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Abstract
This paper is concerned with the solvability of a new kind of backward stochastic
differential equations whose generator f is affected by a finite-state Markov chain. We
also present the asymptotic property of backward stochastic differential equations
involving a singularly perturbed Markov chain with weak and strong interactions and
then apply this result to the homogenization of a system of semilinear parabolic
partial differential equations.
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1 Introduction
Pioneered by the works of Pardoux and Peng [] and Duffie and Epstein [] about the non-
linear backward stochastic differential equations (BSDEs) driven by a Brownian motion,
BSDEs have been extensively studied because of their deep connections with mathemati-
cal finance, stochastic control, and partial differential equations (PDEs), such as [, ], etc.
Simultaneously, many researchers have been devoted to more general cases in the frame-
work of continuous time diffusions or jump diffusions, such as BSDE driven by a Lévy
process (see [, ]), BSDE with respect to both a Brownian motion and a Poisson random
measure (see [, ]). For BSDEs driven by Markov chains, [] considered the following
kind of BSDE:

Yt = ξ +
∫ T

t
f (s,Ys– ,Zs)ds –

∫ T

t
Zs dMs,

where Ms is a martingale related to a continuous time, finite state Markov chain. After
that, [–] further studied such kind of BSDE.
In this paper, we study the BSDE whose generator f is directly affected by a continu-

ous time, finite-state Markov chain. Consider the following BSDE in the probability space
(�,F ,P):

Yt = ξ +
∫ T

t
f (s,Ys,Zs,αs)ds –

∫ T

t
Zs dBs. ()

Here B = {Bt ;  ≤ t ≤ T} is a d-dimensional Brownian motion, and α = {αt ;  ≤ t ≤ T}
is a continuous-time finite-state Markov chain independent of B with the state space
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M = {, , . . . ,m} and the generator Q = (qij)m×m. The generator f of BSDE () can be
considered as disturbed by random environment and takes a set of discrete values de-
scribed by the Markov chain α. One major objective of this paper is to find a pair of
{FB

t ∨Fα
t,T }≤t≤T -adapted processes (Y ,Z) = {(Yt ,Zt);  ≤ t ≤ T} as its solution. Here, for

any process {ηt ;  ≤ t ≤ T}, Fη
t =Fη

,t and Fη

t,T = σ {ηr ; t ≤ r ≤ T}.
When studying the solvability for BSDE () with the Markov chain α, since {FB

t ∨
Fα

t,T }≤t≤T is not a filtration, the conventional approach [, ] to use the Itô represen-
tation theorem and contraction mapping cannot be applied straightforwardly. To tackle
this problem, inspired by themethod dealing with backward doubly stochastic differential
equations [], we construct an enlarged filtration generated by the Brownian motion B
and the Markov chain α and propose a corresponding extended Itô representation theo-
rem. By virtue of this theoretical tool, we prove the existence of the solution adapted to
the enlarged filtration and then verify the desired adaptability.
When various factors in random environment are considered, the underlying Markov

chain inevitably has a large state space, and the corresponding BSDE () becomes increas-
ingly complicated. In many practical situations, the states of the underlying Markov chain
can be divided into several classes such that the Markov chain fluctuates rapidly among
different states in the same class and jumps less frequently among different classes. One
hierarchical approach to reduce the complexity, explored by Yin and Zhang [], intro-
duces a small parameter ε >  and leads to a singularly perturbed Markov chain αε . The
asymptotic property of αε can be studied by a Markov chain with a considerably smaller
state space. There exists an extensive literature on singularly perturbedMarkov chain and
its applications.We suggest to the interested reader that they should consult [, ] to get
a rather complete view on this research field.
In this paper, we study the following BSDE with the singularly perturbed Markov

chain αε :

Y ε
t = ξ +

∫ T

t
f
(
s,Y ε

s ,α
ε
s
)
ds –

∫ T

t
Zε
s dBs.

Combining with the asymptotic property of the singularly perturbed Markov chain αε ,
we show that the solution sequence {(Y ε

t ,
∫ t
 Z

ε
s dBs);  ≤ t ≤ T} converges weakly with the

limit formed by the solution of a simpler BSDEwhich involves the limit aggregatedMarkov
chain. As far as we know, such asymptotic property of BSDE with a singularly perturbed
Markov chain is the first study in BSDEs theory. As a straightforward application of our
asymptotic result, we show the homogenization of a system of semi-linear parabolic PDEs
with the singularly perturbed Markov chain αε .
This paper is organized as follows. In Section , we study the solvability of BSDE ()

with a Markov chain. Section  gives the asymptotic property of BSDE with a singularly
perturbed Markov chain. Two interpretation examples are also presented. In Section ,
we apply the asymptotic result to the homogenization of a system of semi-linear parabolic
PDEs with the singularly perturbed Markov chain. Finally, we give some concluding re-
marks in Section .
Throughout this paper, we introduce the following notations: Lp(Ft ;Rn) is the space

of Rn-valued Ft-adapted random variable ξ satisfying E(|ξ |p) < ∞; M
Ft
(,T ;Rn) de-

notes the space of Rn-valuedFt-adapted stochastic processes ϕ = {ϕt ; t ∈ [,T]} satisfying

http://www.advancesindifferenceequations.com/content/2013/1/285
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E
∫ T
 |ϕt| dt < ∞; SFt

(,T ;Rn) is the space of Rn-valuedFt-adapted continuous stochastic
processes ϕ = {ϕt ; t ∈ [,T]} satisfying E(sup≤t≤T |ϕt|) < ∞.

2 BSDEs withMarkov chains
In this section, we study the solvability of BSDE () with the Markov chain α:

Yt = ξ +
∫ T

t
f (s,Ys,Zs,αs)ds –

∫ T

t
Zs dBs.

For each t ∈ [,T], define Ft = FB
t ∨ Fα

t,T . We make the following assumptions for the
coefficients of BSDE ().
(H) (i) ξ ∈ L(FT ;Rk); (ii) f :� × [,T]× Rk × Rk×d ×M→ Rk satisfies that

∀(y, z) ∈ Rk × Rk×d , i ∈M, f (·, y, z, i) ∈M
FB
t
(,T ;Rk). Also, there exists a constant

μ >  such that ∀(ω, t) ∈ � × [,T], i ∈M, (y, z), (y, z) ∈ Rk × Rk×d ,

∣∣f (t, y, z, i) – f (t, y, z, i)
∣∣ ≤ μ

(|y – y| + |z – z|
)
.

The main purpose of this section is to prove the following solvability of BSDE ().

Theorem . Under hypothesis (H), there exists a unique solution pair (Y ,Z) ∈ SFt
(,T ;

Rk)×M
Ft
(,T ;Rk×d) for BSDE ().

To obtain the solvability of BSDE (), we borrow the idea from the method handling
the backward doubly stochastic differential equations (see []). Firstly, we construct an
enlarged filtration (Gt)≤t≤T : Gt � FB

t ∨ Fα
T ∨ N , ∀t ∈ [,T], which is generated by the

Brownian motion B and the Markov chain α. Then we propose a related extended Itô
representation theorem. After that, for the special case that f is independent of y and z,
we show the existence of the solution of BSDE () and verify the adaptability of the solution
with respect to {Ft}≤t≤T . Finally, the solvability of BSDE () for the general case is proved.

Proposition . Let N ∈ L(GT ;Rk). Then there exists a unique stochastic process Z =
{Zt ;  ≤ t ≤ T} ∈M

Gt
(,T ;Rk×d) such that

N = E
(
N |Fα

T
)
+
∫ T


Zt dBt . ()

This result can be derived from the martingale representation theorem for initially en-
larged filtration (see Theorem . in []). For the readers’ convenience, we also give a
more specific proof in the Appendix.
Similarly, for all t ∈ [,T], we can introduce the filtration {Ns}t≤s≤T defined by Ns =

FB
s ∨Fα

t,T . And we have the following propositions.

Proposition . Let N ∈ L(NT ;Rk). Then there exists a unique stochastic process Z =
{Zs; t ≤ s ≤ T} ∈ M

Ns
(t,T ;Rk×d) such that

N = E(N |Nt) +
∫ T

t
Zs dBs.
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Proposition . Under hypothesis (H), the following BSDE

Yt = ξ +
∫ T

t
f (s,αs)ds –

∫ T

t
Zs dBs,  ≤ t ≤ T , ()

has a solution pair (Y ,Z) ∈ SFt
(,T ;Rk)×M

Ft
(,T ;Rk×d).

Proof Applying Hölder’s inequality, we have

E
(∫ T


f (s,αs)ds

)

≤ TE
∫ T



∣∣f (s,αs)
∣∣ ds≤ T

∑
i∈M

E
∫ T



∣∣f (s, i)∣∣ ds.

Combining the assumptions of ξ and f in hypothesis (H), we can conclude that
ξ +

∫ T
 f (s,αs)ds ∈ L(GT ;Rk). ∀t ∈ [,T], define Nt = E(ξ +

∫ T
 f (s,αs)ds|Gt). Applying

Proposition . yields that there exists a unique stochastic process Z = {Zs;  ≤ s ≤ t} ∈
M

Gs
(, t;Rk×d) such that

Nt = E
(

ξ +
∫ T


f (s,αs)ds

∣∣∣Fα
T

)
+
∫ t


Zs dBs.

∀t ∈ [,T], letting

Yt =Nt –
∫ t


f (s,αs)ds,

it can be verified that Y = {Yt ;  ≤ t ≤ T} ∈ M
Gt
(,T ;Rk) and (Y ,Z) satisfies BSDE ().

Besides, combining the Burkholder-Davis-Gundy inequality and the form of BSDE (), we
can conclude that Y is continuous and satisfies E(sup≤t≤T |Yt|) < ∞.
The remaining work is to show that the {Gt}≤t≤T -adapted process (Y ,Z) is also adapted

to {Ft}≤t≤T . Recall that {Ft}≤t≤T is defined by Ft =FB
t ∨Fα

t,T . We firstly show that ∀t ∈
[,T], Yt is FB

t ∨ Fα
t,T -measurable. Combining the definitions of Nt and Yt yields Yt =

E(ξ +
∫ T
t f (s,αs)ds|Gt). For ease of notation, we denote ϑ � ξ +

∫ T
t f (s,αs)ds. Obviously,

ϑ is FB
T ∨ Fα

t,T -measurable. Let {t∗k }k≥ be a dense subset of [t,T] with t∗ = t. For each

integer l ≥ , denote α
t∗l
t∗
= (αt∗ ,αt∗ , . . . ,αt∗l ), G

∗
l =FB

T ∨ σ {αt∗l
t∗

}, andMl+ =M× · · · ×M︸ ︷︷ ︸
l+

.

It is clear that G∗
l ⊂ G∗

l+ and σ {⋃l≥ G∗
l } =FB

T ∨Fα
t,T . Applying the Doob-Dynkin lemma

(Lemma A.) and the Itô representation theorem to E(ϑ |G∗
l ), we have

E
(
ϑ |G∗

l
)
=

∑
il∈Ml+

I
{αt

∗
l
t∗
=il}

(
ϑl
(
il
)
+
∫ T


Zϑl

(
s, il

)
dBs

)

with ϑl(il) ∈ Rk and {Zϑl (s, i
l
);  ≤ s ≤ T} ∈M

FB
s
(,T ;Rk×d). Therefore

E
(
E
(
ϑ |G∗

l
)|Gt

)
= E

(
E
(
ϑ |G∗

l
)|FB

t ∨Fα
T
)

=
∑

il∈Ml+

I
{αt

∗
l
t∗
=il}

(
ϑl
(
il
)
+
∫ t


Zϑl

(
s, il

)
dBs

)

� ϑl
(
α
t∗l
t∗

)
+
∫ t


Zϑl

(
s,αt∗l

t∗

)
dBs. ()
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Since [t∗, t∗l ] ⊂ [t,T], we have ϑl(α
t∗l
t∗
) ∈ L(Fα

t,T ) and {Zϑl (s,α
t∗l
t∗
);  ≤ s ≤ t} ∈ M

FB
s ∨Fα

t,T
(,

t;Rk×d).
Now, let us show the convergence of equation () as l tends to ∞. For its left-hand side,

by Doob’s martingale convergence theorem (Lemma A.), E(ϑ |G∗
l ) = ϑ as l → ∞. Thus

E
(
E
(
ϑ |G∗

l
)|FB

t ∨Fα
T
) → E

(
ϑ |FB

t ∨Fα
T
)
= Yt .

For the right-hand side of equation (),

ϑl
(
α
t∗l
t∗

)
= E

(
E
(
E
(
ϑ |G∗

l
)|FB

t ∨Fα
T
)|Fα

t,T
)
.

Thus ϑl(α
t∗l
t∗
) is a Cauchy sequence indexed by l in L(Fα

t,T ). Thus, by the Itô isometry,

{Zϑl (s,α
t∗l
t∗
);  ≤ s≤ t} is a Cauchy sequence indexed by l inM

FB
s ∨Fα

t,T
(, t;Rk×d). Hence the

right-hand side of equation () converges to someFB
t ∨Fα

t,T -measurable random variable,
which yields that Yt is also FB

t ∨Fα
t,T -measurable.

To prove the adaptability of Z, we rewrite BSDE () as

∫ T

t
Zs dBs = –Yt + ξ +

∫ T

t
f (s,αs)ds

with the right-hand side being FB
T ∨ Fα

t,T -measurable. Applying Proposition . yields
{Zs; t ≤ s ≤ T} is {FB

s ∨Fα
t,T }t≤s≤T -adapted. Then, guaranteed by the continuous property

of theMarkov chain α, we can conclude {Zs; t ≤ s ≤ T} is also adapted to {FB
s ∨Fα

s,T }t≤s≤T ,
and the proof is completed. �

Now let us consider the solvability of BSDE () for the general case.

Proof For (y, z) ∈ M
Ft
(,T ;Rk × Rk×d), using the assumptions in hypothesis (H) and

Hölder’s inequality, we have

E
(∫ T


f (s, ys, zs,αs)ds

)

≤ E
(∫ T



(
f (s, ys, zs,αs) – f (s, , ,αs)

)
ds
)

+ E
(∫ T


f (s, , ,αs)ds

)

≤ T
(

μE
∫ T



(|ys| + |zs|
)
ds +

∑
i∈M

E
∫ T



∣∣f (s, , , i)∣∣ ds
)
< ∞.

Thus we have ξ +
∫ T
 f (s, ys, zs,αs)ds ∈ L(GT ;Rk). Setting

Yt = ξ +
∫ T

t
f (s, ys, zs,αs)ds –

∫ T

t
Zs dBs,

and following the proof of Proposition ., we can conclude that the mapping

I
(
(y, z)

)
= (Y ,Z) :M

Ft

(
,T ;Rk × Rk×d) →M

Ft

(
,T ;Rk × Rk×d)

http://www.advancesindifferenceequations.com/content/2013/1/285
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is well defined. Notice α = {αt ;  ≤ t ≤ T} is a continuous-time finite-state Markov chain
with the state space M = {, , . . . ,m}. As α varies with t, αt ∈ M, ∀t ∈ [,T]. Under hy-
pothesis (H), we have ∀(ω, t) ∈ � × [,T], (y, z), (y, z) ∈ Rk × Rk×d ,

∣∣f (t, y, z,αt) – f (t, y, z,αt)
∣∣ ≤ μ

(|y – y| + |z – z|
)
.

Then, using the conventional approach (see [, ]), we can prove that this mapping is a
contractionmapping. The details are omitted here for the compactness of the paper. Thus
BSDE () has a unique solution pair inM

Ft
(,T ;Rk × Rk×d).

Together with the form of BSDE () and the Burkholder-Davis-Gundy inequality, we can
conclude that Y is continuous and Y ∈ SFt

(,T ;Rk). �

3 BSDEs with singularly perturbedMarkov chains
Consider the case that the Markov chain has a large state space, one natural method is to
adopt a hierarchical approach to reduce the complexity, and thus a singularly perturbed
Markov chain is involved (see []). In this section we study the asymptotic property of a
BSDE with the singularly perturbed Markov chain.

3.1 Preliminary for singularly perturbed Markov chains
Consider a continuous-time ε-dependent singularly perturbedMarkov chainαε = {αε

t ;  ≤
t ≤ T}with a time-invariant generatorQε = (/ε)Q̃+ Q̂, Q̃ = diag(Q̃, . . . , Q̃l). Then its state
spaceM = {, , . . . ,m} can be written asM =M ∪ · · · ∪Ml such that ∀k ∈ {, . . . , l}, Q̃k

is a weakly irreduciblea generator corresponding to the states in Mk . When the magni-
tudes of generators Q̃ and Q̂ have the same order, the singularly perturbed Markov chain
αε fluctuates rapidly in a single group Mk and jumps less frequently among groups Mk

and Mj for k �= j. For notational convenience, for all k ∈ {, . . . , l}, we denote the states in
Mk as {sk, . . . , skmk }. For more details of this singularly perturbed Markov chain, we refer
the interested reader to []. Here, we only recall the following asymptotic property of
singularly perturbed Markov chains.

Proposition . [] Define the aggregated process ᾱε = {ᾱε
t ;  ≤ t ≤ T} as follows: ∀k ∈

{, . . . , l}, ᾱε
t = k, when αε

t ∈Mk . Then
() as ε → , ᾱε converges weakly to a continuous-time Markov chain ᾱ with the

generator

Q̄ = diag
(
ν, . . . ,ν l)Q̂diag(Im , . . . , Iml ).

Here ∀k ∈ {, . . . , l}, νk is the quasi-stationary distribution of Q̃k and
Imk = (, . . . , )′ ∈ Rmk ;

() for any bounded deterministic function β(·), ∀k ∈ {, . . . , l},

E
(∫ T

t

(
I{αε

r =skj} – νk
j I{ᾱε

r =k}
)
β(r)dr

)

=O(ε), ∀j ∈ {m, . . . ,mk}.

Here IA is the indicator function of the set A.

http://www.advancesindifferenceequations.com/content/2013/1/285
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3.2 Asymptotic property of BSDEs with singularly perturbed Markov chains
DenoteD(,T ;Rk) as the Skorohod space of càdlàg functions equippedwith the Jakubow-
ski S-topology. On this space, we consider the asymptotic property of the following BSDE
with a singularly perturbed Markov chain with a generator f that does not depend on Zε :

Y ε
t = ξ +

∫ T

t
f
(
s,Y ε

s ,α
ε
s
)
ds –

∫ T

t
Zε
s dBs. ()

In addition to hypothesis (H), we make the following assumption for the coefficients in
BSDE ().
(H) (i) ξ ∈ L(FB

T ;Rk); (ii) There exists a constant C >  such that, ∀i ∈M,
sup≤t≤T |f (t, , i)| ≤ C.

Theorem . Under hypothesis (H) and hypothesis (H), the sequence of processes
{(Y ε

t ,
∫ t
 Z

ε
s dBs);  ≤ t ≤ T} converges weakly to the process {(Ȳt ,

∫ t
 Z̄sdB̄s);  ≤ t ≤ T} as

ε →  on the space D(,T ;Rk).Here (Ȳ , Z̄) is the solution pair to the following BSDE with
the limit Markov chain ᾱ:

Ȳt = ξ +
∫ T

t
f̄ (s, Ȳs, ᾱs)ds –

∫ T

t
Z̄s dB̄s, ()

where B̄ is a d-dimensional Brownian motion satisfying ξ ∈ L(F B̄
T ;Rk), and f̄ (s, y, i) =∑mi

j= ν
i
j f (s, y, sij) for i ∈ {, . . . , l}.

It follows from Theorem . that both BSDEs () and () have unique solutions (Y ε ,Zε)
and (Ȳ , Z̄) ∈ SFt

(,T ;Rk) × M
Ft
(,T ;Rk×d). To prove the expected convergence in The-

orem ., we firstly show the tightness property for {(Y ε
t ,
∫ t
 Z

ε
s dBs);  ≤ t ≤ T} and then

identify the limit.

Step : tightness of {(Y ε
t ,
∫ t
 Z

ε
s dBs);  ≤ t ≤ T}

Proposition . There exists a positive constant C >  such that

sup
ε>

E
(

sup
≤t≤T

∣∣Y ε
t
∣∣ +

∫ T



∣∣Zε
s
∣∣ ds

)
≤ C.

This result can be easily obtained by the standard estimation methods. We omit the
proof here and put the details in our technical report (Proposition .) on the website:
http://arxiv.org/abs/..
For notational convenience, we setMε

t =
∫ t
 Z

ε
s dBs. Thus BSDE () can be rewritten as

Y ε
t = ξ +

∫ T

t
f
(
s,Y ε

s ,α
ε
s
)
ds –

(
Mε

T –Mε
t
)
. ()

Proposition . The sequence of processes (Y ε ,Mε) = {(Y ε
t ,
∫ t
 Z

ε
s dBs),  ≤ t ≤ T} indexed

by ε >  is tight on the space D(,T ;Rk) equipped with the Jakubowski S-topology.

Before giving the proof, let us firstly recall the Meyer-Zheng tightness criteria (see [,
] for more details): on the filtered probability space {�;F , {Ft}≤t≤T ,P}, the sequence of

http://www.advancesindifferenceequations.com/content/2013/1/285
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quasi-martingales {Un
t ;  ≤ t ≤ T} indexed by n is tight whenever

sup
n

(
sup

≤t≤T
E
∣∣Un

t
∣∣ +CV 

T
(
Un)) < ∞.

Here

CV 
T
(
Un) = supE

(∑
i

∣∣E(Un
ti+ –Un

ti |Fti
)∣∣)

with the supreme taken over all partitions of the interval [,T].

Proof On the space D(,T ;Rk), for fixed ε > , define the filtration {Gε
t }≤t≤T = {FB

t ∨
Fαε

T ∨N ;  ≤ t ≤ T}. We firstly prove the processMε is a {Gε
t }≤t≤T -martingale. Let {ti}i≥

be a dense subset of [,T] with t = . For n ≥  and fixed t ∈ [,T], we denote α
ε,tn
t =

(αε
t ,α

ε
t , . . . ,α

ε
tn ) and Hε

n = FB
t,T ∨ σ {αε,tn

t }. It is clear that Hε
n ⊂ Hε

n+ and σ (
⋃∞

n=Hε
n) =

FB
t,T ∨Fαε

T . Since
∫ T
t Zε

s dBs is FB
t,T ∨Fαε

T -measurable, by Lemmas A. and A., we have

E
(∫ T

t
Zε
s dBs

∣∣∣Hε
n

)
→ E

(∫ T

t
Zε
s dBs

∣∣∣FB
t,T ∨Fαε

T

)
=
∫ T

t
Zε
s dBs as n→ ∞

and

E
(∫ T

t
Zε
s dBs

∣∣∣Hε
n

)
=Hε

n
(
α

ε,tn
t

)
=

∑
in∈Mm+

I{αε,tn
t =in}H

ε
n
(
in
)
,

where each Hε
n(in) is FB

t,T -measurable. Thus

E
(
E
(∫ T

t
Zε
s dBs

∣∣∣Hε
n

)∣∣∣FB
t ∨Fαε

T

)
=

∑
in∈Mm+

I{αε,tn
t =in}E

(
Hε

n
(
in
)|FB

t ∨Fαε

T
)
= .

Letting n → ∞, we have E(
∫ T
t Zε

s dBs|FB
t ∨Fαε

T ) = . Thus Mε =
∫ t
 Z

ε
s dBs is a {Gε

t }≤t≤T -
martingale and it gives CV 

T (Mε) = . Using the Burkholder-Davis-Gundy inequality, for
any ε > ,

sup
≤t≤T

E
∣∣Mε

t
∣∣ ≤ 



(
 + E

(
sup

≤t≤T

∣∣Mε
t
∣∣)) ≤ 



(
 +C sup

ε>
E
[
Mε

]
T

)

=



(
 +C sup

ε>
E
∫ T



∣∣Zε
s
∣∣ ds

)
.

From Proposition ., we deduce that supε>(sup≤t≤T E|Mε
t |) < ∞.

∀ε > , for any partition of [,T], we have

E
(∑

i

∣∣E(Y ε
ti+ – Y ε

ti |Gε
ti

)∣∣) ≤E
∫ T



∣∣f (s,Y ε
s ,α

ε
s
)∣∣ds

≤E
∫ T



(∣∣f (s, ,αε
s
)∣∣ +μ

∣∣Y ε
s
∣∣)ds

≤E
∫ T



∣∣f (s, ,αε
s
)∣∣ds +μTE

(
sup

≤s≤T

∣∣Y ε
s
∣∣).

http://www.advancesindifferenceequations.com/content/2013/1/285
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Combining hypothesis (H) and Proposition ., we have supε>(CV 
T (Y ε)) < ∞. Thus the

‘Meyer-Zheng tightness criteria’ are fully satisfied, i.e.,

sup
ε>

(
CV 

T
(
Y ε

)
+ sup

≤t≤T
E
∣∣Y ε

t
∣∣ + sup

≤t≤T
E
∣∣Mε

t
∣∣) < ∞,

and the tightness of (Y ε ,Mε) is obtained. �

Step : identification of the limit
Since (Y ε ,Mε) is tight inD(,T ;Rk), there exists a subsequence of (Y ε ,Mε), which we still
denote by (Y ε ,Mε), converging weakly toward a càdlàg process (Ỹ , M̃).

Proposition . For the limit process (Ỹ , M̃), we have
(i) there exists a countable subset D of [,T] such that for all t ∈ [,T] \D,

Ỹt = ξ +
∫ T

t
f̄ (s, Ỹs, ᾱs)ds – (M̃T – M̃t). ()

Here the definition of the Markov chain ᾱ and its relation to the singularly perturbed
Markov chain αε are presented in Proposition .;

(ii) for a d-dimensional Brownian motion B̄, denote the filtration
{Ht}≤t≤T = {F B̄

t ∨F ᾱ
T ;  ≤ t ≤ T}. If Ỹ is {Ht}≤t≤T -adapted and ξ is

F B̄
T -measurable, then M̃ is an {Ht}≤t≤T -martingale.

Proof Consider BSDE () satisfied by the process (Y ε ,Mε)

Y ε
t = ξ +

∫ T

t
f
(
s,Y ε

s ,α
ε
s
)
ds –

(
Mε

T –Mε
t
)
,

and recall that (Y ε ,Mε) converges weakly to (Ỹ , M̃). To obtain its weak limit as ε → , we
only need to consider the second item on the right-hand side

∫ T

t
f
(
s,Y ε

s ,α
ε
s
)
ds

=
∫ T

t

l∑
i=

mi∑
j=

f
(
s,Y ε

s , sij
)
I{αε

s =sij} ds

=
∫ T

t

l∑
i=

mi∑
j=

f
(
s,Y ε

s , sij
)(
I{αε

s =sij} – ν i
j I{αε

s ∈Mi}
)
ds +

∫ T

t
f̄
(
s,Y ε

s , ᾱ
ε
s
)
ds.

Here ᾱε is the aggregated process for the singularly perturbed Markov chain αε given in
Proposition ., and f̄ (s, y, i) =

∑mi
j= ν

i
j f (s, y, sij) for i ∈ {, . . . , l}. Since (Y ε , ᾱε) converges

weakly to (Ỹ , ᾱ), we have

∫ T

t
f̄
(
s,Y ε

s , ᾱ
ε
s
)
ds converges weakly to

∫ T

t
f̄ (s, Ỹs, ᾱs)ds.

http://www.advancesindifferenceequations.com/content/2013/1/285
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In addition, as a direct consequence of Proposition ., Proposition . and Proposi-
tion .,

sup
≤t≤T

E
∣∣∣∣
∫ T

t
f
(
s,Y ε

s , sij
)(
I{αε

s =sij} – ν i
j I{αε

s ∈Mi}
)
ds
∣∣∣∣ →  as ε → .

The limit of BSDE () as ε →  leads to assertion (i).
Now, let us prove assertion (ii). For any t ∈ [,T], lett be a continuousmapping from

C(, t;Rd)×D(, t;Rk)×D(,T ;M̄). Here M̄ = {, . . . , l} is the state space of aggregated
process ᾱε . ∀ε > , noticing that Mε is a {Gε

t }≤t≤T -martingale, Y ε and ᾱε are {Gε
t }≤t≤T -

adapted, for all t ∈ [t,T], we have

E
(
t

(
B,Y ε , ᾱε

)(
Mε

t –Mε
t

))
= , i.e.,

E
(

t
(
B,Y ε , ᾱε

)(
Y ε
t – Y ε

t +
∫ t

t
f
(
s,Y ε

s ,α
ε
s
)
ds
))

= .

With the same analysis of assertion (i), we can prove that
∫ t
t
f (s,Y ε

s ,αε
s )ds converges

weakly to
∫ t
t
f̄ (s, Ỹs, ᾱs)ds as ε → . By virtue of the fact that (Y ε , ᾱε) converges weakly

to (Ỹ , ᾱ) as ε → , we have

E
(

t (B̄, Ỹ , ᾱ)
(
Ỹt – Ỹt +

∫ t

t
f̄ (s, Ỹs, ᾱs)ds

))
= , i.e.,

E
(
t (B̄, Ỹ , ᾱ)(M̃t – M̃t )

)
= .

Here B̄ is a d-dimensional Brownian motion with B̄ = . With the assumptions that Ỹ is
{Ht}≤t≤T -adapted and ξ isF B̄

T -measurable, the adaptness of M̃ with respect to {Ht}≤t≤T

follows. From the freedomchoice of t, t andt , we can conclude that M̃ is an {Ht}≤t≤T -
martingale. �

We come back to finish the proof of Theorem .. Denote M̄ = {M̄t ;  ≤ t ≤ T} =
{∫ t

 Z̄s dBs;  ≤ t ≤ T}. For all t ∈ [,T] \ D, using Itô’s formula to |Ỹt – Ȳt| on [t,T], we
have

E
∣∣Ỹt – Ȳt

∣∣ + E
(
[M̃ – M̄]T – [M̃ – M̄]t

)

= E
∫ T

t

(
f̄ (s, Ỹs, ᾱs) – f̄ (s, Ȳs, ᾱs)

)
(Ỹs – Ȳs)ds

≤ CE
∫ T

t

∣∣Ỹs – Ȳs
∣∣ ds.

FromGronwall’s lemma, we obtain E|Ỹt – Ȳt| =  for all t ∈ [,T] \D. Since Ȳ is continu-
ous, Ỹ is càdlàg, andD is countable, we get Ỹt = Ȳt , P-a.s. for all t ∈ [,T]. And the identity
between M̃ and M̄ follows directly.

Remark . In this paper, we study that the asymptotic property of the solution to BSDE
with the generator f only depends on Y ε . For the general case that f depends on (Y ε ,Zε),
to prove the corresponding asymptotic property requires the tightness of the sequence

http://www.advancesindifferenceequations.com/content/2013/1/285
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{(Y ε
t ,Zε

t ,
∫ t
 Z

ε
s dBs);  ≤ t ≤ T}. To our knowledge, due to the lack of suitable estimates, it

is hard to show {Zε
t ;  ≤ t ≤ T} to be tight. This will be one of our future research objects.

3.3 Examples
Comparing the limit Markov chain ᾱ with the singularly perturbed Markov chain αε ,
the state space of the former is much smaller. Thus it follows from Theorem . that the
asymptotic property of BSDE () with the singularly perturbed Markov chain αε can be
characterized by the limit BSDE () which is simpler. This advantage is more clearly illus-
trated by the following two examples.

Example . Consider the case that BSDE () with a singularly perturbed Markov chain
αε is a fast-varying noise process, i.e., the generator Q̃ is weakly irreducible with the state
spaceM. From Theorem ., as ε → , the corresponding limit BSDE is

Yt = ξ +
∫ T

t

m∑
i=

νif (s,Ys, i)ds –
∫ T

t
Zs dB̄s, ()

where ν = (ν, . . . ,νm) is the quasi-stationary distribution of Q̃. Thus its solution, an
{F B̄

t }≤t≤T -adapted process Y , can be used to study the asymptotic distribution for the
sequence of {FB

t ∨Fαε

t,T }≤t≤T -adapted process Y ε indexed by ε.

Example . Consider the following BSDE:

Yt = ξ +
∫ T

t
f (s,Ys,αs)ds –

∫ T

t
Zs dBs, ()

where the generator of the Markov chain α is

Q =

⎛
⎜⎝
–  
 – 
  –

⎞
⎟⎠ ,

and the corresponding state space is M = {s, s, s}. It is obvious that the transition rate
between s and s is larger than transition rates between s and other states. Due to this
property, we can show some approximation properties for the solution of BSDE () by
Theorem ..
Firstly, we rewrite the generatorQ in the form of the generator for a singularly perturbed

Markov chain

Q =


.
Q̃ + Q̂ =


.

⎛
⎜⎝
–  
 – 
  

⎞
⎟⎠ +

⎛
⎜⎝
–  
 – 
  –

⎞
⎟⎠ .

Here Q̃, Q̂ and the number . are chosen to guarantee Q̃ and Q̂ to be generators with
the same order of magnitude.

http://www.advancesindifferenceequations.com/content/2013/1/285
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Then, with the assigned Q̃ and Q̂, we introduce an ε-dependent singularly perturbed
Markov chain αε = {αε

t ;  ≤ t ≤ T} with the generator

Qε =

ε
Q̃ + Q̂ =


ε

⎛
⎜⎝
–  
 – 
  

⎞
⎟⎠ +

⎛
⎜⎝
–  
 – 
  –

⎞
⎟⎠ .

The state space M can be divided into two groups with M = {s, s} and M = {s}, and
the related weakly irreducible generators are Q̃ =

( – 
 –

)
and Q̃ = ().

After that, following the procedures in Sections . and ., we define the aggregated
process ᾱε = {ᾱε

t ;  ≤ t ≤ T}, with

ᾱε
t =

⎧⎨
⎩
, when αε

t = s or s,

, when αε
t = s.

And we can calculate that the generator of the limit Markov chain ᾱ is Q̄ =
( –/ /

 –

)
, and

quasi-stationary distributions of Q̃ and Q̃ are ν = (/, /) and ν = . By Theorem .,
with the following limit BSDE:

Yt = ξ +
∫ T

t
f̄ (s,Ys, ᾱs)ds –

∫ T

t
Zs dB̄s,

where f̄ (t, y, ) = (/)f (t, y, s) + (/)f (t, y, s) and f̄ (t, y, ) = f (t, y, s), thus we can use the
distribution property of its solution as an approximation for the property of the solution
to the original BSDE ().
Noticing that the limit averaged Markov chain has two states and the original one has

three states, we have reduced the complexity of model (). This advantage will be much
clearer when the state space of the original Markov chain is sufficiently larger.

4 Application: homogenization of a system of semilinear parabolic PDEs with
singularly perturbedMarkov chains

It is well known that BSDEs provide a probabilistic approach to study one class of semilin-
ear parabolic PDEs (see [–]). In this section, as an application of our obtained asymp-
totic results, we show the homogenization property of a sequence of semi-linear parabolic
PDEs with a singularly perturbed Markov chain αε .
For any (t,x) ∈ [,T] × Rm, consider the following semi-linear parabolic PDE with the

singularly perturbed Markov chain αε :

uε(t,x) = h(x) +
∫ T

t

(
Luε(r,x) + f

(
r,x,uε(r,x),αε

r
))
dr. ()

Here L is the following second-order differential operator:

Luε(r,x) =
(


Tr
(
σσ ′Duε

)
+
〈
Duε ,b

〉)
(r,x).

As in [], we adopt the following notations: Ck(Rp;Rq) is the space of functions of class
Ck from Rp to Rq, Ck

l,b(Rp;Rq) is the space of functions of class Ck whose partial derivatives

http://www.advancesindifferenceequations.com/content/2013/1/285
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of order less than or equal to k are bounded, and Ck
p(Rp;Rq) is the space of functions of

class Ck which, together with all their partial derivatives of order less than or equal to k,
grow at most like a polynomial function of the variable x at infinity. Also, we make the
following assumptions for the coefficients h, b, σ , and f .
(H) (i) b ∈ C

l,b(Rm;Rm), σ ∈ C
l,b(Rm;Rm×d), and h ∈ C

p(Rk); (ii) For
f : [,T]× Rm × Rk ×M→ Rk , ∀(r, i) ∈ [,T]×M, (x,u) → f (r,x,u, i) is of class
C. Moreover, f (r, ·, , i) ∈ C

p(Rm;Rk), and the first-order partial derivative in u is
bounded on [,T]× Rm × Rk ×M, as well as their derivatives of order one and
two with respect to x and u.

For the backward PDE (), we consider the solution restricted to C,([,T] × Rm;Rk).
For a fixed ε > , let the process uε = {uε(t,x); ≤ t ≤ T ,x ∈ Rm} be the unique solution to
equation (). We have the following homogenization result.

Theorem . Under hypothesis (H), as ε → , the sequence of uε converges weakly to a
process ū, which solves the following PDE:

ū(t,x) = h(x) +
∫ T

t

(
Lū(r,x) + f̄

(
r,x, ū(r,x), ᾱr

))
dr,  ≤ t ≤ T . ()

Here ᾱ is the limit averagedMarkov chainwith the state spaceM̄ = {, . . . , l} given in Propo-
sition ., and for i ∈ M̄, f̄ (t,x, ū, i) =

∑mi
j= ν

i
j f (t,x, ū, sij).

Before giving the proof, we first present a relation between backward PDE () and the
following FBSDE with the singularly perturbed Markov chain αε :

Xt,x
s = x +

∫ s

t
b
(
Xt,x
r
)
dr +

∫ s

t
σ
(
Xt,x
r
)
dBr , ()

Y ε,t,x
s = h

(
Xt,x
T
)
+
∫ T

s
f
(
r,Xt,x

r ,Y ε,t,x
r ,αε

r
)
dr –

∫ T

s
Zε,t,x
r dBr . ()

For s ≤ t, define Xt,x
s = Xt,x

s∨t , Y t,x
s = Y t,x

s∨t and Zt,x
s = . Then (X,Y ,Z) = (Xt,x

s ,Y t,x
s ,Zt,x

s ) is
defined on (s, t) ∈ [,T].

Proposition . For a fixed ε > , the process {Y ε,t,x
t ;  ≤ t ≤ T ,x ∈ Rm} solves the back-

ward PDE (), i.e., ∀(t,x) ∈ [,T]× Rm, uε(t,x) = Y ε,t,x
t .

The proof of this proposition, similar to Theorem . in [], is omitted here, but it is
fully presented in our technical report (Theorem .) on the website: http://arxiv.org/abs/
.. Now we are ready to prove Theorem ..

Proof Noticing that the forward SDE () does not involve the singularly Markov chain
αε , by hypothesis (H), we can verify that the terminal value of BSDE (), h(Xt,x

T ), satis-
fies hypotheses (H)-(H). Denote f̃ (r, y, i) = f (r,Xt,x

r , y, i). Then f̃ also satisfies hypothe-
ses (H)-(H). By Theorem ., we obtain that for all (t,x) ∈ [,T] × Rm, Y ε,t,x

t converges
weakly to Ȳ t,x

t as ε → , where {(Ȳ t,x
s , Z̄t,x

s ); t ≤ s ≤ T} satisfies

Ȳ t,x
s = h

(
Xt,x
T
)
+
∫ T

s
f̄
(
r,Xt,x

r , Ȳ t,x
r , ᾱr

)
dr –

∫ T

s
Z̄t,x
r dB̄r . ()
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http://arxiv.org/abs/1009.5074
http://arxiv.org/abs/1009.5074


Tang and Wu Advances in Difference Equations 2013, 2013:285 Page 14 of 17
http://www.advancesindifferenceequations.com/content/2013/1/285

For all (t,x) ∈ [,T] × Rm, denote ū(t,x) = Ȳ t,x
t . From Proposition ., we know that the

process ū = {ū(t,x);  ≤ t ≤ T ,x ∈ Rm} solves backward PDE (). Noticing that {uε(t,x) =
Y ε,t,x
t ;  ≤ t ≤ T ,x ∈ Rm} solves PDE (), the result follows. �

5 Conclusion
In this paper, the solvability of a new kind of BSDE with the generator involving a finite-
state Markov chain is studied. To overcome the difficulty applying the conventional ap-
proach with the contraction mapping, an enlarged filtration is constructed and the re-
lated Itô representation result is proposed. Then, considering the case that a singularly
perturbed Markov chain is involved, we present the asymptotic property of the corre-
sponding BSDE by virtue of the related property of the singularly perturbedMarkov chain.
This result provides a probabilistic approach to study the homogenization property of the
system of backward PDEs with the singularly perturbed Markov chain.
It is noted that in this paper we only give the homogenization result of PDEs system

with Markov chains when there exists the classical solution under sufficiently regular as-
sumptions. In the successive work, we will study the weak solution in a Sobolev space for
the related PDEs system and homogenization problem by virtue of BSDEs with Markov
chains.
As in [], theMarkov chain can be used to capture the market trends which are crucial

factors that affect most investment decisions. We believe that our results have applica-
tions in such financial markets due to the deep connection between BSDEs and finance.
Some applications of this kind of BSDEs in optimal control would also be interesting to
investigate in our future research.

Appendix: A specific proof for Proposition 2.1
Let us first recall the Doob-Dynkin lemma and Doob’s martingale convergence theorem
before giving the proof.

Lemma A. (Doob-Dynkin lemma) Let X,Y : � → Rd be two given functions. Then Y is
σ (X)-measurable if and only if Y = g(X) for some Borel measurable function g : Rd → Rd .

Lemma A. (Doob’s martingale convergence theorem) Let {Ft}t≥ be a filtration on the
space (�,F ,P), F∞ = σ (

⋃
t≥Ft) and X ∈ L(F ;Rd). Then

E(X|Ft) → E(X|F∞) as t → ∞, a.s. and in L as well.

Proof The uniqueness of Proposition . follows straightforwardly from the Itô isometry,
so we only focus on the existence. Let {ti}i≥, {t′j}j≥ be two dense subsets of [,T] with t =

t′ = . For each integer n,m ≥ , we denote Btn
t = (Bt ,Bt , . . . ,Btn ), α

t′m
t′

= (αt′ ,αt′ , . . . ,αt′m ),

and Gn,m = σ {Btn
t ,α

t′m
t′

}. It is clear that Gn,m ⊂ Gn+,m, Gn,m ⊂ Gn,m+, Gn,m ⊂ Gn+,m+,

σ (
⋃∞

n= Gn,m) =FB
T ∨ σ {αt′m

t′
}, and σ (

⋃∞
m=(FB

T ∨ σ {αt′m
t′

})) = GT .
For N ∈ L(GT ;Rk), applying Lemma A., we get

E(N |Gn,m) → E
(
N |FB

T ∨ σ
{
α
t′m
t′

})
as n→ ∞.
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By Lemma A., ∀n,m ≥ , there exists a Borel measurable function Nn,m : R(n+)×d ×
Mm+ → Rk such that E(N |Gn,m) = Nn,m(Btn

t ,α
t′m
t′
). Thus we can write E(N |FB

T ∨ σ {αt′m
t′

})
as follows:

E
(
N |FB

T ∨ σ
{
α
t′m
t′

})
=

∑
(i,i,...,im)∈Mm+

I{αt′m
t′

=(i,i,...,im)}Nm(i, i, . . . , im),

where Nm(i, i, . . . , im) is FB
T -measurable. For ease of notation, let Nm(α

t′m
t′
) � E(N |FB

T ∨
σ {αt′m

t′
}), im � (i, i, . . . , im), and Mm+ =M× · · · ×M︸ ︷︷ ︸

m+

. For the above equation, applying

the Itô representation theorem to each Nm(im ) yields

Nm
(
α
t′m
t′

)
=

∑
im ∈Mm+

I{αt′m
t′

=im }

(
E
(
Nm

(
im
))

+
∫ T


ZNm

(
t, im

)
dBt

)
. ()

Noticing that ∀im ∈ Mm+, {ZNm (t, im );  ≤ t ≤ T} ∈ M
FB
t
(,T ;Rk×d), and α is indepen-

dent of B, we have E(
∫ T
 ZNm (t, im )dBt|Fα

T ) = . Taking the conditional expectation of
equation () with respect to Fα

T , one can get

E
(
Nm

(
α
t′m
t′

)|Fα
T
)
=

∑
im ∈Mm+

I{αt′m
t′

=im }E
(
Nm

(
im
))
.

Thus equation () can be rewritten as

Nm
(
α
t′m
t′

)
= E

(
Nm

(
α
t′m
t′

)|Fα
T
)
+
∫ T


ZNm

(
t,αt′m

t′

)
dBt , ()

where

ZNm

(
t,αt′m

t′

)
=

∑
im ∈Mm+

I{αt′m
t′

=im }ZNm

(
t, im

)
.

We are going to show that as m → ∞, equation () converges to N = E(N |Fα
T ) +∫ T

 Zt dBt . For the left-hand side, applying Doob’s martingale convergence theorem and
using the fact that Nm(α

t′m
t′
) = E(N |FB

T ∨ σ {αt′m
t′

}) and σ (
⋃∞

m=(FB
T ∨ σ {αt′m

t′
})) = GT yields

Nm
(
α
t′m
t′

) → E(N |GT ) =N asm → ∞.

Then

E
(
Nm

(
α
t′m
t′

)|Fα
T
) → E

(
N |Fα

T
)

asm → ∞,

and the convergence of the first term on the right-hand side of equation () is guaran-
teed. The remaining work is to prove that {ZNm (t,α

t′m
t′
),  ≤ t ≤ T} is a Cauchy sequence.
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Actually, by the Itô isometry, we have

E
((
Nk

(
α
t′k
t′

)
–Nm

(
α
t′m
t′

)))

= E
(
E
(
Nk

(
α
t′k
t′

)|Fα
T
)
– E

(
Nm

(
α
t′m
t′

)|Fα
T
)
+
∫ T



(
ZNk

(
t,α

t′k
t′

)
– ZNm

(
t,αt′m

t′

))
dBt

)

= E
(
E
(
Nk

(
α
t′k
t′

|Fα
T
))

– E
(
Nm

(
α
t′m
t′

|Fα
T
))) +

∫ T


E
(
ZNk

(
t,α

t′k
t′

)
– ZNm

(
t,αt′m

t′

)) dt
→  as k,m → ∞.

Noticing that {ZNm (t,α
t′m
t′
);  ≤ t ≤ T} ∈ M

Gt
(,T ;Rk×d), hence it converges to some Z ∈

M
Gt
(,T ;Rk×d), and the proof is completed. �

Abbreviations
BSDEs: backward stochastic differential equations; PDEs: partial differential equations.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Authors contributed equally in writing this article. All authors read and approved the final manuscript.

Author details
1School of Information Science and Engineering, Shandong University, Jinan, 250100, P.R. China. 2School of Mathematics,
Shandong University, Jinan, 250100, P.R. China.

Acknowledgements
This work was supported by the Independent Innovation Foundation of Shandong University (No. 2012GN044), the
Natural Science Foundations of China (Nos. 10921101, 61174092 and 61174078), and the National Science Fund for
Distinguished Young Scholars of China (No. 11125102). It is our great pleasure to express the thankfulness to Prof. Qing
Zhang in University of Georgia and Prof. Chenggui Yuan in Swansea University for many useful discussions and
suggestions.

Endnote
a A generator Q is called weakly irreducible if the system of equations νQ = 0 and

∑m
i=1 νi = 1 has a unique

nonnegative solution. This nonnegative solution ν = (ν1, · · · ,νm) is called the quasi-stationary distribution of Q.
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