sin-
gle chromosome composed of 100, 150, or 200 atomic
blocks of sequence in order to have a range not only
in the number of rearrangement events per simulation,
but in the density or breakpoint reuse of genomic rear-
rangements as well. The history is built by repeatedly
randomly deleting, duplicating or inverting segments of
contiguous blocks. The number of structural rearrange-
ment operations applied was randomized between 1 and
33, again, in order to generate histories with a range of
complexity and density. For example, a simulation with
100 sequence blocks and 10 rearrangement events will
have a higher density of events than a simulation with 200
sequence blocks and 10 rearrangement events; although
the sequence of deletions, duplications, or inversions in
both histories may be identical, in the smaller genome,
they are more likely to overlap or occur in the same
genomic regions.
Given the final copy number profile and novel adja-

cencies of the rearranged genome, we sampled possible
flow histories using importance sampling based on the
above ergodic exploration of the space with ten indepen-
dent runs of 2,000 iterations each. Each near-primary flow,
representing a set of rearrangement events, received a
likelihood score equal to the fraction of sampled histories
that contain it. So as not to penalise valid flow transitions
that are extensions of multiple flow transitions from the
simulated history, we counted as true positive any sam-
pled flow transition which could be decomposed as a finite
sum of original simulated flow transitions.
We find that near-primary flow transitions predicted

in the sampled histories but not present in the simu-
lated history have low likelihood scores, and that correctly
predicted events have high likelihood scores, as shown
in Fig. 12. Furthermore, out of the 751 events with a

likelihood score greater than 0.5, 699 (93 %) of themmatch
the true simulated events, so near-primary flows with
high likelihood scores are more likely to represent the
underlying simulated rearrangement history.
After filtering for near-primary flows with likelihood

scores greater than 0.5, we determined the recall, preci-
sion, and F-score for each of the 90 simulated rearrange-
ment histories. This is shown in Fig. 13 as a function
of the connectivity or breakpoint reuse of the simulated
flow history (total sum of the norms of the flows divided
by the number of nodes in the graph). The accuracy of
a sampled set of histories decreases as the near-primary
flows become more connected, either through breakpoint
reuse or through nested overlapping events. Breakpoint
reuse introduces coinciding edges in the sequence graph,
as described in Figs. 10 and 11. These formations have
alternative traversals, leading to ambiguity in the flow
history. For trivial histories with a connectivity equal to
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Fig. 12 Near-Primary flows across 10,000 sampled histories for 90
simulated rearrangement histories were merged and assigned a
likelihood score. Near-Primary flows with high likelihood scores are
enriched for simulated events, while near-primary flows with low
likelihood scores do not represent the simulated flow history
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Fig. 13We calculated statistics for 90 simulated histories with varying densities of rearrangement events. The ability to accurately predict a flow
history decreases as the breakpoint reuse, the number of edges over the number of nodes, increases. Most of this loss in accuracy comes from a
decrease in sensitivity, or the simulated near-primary flows not being constructed in the sampled histories

one, representing no breakpoint reuse, we achieve up to
100 % accuracy, as measured by the F-score. For histories
with connectivity greater than 1, we achieve an average
77 % accuracy, largely due to a drop in sensitivity with
increased breakpoint reuse. This indicates that certain
complicated and entangled rearrangement events cannot
be reliably segregated from the simulated near-primary
flows. In 25/90 (28 %) of the simulations, there exists a
sampled history with a lower cost than the simulated his-
tory, so we would not expect all near-primary flows in the
simulated history to have the highest likelihood scores in
these cases.

Discussion
As discussed in the introduction, there have been many
attempts to define parsimomious histories given a set
of rearranged genomes with deletions and duplications.
Because of the inherent complexity of the problem, dif-
ferent models made different simplifying assumptions.
The model presented here is particularly flexible, in that
it allows arbitrarily complex rearrangement events con-
taining duplications and deletions of arbitrary contiguous
regions, not just predefined atomic components or prede-
fined rearrangement transformations. There exists a “free
lunch” problem whereby if arbitrary de novo insertions
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are allowed, then any differences between the ancestral
and derived genome can be explained by a parsimonious
but absurd evolutionary history consisting of an entire
genome deletion followed by the insertion of a com-
pletely new genome [8]. To preclude such trivially unre-
alistic solutions, our model does not allow insertions of
entirely new sequence, only duplication of existing DNA.
In addition, this is the first such model which offers an
explicit ergodic sampling procedure. In counterpart, we
currently bracket the cost of each flow transition between
an upper and lower bound, with the expectation that
the two bounds meet for most encountered near-primary
flow transitions. Given their constrained size, it should
be possible to exhaustively test the cost of near-primary
flow transitions when these two bounds diverge. In addi-
tion, the collapsing of histories does preclude some event
orderings.
Theorem 2 only describes the cost of each epoch inde-

pendently, and does not allow us to extrapolate the cost
of entire histories. Because the bilayered components of
a layered history graph share intermediary layers, defin-
ing the structure of one layer constrains the possible layers
immediately before and after it. It is therefore sometimes
impossible to construct a realisation of a flow sequence
such that every bilayered component has a cost below
its corresponding upper bound. Determining the cost of
entire histories would presumably require reconstructing
these histories in their entirety, as we describe in [29].
However, this explicit approach requires the ancestral and
derived genomes to be fully determined, which is often
not the case when working with sequencing data. The loss
of precision therefore appears to be necessary to handle
the incompleteness of genomic data.
The application of the theory described here would

therefore be most relevant to un-assembled short read
data, for example metagenomic samples or tumors. Infer-
ring the evolutionary history of the observed copy-
number changes and alignment breakpoints would help
both understand the evolutionary processes at play and
determine the most likely sequences of the sampled
genomes. However, such datasets pose further issues
because they generally contain a diversity of different
genomes, and the data is itself quite noisy. Given that
most of the properties demonstrated here hold for the
edge space R

E , we believe that it will be possible to
extend the entire model to handle arbitrary mixtures of
genomes, where copy-number is weighted by prevalence.
Noisy artifacts would thus be represented as low fre-
quency elements that can be filtered out at the end of
the analysis. As genomic sequencing progresses and long
range data becomes more affordable, it might be possible
to obtain near-finished assemblies straight from the data,
in which case the model described in [29] would be more
relevant.

From a mathematical standpoint, the set of flows of G is
very rich. It bears similarity to the cycle space described
in [33]. The balance condition guarantees that a positive
flow can be decomposed as a set of weighted threads,
and that in a flow transition, every created adjacency is
compensated by a either a corresponding adjacency dele-
tion or a segment duplication, much like double entry
book-keeping. The near-primary flows further provide us
with a finite subset of flows, such that all possible reali-
sations of the data can be sampled ergodically. However,
unlike models for single base substitutions and balanced
rearrangements, this model of evolutionary cost is not a
distance function, because it is asymmetric, i.e. the dis-
tance between two genomes depends on which genome
is ancestral. For example, duplicating a segment then
translocating one of its copies generally requires two DCJ
operations, yet only one operation (a segmental deletion)
is needed to return to the original genome.

Conclusion
We presented here a model to efficiently sample the space
of possible rearrangement histories in the presence of
duplications and deletions. Confronted with the NP-hard
problem of inferring parsimonious histories described in
[29] from everyday genomic data, we opted for a simplifi-
cation of the problemwhich allows us to adopt an efficient
ergodic sampling strategy. Through simulation, we ver-
ified that this approach produces exploitable results. In
practice, it is capable of accurately discriminating true
rearrangement events and sampling their possible order-
ings. There remain a few open questions, in particular
whether it is possible to efficiently compute the rearrange-
ment cost of any primary flow sequence.
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