
RESEARCH Open Access

To the theory of adaptive signal processing
in systems with centrally symmetric receive
channels
David I. Lekhovytskiy

Abstract

This paper presents the analytical derivation of joint probability density functions (pdfs) of the maximum likelihood
(ML) estimates of a real and complex persymmetric correlation matrices (PCM) of multivariate Gaussian processes. It
is oriented at the modifications of the classical Wishart’s–Goodman’s pdfs adapted to the ML estimates of the data
CMs in a wide class of signal processing (SP) problems in systems with centrally symmetric (CS) receive channels.
The importance of the derived modified pdfs for such CS systems could be as great as that of the classical
Wishart’s–Goodman’s pdfs for systems with arbitrary receive channels. Some properties of the new obtained joint
pdfs are featured.

Keywords: Central symmetry, Correlation matrix, Maximum likelihood estimate, Persymmetry, Probability density
function, Wishart–Goodman distribution

1 Introduction
The multivariate statistical analysis of random processes
widely uses the Wishart distribution, which describes
statistical properties of a maximum likelihood (ML) esti-
mate of the real-valued positively definite correlation
matrix (CM) of multivariate Gaussian processes/fields
[1–5]. For the ML estimate of the complex-valued Hermit-
ian positively definite general-type data CM, such distribu-
tion is derived by Goodman [6–10]. An importance of both
these distributions is caused by the fact that the ML CM es-
timates are widely used in many signal processing contexts:
for radar applications [9, 11–17], for “superresolving” dir-
ection of arrival (DOA) estimation [7, 12, 18, 19], for
multichannel communication systems [10], feature en-
hanced radar imaging with synthetic aperture radar
(SAR) sensors [20, 21], digital beamforming in adaptive
array (AA) systems, and fractional SAR modalities
[22–25].
The Wishart–Goodman distributions are true for a

general type data CM (GCM) of Gaussian processes/
fields. These distributions in their classical forms do not
take into account CM structure practically possible

specificity caused by the peculiarities of signal processing
(SP) system. At the same time, prior knowledge about
the CM structure specificity could considerably enhance
the processing efficiency and analysis precision due
to a considerable decrease in the dimensionality of
the parameter vectors involved into the adaptation
process [13, 26].
The well-known example of such specificity is a persym-

metry, i.e., symmetry relative to the secondary diagonal, of
symmetric (real-valued) and Hermitian (complex-valued)
CMs. Persymmetric CM (PCM) coincides with a result of
itself turn relative to the secondary diagonal and thus is
completely determined by a set of parameters (CM ele-
ments) which quantity is approximately twice less than
that for respective general-type CM.
In multichannel (in space or time) signal processing

systems, the CM persymmetry could be caused, in par-
ticular, by central symmetry (CS) of pairwise-identical
receive channels arrangement. Such CS is peculiar to
numerous different-purpose space-time signal processing
systems (see, for instance, references 1–7 in [27]).
The ML for Hermitian PCM was derived for the first

time by Nitzberg in his paper [28]. From the moment of
this paper publication, numerous works have been per-
formed to investigate an efficiency of this estimate use
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in CS systems of space-time adaptive signal processing
[29–38]. Extensive supplementary list of relevant refer-
ences is given in [16, 27].
In spite of a diversity of all these works, one common

feature is inherent to all of them. Each such work sets
an objective to determine statistical characteristics of
one or another of function of ML estimate of relevant per-
symmetric correlation matrix (being usually the Hermitian
one) since this function serves as a criterion of respective
SP system efficiency. Thus, in [38], such function is “the
persymmetric multiband generalized ratio algorithm
(PGLR)” and the probability of false alarm and the prob-
ability of detection are obtained for this function. Works
[28–35] investigate the relative losses, introduced in [9], in
signal-to-(interference + noise) ratio (SINR) at the output
of CS adaptive detector. These losses are taken relatively
to those at the output of optimal detector, and probability
density functions (pdfs), mean values, and variances are
derived for them. Other criteria and their statistical char-
acteristics under CM persymmetry are considered in [37].
The objectives been set are usually attained by the

methods, which have specific distinctions from those
been used for an analysis of efficiency of adaptive process-
ing based on ML estimates of GCM. These distinctions
are caused by the fact that, under generally concerned
conditions, the PCM’s initial ML estimate [28] as well as
its variants [30, 36, 39] are the sum of two summands.
Both these summands have the Wishart (or Wishart–
Goodman) distribution with the same matrix of parame-
ters which, however, are not independent [34]. This
fact forbids to use directly the methodology, developed in
[7, 9, 10], in order to find the statistical characteristics of
functions of GCM ML estimates by using Wishart’s–
Goodman’s probability density function (pdf).
For PCM, it is possible to proceed to this methodology

after a number of preliminary mathematical transforma-
tions [35, 38], which overcome the abovementioned mu-
tual dependence of summands in PCM ML estimate.
Having analyzed these transformations, the author

noticed that they solve the problems formulated in
[35, 38] as well as “suggest” a way to derive directly a
pdf of РCM ML estimates. Such problem, which has
not been set and solved in these works, seemed interesting
from theoretical and practical considerations. This has
stimulated such problem formulation and solution. It
was expected that the importance of these distributions
for CS systems with PCM of Gaussian inputs should
be as great as that of the Wishart’s–Goodman’s dis-
tributions for systems with arbitrary characteristics of
receive channels.
The goal of this paper is twofold: (i) to derive closed

form analytical expressions for the pdfs of the ML esti-
mates of persymmetric real and complex CMs of Gaussian
processes/fields of various natures and (ii) to feature

their usefulness in statistical data characterization
and operational performance analysis in applications
to SP systems that possess a space-time receive channel
СS property.
The rest of the paper is organized as follows. Section 2

reviews the persymmetric CMs models. In Sections 3
and 4, we derive the distributions of ML estimates of
real and complex persymmetric CMs, respectively, in a
closed analytical form. Section 5 exemplifies the usage of
the derived distributions in some characteristic applica-
tions related to multichannel adaptive SP problems.
Conclusion in Section 6 resumes the study.

2 Overview of properties of persymmetric
correlation matrices
А. The real M ×M matrix R ¼ riℓ½ �Mi;ℓ¼1 is persymmetric

if it coincides with the matrix obtained after rotation of
R with respect to the secondary diagonal, i.e., when the
property

R ¼ ПМ⋅RТ ⋅ПМ; riℓ ¼ rMþ1−ℓ; Mþ1−i; i; ℓ ∈ 1; M;

ð1Þ
for a real matrix (i.e., matrix composed of real-valued
entries) holds.
If the correlation (symmetric) matrix plays a role of R,

then the additional equations are true

R ¼ ПМ⋅RТ ⋅ПМ ¼ ПМ⋅R⋅ПМ ¼ RТ ;
riℓ ¼ rMþ1−ℓ;Mþ1−i ¼ rMþ1−i;Mþ1−ℓ ¼ rℓi; i; ℓ ∈ 1;M:

ð2Þ
Hereinafter, superscript “T” denotes a vector/matrix

transposition;

Пv ¼
Xv
i¼1

ei⋅eTνþ1−i ¼ ПT
v ; Пv⋅ПT

v ¼ Iv; Пv ¼ ПT
v

ð3Þ
is the v × v orthogonal symmetric permutation matrix
with unit entries on its secondary diagonal, and ei
represents the i − th (i ∈ 1, ν) column of the v × v
unity matrix Iv.
For even M (M = 2 ⋅ L), matrix (2) allows the following

block representation

R ¼ R11

ПL⋅R12⋅ПL

R12

ПL⋅R11⋅ПL

������
35 ;

R11 ¼ RT
11 ;

R12 ¼ ПL⋅RT
12⋅ПL ;

24
ð4Þ

where R11 and R12 represent the corresponding L × L
blocks in (4).
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Let us introduce the 2 ⋅ L × 2 ⋅ L =M ×M matrix

SM ¼ siℓ½ �2⋅Li;ℓ¼1¼
1ffiffiffi
2

p IM þ JM⋅ПMð Þ

¼ 1ffiffiffi
2

p IL ПL

−ПL IL

� �
; JM ¼ IL 0

0 −IL

� �
ð5Þ

that possesses the following properties (easily verifiable
via simple algebraic manipulations)

SM⋅STM ¼ IM; SM⋅ПM ¼ JM⋅SM; JM⋅ПM ¼ −ПM⋅JM:

ð6Þ
Using (6), matrix R (4) can be transformed into the

following block-diagonal form

RM ¼ SM⋅R⋅STM ¼ RP 0

0 ПL⋅RΔ⋅ПL

� �
;

RP ¼ R11 þ R12⋅ПL;

RΔ ¼ R11−R12⋅ПL;

ð7Þ
with the determinant

detRM ¼ RMj j ¼ RP��� ��� ⋅ ПL ⋅RΔ ⋅ПLj j ¼ RP��� ��� ⋅ RΔj j ¼ Rj j
ð8Þ

that coincides with the determinant of the initial matrix

R ¼ STM⋅RM⋅SM ð9Þ
due to orthogonality (6) of matrix SL defined in (5).

B. The complex М ×М matrix C ¼ ciℓ½ �Mi;ℓ¼1 =C′ + j ⋅C″
is persymmetric if the following equalities

C ¼ ПM⋅CT ⋅ПM; C
0 ¼ ПM⋅C

0T
⋅ПM; C

00 ¼ ПM⋅C
00T
⋅ПM

ð10Þ
hold.
If matrix C is associated with a correlation (Hermitian)

matrix, the following additional equalities are true

C ¼ ПM⋅CT ⋅ПM ¼ ПM⋅Ce ⋅ПM ¼ C�; CT ¼ Ce;
C

0 ¼ ПM⋅C
0T
⋅ПM ¼ ПM⋅C

0
⋅ПM ¼ C

0T
;

C
00 ¼ ПM⋅C

00T
⋅ПM ¼ −ПM⋅C

00
⋅ПM ¼ −C

00T
:

ð11Þ
Here, superscripts (~) and (*) define complex conjuga-

tion and Hermitian conjugation (complex conjugation
and transposition), respectively.
Let us introduce the unitary М ×М matrix [31, 35, 38]

T ¼ ti;ℓ
� �M

i;ℓ¼1¼
1ffiffiffi
2

p IM−j⋅ΠMð Þ ð12Þ

that obviously satisfy the properties

T ¼ TT ¼ ПM⋅T⋅ПM ¼ −j⋅Te ⋅ПM ¼ −j⋅ПM⋅T�;T⋅T� ¼ IM:

ð13Þ

Using (13), matrix (11) can be next transformed into
the real symmetric М ×М matrix

Cr ¼ T⋅C ⋅ T� ¼ C
0 þ C

00T
⋅ΠM ¼ CT

r ¼ C
0 þΠM⋅C

00

ð14Þ

with the determinant

Crj j ¼ C
0 þ C

00T
⋅ΠM

��� ��� ¼j C0 þΠM⋅C
00 j ¼ Cj j ; ð15Þ

which coincides with that of the initial matrix

C ¼ T�⋅Cr⋅T ð16Þ

due to the unitary model (13) of matrix T defined
by (12).

3 pdf of ML estimate of real persymmetric CM
А. Let M − variate random real (i.e., composed of real-

valued entries) Gaussian (normal) vectors yi ¼ y ið Þ
ℓ

h iM
ℓ¼1

of the K − variate sample Y ¼ yi½ �Ki¼1 be mutually inde-
pendent and have zero means and identical non-negative
definite М ×М CMs R, i.e.,

Y ¼ yi½ �Ki¼1; yi ¼ N 0;Rð Þ ; y i ¼ 0 ;

yi⋅y
�
ℓ ¼ R⋅δ i−ℓð Þ; i; ℓ∈1;K ;

ð17Þ

where δ(x) is the Kroneker symbol, and overbar defines
the statistical averaging operator.
The joint pdf p(Y) of elements of sample Y in this case

is given by [3, 5, 12]

p Yð Þ ¼ 2πð Þ−K ⋅M=2

⋅ Rj j−K=2

⋅ exp −
1
2
⋅tr R−1⋅Ar

� 	
 �
; ð18Þ

where tr (Φ) is the trace (sum of diagonal elements) of a
matrix Φ, and

Ar ¼ aiℓf g M
i;ℓ¼1¼ Y⋅YT ¼

XK
i¼1

yi⋅y
T
i ¼ AT

r ¼ K ⋅R̂; ð19Þ

represents the М ×М sample (random) CM.

Under conditions (17) and (18), matrix R̂ ¼ K−1⋅Ar

represents an ML estimate of the real-valued general
form CM R [3, 11–13], and matrix Ar has the Wishart

distribution W Rð Þ
M Ar;K ;Rð Þ with K −M degrees of free-

dom and parameter matrix R [2–5, 40]. Then,
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p Arð Þ ¼ W Rð Þ
M Ar; K ; Rð Þ ¼ F Rð Þ

M Ar;K ;Rð Þ
f Rð Þ
M K ;Rð Þ

; ð20aÞ

where

F Rð Þ
M Ar;K ;Rð Þ ¼ Arj jK−M−1

2 ⋅ exp −
1
2
⋅tr R−1⋅Ar

� 	
 �
;

ð20bÞ
f Rð Þ
M K ;Rð Þ ¼ 2K ⋅M=2⋅πM⋅ M−1ð Þ =4⋅ Rj jK=2⋅

YM
i¼1

Γ
K þ 1−i

2

0@ 1A ; K≥M ;

ð20cÞ
and Γ(x) is the gamma function, which for an integer
x = n ≥ 1 is equal to (n − 1) !.
Here, the distribution of a random matrix is specified

via a joint distribution of random elements that compose
such a matrix [3, 9]. Thus, (20) presents an “economical”
definition of the pdf p (Ar) = p ( aiℓ), i ∈ 1,M, ℓ ∈ i,M, as
a function of M ⋅ (M + 1)/2 scalar variables, which are
completely specified by the real-valued diagonal and
above-diagonal elements of the symmetric matrix A de-
fined by (19).
If CM R is persymmetric, then under the condition

(17), its ML estimate may be written as1

R̂p ¼ 1
K
⋅Arp; Arp ¼ 1

2
⋅ Y⋅YT þΠM⋅Y⋅YT ⋅ΠM
� 	

:

ð21Þ
The problem at hand is to derive the closed-form ex-

pression for the pdf of that matrix Arp.
B. The matrix defined by (21) is a sum of two sym-

metric matrices each being a result of a permutation
of another one with respect to its secondary diagonal;
thus, it is also symmetric and persymmetric at the
same time that follows directly from definition (2).
For even M = 2 ⋅ L (at this stage, we restrict ourselves
by that assumption for the sake of simplicity), matrix
(21) is defined by L ⋅ (L + 1) random parameters—its
elements aiℓ, i ∈ 1, L; ℓ ∈ i,M + 1 − i.
A comparison of (21) with (19) reveals that the

first term of matrix Arp has Wishart distribution (20)
with the parameter matrix R/2, and the second term
has the same Wishart distribution under the condi-
tions (2). Vectors ΠM ⋅ yi , i ∈ 1, K of the “inverted”
sample ΠM ⋅ Y in (21), possess the same properties
(17) as the initial vectors yi. If these terms are mutu-
ally independent, then their sum has the Wishart dis-
tribution analogous to (20) with 2 ⋅ K −M degrees of
freedom and the parameter matrix R/2 [3–5]. How-
ever, for the terms of matrix Arp defined by (21), this
condition is not valid; therefore, its distribution
should be different [34].

C. In order to find the desired pdf, we next partition the

initial 2 ⋅ L ×K matrix sample Y ¼ yi½ �Ki¼1; yi ¼ y ið Þ
ℓ

h i2L
ℓ¼1

into the L ×K “upper” YU and “lower” YL blocks, so that

Y ¼ YU

YL

� �
;

YU ¼ yUi½ �Ki¼1; yUi ¼ y ið Þ
ℓ

h i L

ℓ¼1
;

YL ¼ yLi½ �Ki¼1; yLi ¼ y ið Þ
ℓ

h i 2L

ℓ¼Lþ1
:

ð22Þ

Let us introduce a linear transform of (22) performed
with matrix SM defined by (5), i.e.,

V ¼ vi½ �Ki¼1¼ SM⋅Y ¼ V∑
VΔ

� �
;

V∑ ¼ v∑i

h iK
i¼1

¼ 1ffiffiffi
2

p ⋅ YU þΠL⋅YLð Þ ; VΔ ¼ vΔi½ �Ki¼1¼
1ffiffiffi
2

p ⋅ YL−ΠL⋅YUð Þ ;

ð23Þ

which allows rewrite (21), taking into account (6), as
follows

Arp ¼ 1
2
⋅ STM⋅V⋅VT ⋅SM þΠM⋅STM⋅V⋅VT ⋅SM⋅ΠM
� 	

¼ 1
2
⋅STM⋅ V⋅VT þ JM⋅V⋅V

T ⋅JM
� 	

⋅SM:

It is easy to deduce that taking into account the prop-
erties (5) of matrix JM, the addends embraced in the
above formula have identical L × L diagonal blocks and
opposite in signs L × L off-diagonal blocks. Therefore,
one can rewrite

Arp ¼ STM⋅ BV⋅ SM ;

BV ¼ biℓ½ �2Li;ℓ¼1¼
B∑ 0
0 BΔ

� �
¼ SM⋅Arp⋅STM;

ð24aÞ

BVj j ¼ B∑
�� �� ⋅ BΔj j ¼ Arp

�� �� ; ð24bÞ

where the L × L diagonal blocks B∑ and BΔ are expressed
as follows:

B∑ ¼ b ∑ð Þ
iℓ

h i L

i;ℓ¼1
¼ V∑⋅V∑T ; BΔ ¼ b Δð Þ

iℓ

h i L

i;ℓ¼1
¼ VΔ⋅VT

Δ :

ð25Þ

Taking into account the interrelations (24), the prob-
lem at hand is transformed now into the problem of der-
ivation of the pdf of the auxiliary matrix BV (24).
D. First, note that due to orthogonality of matrix SM,

the Jacobian of the transform, Y ¼ STM⋅V , is equal to
unity; hence, the pdf p(V) of the transformed sample V
(23) under conditions (18) becomes
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p Vð Þ ¼ 2πð Þ−K ⋅L⋅ Rj j−K=2⋅ exp −
1
2
tr R−1⋅STM⋅V⋅VT ⋅SM
� 	
 �

:

Using the property of the matrix product trace,
tr(A ⋅ B) = tr(B ⋅A), and taking into account (7)–(9),
the latter formula can be rewritten as follows:

p Vð Þ ¼ 2πð Þ−K ⋅L⋅ RΣj j−K=2

⋅ ΠL⋅RΔ⋅ΠLj j−K=2

�exp −
1
2
⋅tr R−1

M ⋅V⋅VT
� 	
 �

:

Next, taking into account the explained above properties
(7) and (23)–(25), we obtain

tr R−1
M ⋅V⋅VT

� 	 ¼ tr R∑
−1 ⋅V∑⋅V∑

T
� 

þ tr ΠL⋅R−1
Δ ⋅ΠL⋅VΔ⋅VT

Δ

� 	
¼ tr R−1

M ⋅BV
� 	

; ð26aÞ
that yield

p Vð Þ ¼ p V∑
� 	

⋅ p VΔð Þ ð26bÞ
where

p V∑

� 
¼ 2πð Þ−K ⋅L=2⋅ R∑

��� ���−K=2
⋅ exp −

1
2
tr R∑

−1 ⋅V∑⋅V∑
T

� 
 �
;

ð27aÞ

p VΔð Þ ¼ 2πð Þ−K ⋅L=2
ΠL⋅RΔ⋅ΠLj j−K=2

⋅ exp −
1
2
tr ΠL⋅R−1

Δ ⋅ΠL⋅VΔ⋅VT
Δ

� 	
 �
:

ð27bÞ
The properties (17) and (4) of the CM blocks admit

the following representations

yUi⋅yUiT ¼ R11; yLi⋅yUiT ¼ ΠL⋅R12⋅ΠL;

yUi⋅yLiT ¼ R12; yLi⋅yLiT ¼ ΠL⋅R11⋅ΠL; i∈1;K ;

and using the definitions (23), (22), and (7), it is easy to
deduce that matrices R∑ and ΠL ⋅RΔ ⋅ΠL, which specify
the entries in the corresponding expressions (27), can be
expressed as follows,

R∑ ¼ vPi⋅vTPi
; ΠL⋅RΔ⋅ΠL ¼ vΔi⋅vTΔi ; i∈ 1;K :

ð28Þ

In doing so, it is easy to observe that K − variate
“summ”, V∑ and “difference”, VΔ; samples (23) of the
random L =M/2 − variate vectors v∑i and vΔi (i ∈ 1, K)
have normal distributions (27), and matrices B∑ and BΔ

formed via (25) have Wishart distributions with K −M
degrees of freedom and the parameter matrices R∑ and
ΠL ⋅RΔ ⋅ΠL, respectively, i.e.,

p BXð Þ ¼ W Rð Þ
L BX;K ;RXð Þ ; ð29aÞ

p BΔð Þ ¼ W Rð Þ
L BΔ;K ;ΠL⋅RΔ⋅ΠLð Þ : ð29bÞ

On the other hand, due to the mutual independence
of samples V∑ and VΔ that follow from (26), matrices B∑

and BΔ defined by (25) are also mutually independent,
and their joint density is, therefore, p(B∑, BΔ) = p(B∑) ⋅
p(BΔ). Multiplying these densities (29a) and (29b) and
taking into account (26), (24), and (8), we obtain the
density p (BV) of matrix BV defined by (24),

p BVð Þ ¼ BVj j K−L−1ð Þ=2
⋅ exp − 1

2 tr R−1
M ⋅Bv

� 	� �
2

K⋅L ⋅πL⋅ L−1ð Þ=2 ⋅ RMj jK=2⋅
YL
i−1

Γ2
K þ 1−i

2

� � :

ð30Þ
Each of two symmetric L × L matrices B∑ and BΔ in

the arguments of p(B∑, BΔ) are defined by L ⋅ (L + 1)/2
parameters, so the number of such parameters in matrix
BV (24) is equal to L ⋅ (L + 1) that exactly coincides with
the number of parameters that determine matrix Arp

(21). Therefore, to obtain the desired pdf p (Arp) using
(30), it is enough to define the Jacobian of the transform
(24) that relates BV and Arp.
Using (5) and (24), it is easy to deduce that

biℓ ¼ aiℓ þ a i; 2⋅iþ1−ℓ; b 2⋅Lþ1−ℓ; 2⋅Lþ1−i ¼ a iℓ−ai; 2⋅Lþ1−ℓ;
i∈ 1; L; ℓ∈ i; L:

Then, the Jacobian matrix of the transform (24) can

be written as IL⋅ Lþ1ð Þ=2⊗
1 −1
1 1

� �
where ⊗ defines the

Kroneker product, and hence, that Jacobian is equal to
2L ⋅ (L + 1)/2.
Replacing in (30) matrix BV by its representation (24a)

and taking into account (24b), (9), and (8), we obtain

p Arp
� 	 ¼ Arp

�� �� K−L−1ð Þ=2
⋅ exp − 1

2 tr R−1⋅Arp
� 	� �

2
2⋅K−L−1ð Þ⋅L=2 ⋅πL⋅ L−1ð Þ=2 ⋅ Rj jK=2⋅

YL
i−1

Γ2 K þ 1−i
2

� � :

ð31Þ
The latter formula describes the desired pdf of the real

symmetric and persymmetric random matrix Arp of the

ML estimate R̂p (21) of the real and also persymmetric
CM R of an even order M = 2 ⋅ L defined above in (2)
and (17). This formula has the same form as the Wishart
distribution (20) of the matrix Ar (19) from the ML esti-

mate R̂ ¼ K−1⋅Ar of GCM. However, for formula (31),
the reduced number of parameters that determine PCM
has resulted in increased on L =M/2 number of degrees of
freedom. That is why this formula could be considered as

modified Wishart distribution of the ML estimate R̂p (21)
of the real PCM R of an even order M = 2 ⋅ L.
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4 Distribution density of ML estimate of complex
persymmetric CM
A. Let the random complex normal M − variate vec-

tors yi ¼ y ið Þ
ℓ

h iM

ℓ¼1
¼ y

0
i þ j⋅y

00
i of the K − variate sample

Y ¼ yi½ �Ki¼1 be mutually independent and have zero
means and identical non-negative definite complex

Hermitian М ×М CMs, C ¼ ciℓ½ �Mi;ℓ¼1¼ C' + j ⋅ C'', i.e.,

Y ¼ Y
0 þ j⋅Y

00 ¼ yi½ �Ki¼1 ; yieCN 0; Cð Þ ; yi ¼ 0;

yi⋅y
�
ℓ ¼ C⋅δ i−ℓð Þ; i ; ℓ∈1;K :

ð32aÞ

The latter means [8, 12] that real y′i and imaginary
y″i parts of vectors yi (i ∈ 1, K) are zero means jointly
normal real-valued vectors. Then, the 2 ⋅M − variate
vectors

gTi ¼ y
0T
i ; y

00T
i

h ieN 0;Qð Þ; gi ¼ 0;

gi⋅g
T
ℓ ¼ Q⋅δ i−ℓð Þ; i; ℓ∈1;K

ð32bÞ

are also mutually independent with zero means and
identical 2 ⋅М × 2 ⋅М CMs

Q ¼ g i⋅g
T
i ¼ y0

i⋅y
0T
i y0

i⋅y
00
i T

y 00
i ⋅y

0T
i y 00

i ⋅y
00
i T

" #
¼ 1

2
⋅ C

0
−C

00

C
00

C
0

� �
; i∈1;K :

ð32cÞ

The joint distribution of the sample Y in that case is
given by [8, 12]

p Yð Þ ¼ π−K ⋅M⋅ Cj j−K ⋅ exp −tr C−1⋅Ac
� 	� �

; ð33Þ

where

Ac ¼ aiℓ½ �Mi;ℓ¼1¼
XK
i¼1

yi⋅y
�
i ¼ Y⋅Y� ¼ A�

c ¼ K ⋅Ĉ: ð34Þ

is the М ×М sample complex CM. Under conditions
(32), the matrix Ĉ = K− 1 ⋅Ac in (34) specifies an ML
estimate of the general type complex CM С [6–12],
whereas matrix Ac is characterized by the complex
Wishart distribution, W Cð Þ

M Ac;K ;Cð Þ , with K −M + 1
degrees of freedom and the parameter matrix C [6, 8, 9],
i.e.,

p Acð Þ ¼ W Cð Þ
M Ac;K ;Cð Þ ¼ F Cð Þ

M Ac;K ;Cð Þ
f Cð Þ
M K ;Cð Þ

; ð35aÞ

F Cð Þ
M Ac;K ;Cð Þ ¼ Acj jK−M

⋅ exp −tr C−1⋅Ac
� 	� �

; ð35bÞ

f Cð Þ
M K ;Cð Þ ¼ πM⋅ M−1ð Þ=2⋅ Cj jK ⋅

YM
i−1

Γ K þ 1−ið Þ; K≥M :

ð35cÞ

Here, the pdf of the complex matrix C is treated as
the joint distribution of its random real and imaginary
parts [6–10]. Thus, (35a) specifies a non-negative func-
tion of M2 parameters

p Acð Þ ¼ p a11; a22;…; aMM; a
0
iℓ; a

00
iℓ

� 	
; i∈1;M−1 ;

ℓ∈iþ 1;M:

Such parameters are completely defied by the real di-
agonal elements aii (i ∈ 1,M) of the random Hermitian
complex matrix Ac (34) and M ⋅ (M − 1) real a

0
iℓ

� 	
and

imaginary a
00
iℓ

� 	
parts of its above-diagonal elements

aiℓ ¼ a
0
iℓ þ j⋅a

00
iℓ; i∈1; M−1; ℓ∈iþ 1; Mð Þ.

If CM C is persymmetric, then under the conditions
(32), its ML estimate admits the following representation
[28–31, 27–37]:

Ĉp ¼ 1
K
⋅Acp;

Acp ¼ 1
2

Y⋅Y� þΠM⋅Ye⋅YT ⋅ΠM

� 
¼ A�

cp

¼ ΠM⋅Aecp⋅ΠM:

ð36Þ

Thus, the problem at hand now is to find the distribu-
tion density of the matrix Acp in (36).
B. By construction, this matrix Acp is Hermitian and

persymmetric as a sum of two Hermitian matrices each
being a result of permutation of another one with re-
spect to the secondary diagonal. Therefore, such Acp is
completely specified by M ⋅ (M + 1)/2 real-valued scalar
parameters, among which there are

z ¼ ε
M
2

� �
⋅ε

M þ 1
2

� �
¼ L−1ð Þ⋅L; M ¼ 2⋅L−1 ;

L2; M ¼ 2⋅L ;



ð37Þ

the matrix imaginary parts a
00
iℓ

� 	
, and the rest M ⋅ (M + 1)/

2 − z real parts a
0
iℓ

� 	
of the elements aiℓ, i ∈ 1, L; ℓ ∈ i,M +

1 − i that explicitly specify the whole matrix Acp. In (37),
ε[x] represents the integer part of the embraced vari-
able x.
From a comparison of (36) with (34), it follows that

the first addend in matrix Acp is characterized by the

distribution, W Cð Þ
M Ac;K ;C=2ð Þ . The second addend has

the same distribution as well, since under the condition

(11), vectors ΠM⋅yei i∈1;Kð Þ of the “reverse” and com-
plex conjugate sample ΠM ⋅ Y~ possess the same proper-
ties as the initial vectors, yi. The samples Y and ΠM ⋅ Y~
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are mutually uncorrelated, i.e., Y⋅ ΠM⋅Ye� �
¼ 0 [8, 12];

however, they are not jointly normal [34]. Absence of
mutual correlation does not mean mutual independence
that does not allow to represent the joint pdf p (Y,ΠM ⋅
Y~) via the product p (Y) ⋅ p (ΠM ⋅ Y~). In addition, the

distribution W Cð Þ
M Ac; 2K ;C=2ð Þ specifies the density of

the sum in (36) only under the conditions of mutual in-
dependence of the addends.
C. Let us consider the transform of the sample

matrix Y performed by the unitary matrix T defined in
(12), i.e.,

V ¼ vif gKi¼1¼ T⋅Y ¼ V∑þ j⋅VΔ; ð38aÞ

V∑ ¼ v
∑i

n oK

i¼1
¼ 1ffiffiffi

2
p Y

0 þΠM⋅Y
00

� 
;

VΔ ¼ vΔif gKi¼1¼
1ffiffiffi
2

p Y
00
−ΠM⋅Y

0
� 

;

ð38bÞ
Using (13) and (38), matrix Acp defined by (36) admits

the following representation

Acp ¼ 1
2
⋅T�⋅ V⋅V� þ Ve⋅VT

� 
⋅T:

Obviously, the addends in braces in this equality are
complex conjugate, thus

Acp ¼ T�⋅BV⋅T ð39Þ
where

BV ¼ biℓ½ �Mi;ℓ¼1¼ Re V⋅V�ð Þ ¼ B∑þ BΔ ¼ BT
V; ð40aÞ

B∑ ¼ b
Pð Þ

iℓ

� �M
i;ℓ¼1

¼ V∑⋅V∑
T; BΔ ¼ b Δð Þ

iℓ

h iM
i; ℓ¼1

¼ VΔ⋅VT
Δ :

ð40bÞ
The representation (39) yields the following equalities

BV ¼ T⋅Acp⋅T�; BVj j ¼ Acp

�� �� ; ð41Þ

that reduce the problem at hand to deriving the pdf of
the real symmetric matrix BV.
D. Note that due to (32a) and (32c), CMs of the “sum-

mary” v∑i and the “difference” vΔi (i ∈ 1, K) vectors in
samples V∑ and VΔ (38b) are identical and equal to

vPi⋅vTPℓ
¼ vΔi⋅vTΔℓ ¼ CP ⋅δ i−ℓð Þ; CΣ ¼ Cr=2; i; ℓ∈1;K ;

ð42Þ
whereas (as a consequence of unitary T, and the proper-
ties specified by (9) and (33)) the density p(V) of the
transformed sample V (38a) becomes

p Vð Þ ¼ 2⋅πð Þ−K ⋅M CX��� ���−K exp −
1
2
⋅tr CX−1 ⋅V⋅V�

� �
 �
ð43Þ

where matrix Cr has been defined in (14).
Taking into account a symmetry of matrices Cr and

C∑, and the expressions (40), it is easy to verify the fol-
lowing equalities

tr C∑
−1 ⋅V⋅V�� 	 ¼ tr C−1P ⋅Re V⋅V�ð Þ


 �
¼ tr C−1P ⋅VP ⋅VTP� �

þ tr C−1P ⋅VΔ⋅VT
Δ

� �
: ð44Þ

Those (43) can be also re-expressed as

p Vð Þ ¼ p V∑;VΔ

� 	 ¼ p V∑
� 	

⋅p VΔð Þ ð45Þ

where

p V∑
� 	 ¼ 2⋅πð Þ−K ⋅M=2 C∑

�� ��−K=2⋅ exp −
1
2
⋅tr C∑

−1 ⋅V∑⋅V∑
T

� 
 �
;

ð46aÞ

p VΔð Þ ¼ 2⋅πð Þ−K ⋅M=2⋅ C∑

��� ���−K=2
⋅ exp −

1
2
⋅tr C∑

−1 ⋅VΔ⋅VT
Δ

� 
 �
:

ð46bÞ
From (18), (20), and (40), it follows now that the pdf(s)

of the matrices B∑ and BΔ in (40) can be expressed as

p BP� 
¼ W Rð Þ

M BP;K ;CP� 
; p BΔð Þ ¼ W Rð Þ

M BΔ;K ;CP� 
:

ð47aÞ
and because of (45), these matrices B∑ and BΔ are mutu-
ally independent.
The pdf of the sum (40) is therefore given by

p BVð Þ ¼ W Rð Þ
M BV; 2K ; CP� 

¼
BVj j 2K−M−1ð Þ=2⋅ exp − 1

2 tr C−1P⋅BV

� �
 �
2M⋅K ⋅πM⋅ M−1ð Þ=4⋅ CP��� ���K ⋅YM

i−1

Γ
2K þ 1−i

2

� � :

ð47bÞ

This formula has been already derived in somewhat
different way in [35, 38]. In these works, it has been used
in accordance with methodology [7, 9, 10] in order to at-
tain the objectives been set, which, however, did not in-
clude a derivation of the pdf of the complex Hermitian
persymmetric М ×М matrix Acp (36). At the same time,
it is quite simple to proceed to this pdf form the pdf
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(47b) by determination of a Jacobian of the transform
(41) which connects the matrices BV and Acp.
The symmetric М ×М matrix BV is defined by M ⋅ (M +

1)/2 parameters, whose number exactly coincides with the
number of parameters that specify the Hermitian persym-
metric matrix Acp. For elements aiℓ ¼ a

0
iℓ þ j⋅a}iℓ of that

matrix, the following equalities

αiℓ ¼ αMℓMi
¼ αeMℓMi

¼ αiℓe; Mk ¼ M þ 1−k;
α

0
iℓ ¼ α

0
MℓMi

¼ α
0
MiMℓ

¼ α
00
ℓi; α

00
iℓ ¼ α

00
MℓMi

¼ −α
00
MiMℓ

¼ −α
00
ℓi; i; ℓ∈1;M

hold.
Next, taking into account (12), we can express the ele-

ments of matrix BV (41) as follows:

biℓ ¼ α′iℓ−α
″
i;Mℓ

; bMℓMi ¼ α′iℓ þ α″i;Mℓ
;

bi;Mi ¼ α′i;Mi
; i∈1;M; ℓ∈ i;M;

that allow to compute the Jacobian of the transform (41)

Replacing in (47b) matrix BV by its representation (41)
and taking into account (48), (42), (16), and (15) yields

p Acp
� 	 ¼ Acp

�� �� 2K−M−1ð Þ=2
exp −tr C−1⋅Acp

� 	� �
2z⋅πM⋅ M−1ð Þ=4 ⋅ Cj jK ⋅

YM
i−1

Γ
2K þ 1−i

2

0@ 1A ;K≥L ¼ ε
M þ 1

2

24 35:

ð49Þ

The latter formula completely defines the desired pdf
of the complex Hermitian persymmetric М ×М matrix
Acp present in the ML estimate Ĉp (36) of the Hermitian
PCM C specified in (11) and (32). This formula has the
same form as the Wishart’s–Goodman’s pdf (35) of the
matrix Ac (34) from the ML estimate Ĉ =K− 1 ⋅Ac of
GCM. However, for formula (49), the reduced number of
parameters that determine PCM has resulted in increased
on (M − 1)/2 number of degrees of freedom. That is why
this formula could be considered as modified Wishart’s–
Goodman’s distribution of the ML estimate Ĉp (36) of
complex PCM C of an order M.
Note that in a particular case of M = 1, when

L ¼ 1 ; z ¼ 0; Cj j ¼ c11 ¼ y ið Þ
1

��� ���2 ¼ σ2 and Acp ¼ a11

¼
XK
i¼1

y ið Þ
1

��� ���2 ¼ Ac, formula (49) is transformed into

p Acp
� 	 ¼ p Acð Þ ¼ p a11ð Þ

¼ 1
σ2⋅ K−1ð Þ ! ⋅

a11
σ2

� K−1
⋅ exp −

a11
σ2

� 
; ð50Þ

i.e., the pdf (49) turns into the Erlang distribution (50)
with the shape and scale parameters, K and σ2, respect-
ively. Such pdf (50) characterizes, in an explicit statis-
tical sense, the pdf of a sum of K squared magnitudes
of independent complex normal random variables with
zero means and equal variances σ2 [39].

5 Exemplifying practical usage of the derived
distributions
Distributions (31) and (49) of a persymmetric estimation
CM (21) and (36) resemble the pdf(s) (20) and (35) of a
general type CM estimates (19) and (34) but with an in-
creased number of the degrees of freedom. In connec-
tion with this, the well-known properties of real [1–5]
and complex [6–10] Wishart distributions (with relevant
modifications) are transferred into the derived here dis-
tributions. Here beneath, we feature an importance of
those distributions referring to some characteristic SP
examples.
A. A non-degenerate transformation

Brp ¼ U⋅Arp⋅U ð51Þ

of a 2L × 2L real persymmetric matrix Arp (21) distributed
via (31) with the non-random symmetric and persym-
metric 2 ⋅ L × 2 ⋅ L matrix U =UT =ΠM ⋅U ⋅ΠM gives rise
to the random symmetric and persymmetric matrix Brp

(51) with the same distribution but the transformed para-
metric matrix2

G ¼ U ⋅R⋅U: ð52Þ

Indeed, under the conditions (21), such matrix Brp

(51) can be expressed as

Brp ¼ 1
2

U⋅Y⋅YT ⋅UþU⋅Π2L⋅Y⋅YT ⋅Π2L⋅U
� 	

¼ 1
2

V⋅VT þΠ2L⋅V⋅VT ⋅Π2L
� 	

; ð53Þ

where V ¼ U⋅Y ¼ vif gKℓ¼1 is the K − variate sample
composed of 2 ⋅ L − variate random vectors

vi ¼ N 0;Gð Þ; vi ¼ 0; vi⋅vTℓ ¼ G⋅δ i−ℓð Þ; i; ℓ∈1;K :

ð54Þ

The pdf of matrix Bp (51) (for a fixed given K ≥ L) can
therefore be expressed as

(48)
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p Brp
� 	 ¼ Brp

�� �� K−L−1ð Þ=2
⋅ exp − 1

2 tr G−1⋅Brp
� 	� �

2
K−Lþ1

2ð Þ⋅L
⋅π

L⋅ L−1ð Þ
2 ⋅ Gj j

K
2 ⋅
YL
i−1

Γ2
K þ 1−i

2

� � :

ð55Þ
This formula permits ease computing of the Jacobian
∂ Brpð Þ
∂ Arpð Þ

���� ���� ¼ p Arpð Þ
p Brpð Þ of the transform (51). Using (31) and

taking into account (52), we obtain
∂ Brpð Þ
∂ Arpð Þ

���� ���� ¼ Uj jLþ1.

Similarly, the use of the complex matrix (36) (char-
acterized by distribution (49)) in the transform Bcp =
U ⋅Acp ⋅U (for a Hermitian and persymmetric U)
yields the same distribution p (Bcp) (49) for Bcp but
with the properly transformed parametric matrix Gc =
U ⋅ C ⋅U. The Jacobian of the transform is given by
∂ Bcpð Þ
∂ Acpð Þ

���� ���� ¼ Uj jMþ1.

Note that the computations of the corresponding
Jacobians become intractable without knowledge of the
analytically closed expressions (31) and (49) for the
corresponding pdf(s).
B. In the example, let us compare mean values of rela-

tive bias

Δ αð Þ ¼ s αð Þ−ŝ αð Þ
s αð Þ ¼ 1−ν̂ αð Þ; ν̂ αð Þ ¼ ŝ αð Þ

s αð Þ ð56Þ

between random (estimate) spectral function (SF)

ŝ αð Þ ¼ x� αð Þ⋅Ĉ−1⋅x αð Þ� 	−1 ð57аÞ
of Capon method [7, 18, 19] and true value of this SF

s αð Þ ¼ x� αð Þ⋅C−1
p ⋅x αð Þ

� −1
: ð57bÞ

The latter is inversely proportional to a quadratic form
of complex steering vector x(α) = x′(α) + j ⋅ x″(α) with
matrix C−1

p being inverse to Hermitian PCM Cp.

As an estimate of this matrix, we will use in (57a) fol-
lowing matrices

Ĉ ¼ K−1⋅Ac að Þ
K−1⋅Acp bð Þ



ð58Þ

with defining matrices Ac (34) and Acp (36) which obey
pdfs (35) and (49), respectively. In the latter case, we will
also assume that the steering vector x(α) obeys a
condition

x αð Þ ¼ xp αð Þ ¼ c⋅ΠM⋅xep αð Þ; cj j 2 ¼ 1 ; ð59Þ

which is completely natural for CS receive channels.

As is shown in [7, 10], in the case (a)

ν̂ αð Þ ¼ K−1⋅d; ð60Þ
where d is a random variable with the independent on α
Erlang’s pdf

pd xð Þ ¼ δ−1ð Þ!ð Þ−1⋅xδ−1⋅ exp −xf g; δ ¼ δg ¼ K−M þ 1

with the shape parameter δg and the scale parameter
equal to unity [39]. Its mean is �d ¼ δg . Therefore, by
virtue of (60), ν̂ αð Þ ¼ K−1⋅�d ¼ 1− M−1ð Þ=K , so that

Δ αð Þ ¼ Δg ¼ M−1ð Þ=K : ð61Þ
In the case (b), let us use the representation (39) for

the matrix Acp. Then, taking into account the properties
(13) of the matrix T (12), we will obtain for the SF ŝ(α)
(57а) the following

ŝ αð Þ ¼ K−1⋅ z� αð Þ⋅B−1
V ⋅z αð Þ� 	−1

; z αð Þ ¼ T⋅x αð Þ ;

where BV is the matrix (40) with the pdf (47). Under
conditions (59), the vector

z αð Þ ¼ 1−jð Þ⋅xΔ αð Þ= ffiffiffi
2

p
; xΔ αð Þ ¼ x′ αð Þ−x″ αð Þ ;

and the latter SF is transformed to the formula

ŝ αð Þ ¼ K−1⋅ x�Δ αð Þ⋅B−1
V ⋅xΔ αð Þ� 	−1

;

which has a quadratic form of real-valued vector xΔ(α)
with real-valued symmetric matrix BV, with pdf (47), in
denominator.
Next, using the methodology [7, 9, 10], it is possible to

demonstrate that, under considered conditions, quantity
ν̂ αð Þ (56) obeys following equality similar to (60)

ν̂ αð Þ ¼ K−1⋅d1; ð62Þ
where d1 is a random variable with the independent on
α pdf

pd1 xð Þ ¼ Γ δp
� 	−1⋅xδp−1⋅ exp −xf g: δp ¼ K− M−1ð Þ=2 :

For odd M, this distribution become the Erlang’s one
[39] with the shape parameter δp and the scale param-
eter equal to unity. That is why mean value �d1 ¼ δp ,
and, by virtue of (60) and (56),

ν̂ αð Þ ¼ K−1⋅d1 ¼ 1− M−1ð Þ= 2⋅Kð Þ;
Δ αð Þ ¼ Δp ¼ M−1ð Þ= 2⋅Kð Þ ¼ Δg=2:

Thereby, under considered conditions, for the same
training sample size K, the estimate (58b) reduces as great
as twice the bias (56) of SF estimate (57) in contrast to the
estimate (58a). This is equivalent to the statement that
equal values of bias (56) are provided by the estimate
(58b) at the twice smaller training sample size K.
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C. Note, that, under conditions (59), the quadratic
form in (57а) could be computed in more simple way by
using the estimate (58b) instead of (58a). This is easy to
follow by rewriting it as

x� αð Þ⋅Ĉ−1⋅x αð Þ

¼ K ⋅qg αð Þ; qg αð Þ ¼ x� αð Þ⋅wg αð Þ; wg αð Þ ¼ A−1
c ⋅x αð Þ; að Þ

K ⋅qp αð Þ; qp αð Þ ¼ x�p αð Þ⋅wp αð Þ; wp αð Þ ¼ A−1
cp ⋅xp αð Þ: bð Þ

(
ð63Þ

Matrix A−1
cp , being inverse to Hermitian persymmetric

matrix, is also Hermitian persymmetric one, i.e.,

A−1
cp ¼ ΠM⋅ Aecp� −1

⋅ΠM . That is why, under conditions

(59), vector wp αð Þ ¼ c⋅ΠM⋅wep αð Þ and thus it is com-

pletely determined by the half (M/2) of its components
which could be computed at the expense of ≈M2/2 mul-
tiplications. Approximately M/2 multiplications are
enough in order to compute the scalar product qp(α).
Thus, an amount of computations necessary to calculate
the quadratic form in (57a) based on (58b) could be
twice less than based on (58a).
D. Similar gains in the amount of computations and effi-

ciency (including an efficiency in terms of criteria different
from (56)) could be achieved in the systems with CS receive
channels also by using other kinds of PCM ML estimates
(considered, particularly, in [30–32, 35, 36, 37, 38–19]).

6 Conclusions
The main result of this work is the derivation of the
pdfs (37) and (49) of random M ×M real-valued and
complex-valued ML estimates (21) and (36) of persym-
metric CMs (2) and (11) of multivariate Gaussian pro-
cesses and fields. Such CMs arise in numerous practical
applications, particularly, in the tasks of space-time
adaptive signal processing in systems with central sym-
metry of receive channels [20–32, 27–37, 38, 16, 17].
The derived pdfs have the same form as the classical
Wishart’s pdf and Wishart’s–Goodman’s pdf (20) and
(35) for GCM ML estimates, but with the number of de-
grees of freedom being increased approximately on M/2.
This is due to the approximately half less number of deter-
mining parameters (elements) of the PCM. That is why, in
the systems with the CS receive channels, the derived dis-
tributions appeal to such importance as that of the clas-
sical Wishart and Wishart’s–Goodman’s pdfs in systems
with arbitrary receive channels.
Reduced dimensionality of parameters vector for PCM

in CS systems increases an efficiency of adaptive signal
processing based on ML estimates (21) and (36) as com-
pared with ML estimates (19) and (34). The gain depends
on the efficiency criterion and additional conditions which
take into account the task specificity. Nevertheless, in the

above-considered example as well as in numerous other
practically important cases, the adaptive processing based
on estimates (21) and (36) under central symmetry of
space-time receive channels could provide for some con-
ditions at the expense of Kp training samples, the effi-
ciency (in terms of different criteria) being close to that
provided by the estimates (19) and (34) at the expense of
K ≈ 2 ⋅Kp training samples [34, 35, 36, 37].
It is essential that, taking into account the structure spe-

cificity of utilized matrices and vectors, it is possible to
make signal processing in CS systems based on ML esti-
mates (21) and (36) as well as their variants [30–32, 36, 37]
less computationally consuming.
General considerations allow to assume a possibility to

obtain similar gain not only in case of Gaussian stochastic
processes but also in case of other stochastic processes.
The latter, in particular, could be subject to exponential
distribution or Weibull one. However, a rigorous proof of
this hypothesis is unavailable to the author, since for such
non-Gaussian processes, there are currently unknown nei-
ther their correlation matrices’ ML estimates analogous to
(19) and (34) nor these estimates’ pdfs analogous to
Wishart’s (20) pdf and Wishart’s–Goodman’s (35) one.
Finally, note that statistical characteristics of different

functions of ML estimates of Gaussian processes’ PCM
could be obtained without explicit use of their pdfs (31)
and (49) what was illustrated, in particular, in [35, 36, 37,
38, 16, 17]. Nevertheless, the pdfs (31) and (49) are also
useful in such case because they allow to perform only one
step of transformations similar to (9) and (39) and then to
use the methodology [7, 9, 10] in order to find statistical
characteristics of functions of GCM ML estimates. Such
approach seems to be the easiest one and methodologically
reasonable. Namely, this approach is used by the author for
comparative analysis of a number of “superresolving” spec-
tral estimation methods in systems with CS receive chan-
nels. The results of this analysis are planned to be discussed
in a special paper.
In closing, the author would like to thank all five re-

viewers for the time and effort with this paper.

7 Endnotes
1For place saving, we omit the derivation of formula

(21), as it can be easily obtained according to the pro-
cedure employed in [28] when deriving the ML estimate
of the Hermitian persymmetric CM.

2In application to distribution (35), this property is
known as the Goodman theorem [8–10].
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