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A method based on frequency diversity to suppress grating lobes in coherent MIMO radar with separated subapertures is proposed.
By transmitting orthogonal waveforms from M separated subapertures or subarrays, M receiving beams can be formed at the
receiving end with the same mainlobe direction. However, grating lobes would change to different positions if the frequencies of
the radiated waveforms are incremented by a frequency offset Δ f from subarray to subarray. Coherently combining the M beams
can suppress or average grating lobes to a low level. We show that the resultant transmit-receive beampattern is composed of the
range-dependent transmitting beam and the combined receiving beam. It is demonstrated that the range-dependent transmitting
beam can also be frequency offset-dependent. Precisely directing the transmitting beam to a target with a known range and a
known angle can be achieved by properly selecting a set of Δ f . The suppression effects of different schemes of selecting Δ f are
evaluated and studied by simulation.
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1. Introduction

Unlike a traditional phased-array radar system, which can
only transmit scaled versions of a single waveform, a
multi-input multi-output (MIMO) radar system has shown
much flexibility by transmitting multiple orthogonal (or
incoherent) waveforms [1–15]. The waveforms can be
extracted at the receiving end by a set of matched filters.
Each of the extracted components contains the information
of an individual transmit-receive path. According to the
processing modes for using this information, the MIMO
radars can be divided into two classes. One class is non-
coherent processing to overcome the radar cross section
(RCS) fluctuation of the target [1–3]. In this scheme, the
transmitting antennas are separated from each other to
ensure that a target is observed from different aspects. The
other class is coherent processing [4–13], where the receiving
antennas are closely spaced to avoid ambiguity. By using
different phase shifts associated with different propagation
paths, a better spatial resolution can be obtained. Some of the
recent work on this class MIMO radar has been reviewed in
[13].

A hybrid processing mode for MIMO radar with
separated antennas has been proposed in [14, 15]. The
authors pointed out that the locations of targets can be
previously determined within a limited area by non-coherent
processing. Then, by coherent processing the resolution can
be improved to resolve targets located in the same range
cell. It is demonstrated that by phase synchronizing across
the sparse antennas, the resolution of MIMO radar can be
improved to the level of the carrier wavelength λ0. However,
as also stated in [14, 15], the high resolution mode enabled
by the coherent processing of sparse antennas creates grating
lobes stemming from the large separation between antennas.
To avoid ambiguity in target localization, it is necessary to
suppress the unwanted grating lobes to a low level. Randomly
positioning the antennas can break up the grating lobes at
the cost of higher sidelobes [16, 17]. The statistical analysis
of sidelobes in coherent processing sparse MIMO radar
with randomly positioned antennas has been studied in
[18].

Inspired by using frequency diversity to suppress grating
lobes in conventional sparse arrays [19–21], in this paper, we
propose a frequency diverse method to suppress grating lobes
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Figure 1: MIMO radar with separated subapertures.

in sparse MIMO aperture radar systems. We focus on mono-
static sparse MIMO radar, that is, each antenna acts as both
transmitter and receiver. Frequency diversity is achieved by
transmitting orthogonal waveforms with diverse frequencies
from each antenna simultaneously. The radiated frequencies
are progressively incremented by a frequency offset Δ f .
By coherently combining the receiving beams formed at
different frequencies, the grating lobes can be suppressed or
averaged to a low level. It is shown that the transmit-receive
beampattern (BP) of MIMO radar with frequency diversity
is composed of the range-dependent transmitting beam and
the combined receiving beam. The range-dependent beam
has been studied in [22–24]. We demonstrate that the range-
dependent beam can also be frequency offset-dependent.
Precisely steering the transmitting beam can be achieved by
properly selecting a set of frequency offsets.

The remainder of this paper is organized as follows.
Section 2 describes the basic sparse MIMO aperture signal
model. The BP of MIMO array with frequency diversity and
the selection of the frequency offset are derived in Section 3.
The simulation results are given in Section 4, and Section 5
is the conclusion.

2. Basic Signal Model for
Sparse Mimo Aperture Radar

Consider a monostatic sparse MIMO aperture radar system
with M separated subarrays. Each subarray is a standard
uniform linear array (ULA) with N elements. Let asub(θ)
be the vector response of subarrays, where θ is the azimuth
angle. For simplicity, suppose that the sparse distance L
between two adjacent subarrays is constant (Figure 1). We
assume here that the target RCS is frequency independent.
In the case of a single target at direction θ the signal received
by the mth subarray can be described as [7]

ym[k] = α
M∑

i=1

Aim(θ) · si[k] + wm[k],

m = 1, . . . ,M, k = 1, . . . ,K ,

(1)

where k is the time index, α is the complex amplitude of the
received signal, si[k] is the discrete form of the waveform

transmitted by the ith subarray, and wm[k] is the additive
noise at the mth subarray. Aim(θ) reflects the phase shift from
the ith transmitting subarray to the mth receiving subarray,
that is,

Aim(θ) = exp
[− j2π f0(τi(θ) + τm(θ))

]
, i,m = 1, . . . ,M,

(2)

where f0 is the operating frequency. For all the M transmitted
waveforms, there are M × M phase shifts in the receiving
sparse array. By combining all the phase shifts, the sparse
MIMO aperture array response can be written as

A(θ) = a(θ)aT(θ),

a(θ) = asub(θ)⊗ aF(θ),

aF(θ) =
[

1, exp

(
− j

2π f0
c

L sin θ

)
, . . . ,

exp

(
− j

2π f0
c

(M − 1)L sin θ

)]T

,

(3)

where (·)T denotes the transpose operator, ⊗ stands for the
Kronecker operation, and c is the speed of light.

In the matrix notation, (1) can be written as

Y[k] = αA(θ)S[k] + W(k), k = 1, . . . ,K , (4)

where Y[k], S[k], and W(k) are the received signal, the
transmitted signal, and the additive noise, respectively.

If the output matrix Y in (4) is reorganized into a column
vector, the sparse MIMO array response can be written as
aMIMO(θ) = a(θ) ⊗ a(θ). The matched weight vector of the
beamformer will be aMIMO(θ0) = a(θ0) ⊗ a(θ0), where θ0 is
the target direction of arrival (DOA). This gives rise to the
following transmit-receive BP:

GMIMO(θ) =
∣∣∣aHMIMO(θ0)aMIMO(θ)

∣∣∣
2

=
∣∣∣
[
aH(θ0)⊗ aH(θ0)

]
[a(θ)⊗ a(θ)]

∣∣∣
2

=
∣∣∣aH(θ0)a(θ)

∣∣∣
2∣∣∣aH(θ0)a(θ)

∣∣∣
2

=
∣∣∣aH(θ0)a(θ)

∣∣∣
4
,

(5)

where (·)Hstands for the Hermitian operation.
The resultant transmit-receive BP can be viewed as the

multiplication of the transmitting beam and the receiving
beam [7, 8]. In this context, the transmitting beam is iden-
tical with the receiving beam. Furthermore, the transmit-
receive BP of the MIMO array is equivalent to the two-
way BP of the conventional phased array. There are two
differences between a MIMO radar array and a conventional
phased array. First, the orthogonal waveforms in a MIMO
radar array enable the radiated energy to cover a broad sector,
and there is no scanning at the transmitting end. Second, the
forming of the transmit beam in a MIMO radar array can
be implemented at the receiving end by post-processing, and
the transmit-receive BP is obtained using only the received
signals.



EURASIP Journal on Advances in Signal Processing 3

It can be seen from (5) that grating lobes still exist in
the transmit-receive BP if the array configuration is sparse.
Since the forming of the transmit beam is implemented
at the receiving end, the grating lobes would not lead to
energy leaking at the transmitting end, unlike the case in
conventional sparse arrays. However, at the receiving end, the
grating lobes may cause the ambiguity response to the targets
outside the mainbeam direction. To eliminate this ambiguity,
the grating lobes must be suppressed to a low level. In next
section, a method based on frequency diversity is described
to suppress grating lobes in sparse MIMO aperture radars.

3. MIMORadar with Frequency Diversity

We call a MIMO radar array with frequency diversity a
MIMO-FD array. The grating lobes suppression is achieved
by coherently combining M × M different returns at the
receiving end. The key is to utilize properly the phase
differences between the returns with different transmit
frequencies.

3.1. MIMO-FD Array Response. Assume that the frequency
transmitted by the ith transmitting subarray is fi = f0 + (i−
1)Δ f , where Δ f is the frequency offset. For a point target
at the range r and angle θ, the signal received by the mth
subarray can be written as

ym[k] = α
M∑

i=1

Bim(r, θ)si[k] + wm[k],

m = 1, . . . ,M, k = 1, . . . ,K ,

(6)

where Bim(r, θ) is the phase shift written as

Bim(r, θ) = exp
(
− j2π fi

(
τi(θ) + τm(θ)− 2r

c

))

= exp
(− j2π f0(τi(θ) + τm(θ))

)

× exp
(− j2π(i− 1)Δ f (τi(θ) + τm(θ))

)

× exp
(
j2π fi

2r
c

)
.

(7)

The first exponential term of (7) is the conventional phase
shift and is the same as (2). The second exponential term
shows an additional phase shift, which is dependent on the
frequency offset. The third exponential term, which is range-
dependent and is generally ignored for the single frequency
processing, should be additionally processed.

Combining all the phase shifts, the MIMO-FD array
response matrix can be written as

B(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
(
f1, θ

)⊗ a
(
f1, θ

)

...

h
(
fi, θ

)⊗ a
(
fi, θ

)

...

h
(
fM , θ

)⊗ a
(
fM , θ

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, i = 1, 2, . . . ,M, (8)

with

h
(
fi, θ

) = exp
{
− j

2π
c

fi[(i− 1)L sin θ − 2r]
}

,

a
(
fi, θ

) = asub
(
fi, θ

)⊗ aF
(
fi, θ

)
,

aF
(
fi, θ

) =
[

1, exp
(
− j

2π
c

fiL sin θ
)

, . . . ,

exp
(
− j

2π
c

fi(M − 1)L sin θ
)]

,

(9)

where the exponential term h( fi, θ) describes the phase
shift caused by the waveform transmitted from the ith
subarray, the vector a( fi, θ) is the sparse array response for
the ith transmitted waveform, and asub( fi, θ) is the subarray
response for the ith transmitted waveform.

The M × M phase shifts in (8) can be used to form M
receiving beams with the same mainlobe direction. However,
the directions of grating lobes are not the same with the nth
occurring at the angle location sin θn = n(λi/L). Note that
the locations of the grating lobes are wavelength dependent,
that is, the grating lobes tend to change their positions in
the M receiving beams formed at M different frequencies.
By combining the M beams, the level of grating lobes can
be reduced.

The resultant transmit-receive BP of MIMO-FD array
can be written as

GMIMO-FD(θ)

= GT(r, θ)GR(θ)

=
∣∣bH(r, θ0)b(r, θ)

∣∣2
∣∣∣
∑M

i=1 a
H
(
fi, θ0

)
a
(
fi, θ

)∣∣∣
2

M2
.

(10)

The detailed derivation of (10) is shown in Appendix A.
Compared with (5), the transmit-receive BP of the MIMO-
FD array can also be treated as the multiplication of the
transmitting beam and the receiving beam. The left term
in the numerator of (10) represents the transmitting beam.
It should be noted that the diverse frequencies across the
sparse array will cause the beam direction to be range-
dependent. Other terms in (10) represent the combination
of the individual beams formed at different frequencies. The
grating lobe suppression effect depends on such parameters
as the frequency offset Δ f , the number of transmitted
waveforms M, and the sparse distance L. A larger Δ f leads
to larger movement of grating lobes, more transmitted
waveforms mean more beams can be combined at the
receiving end to reduce grating lobes, and different sparse
distances result in different locations and numbers of grating
lobes. The relationship between the frequency offset and the
ratio of the Peak Sidelobe Level (PSL) to the Average Sidelobe
Level (ASL) is given in Appendix B.

However, the direction of the transmitting beam GT(r, θ)
is range-dependent. The range-dependent beam has been
studied in [22–24] with the characteristic that the beam
direction is not constant but varies with range. Therefore,
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Figure 2: The beam direction varies as a function of range.

in the MIMO-FD context, the apparent angle of the trans-
mittingbeam GT(r, θ) is not necessarily equal to that of the
receiving beam GR(θ) at certain ranges. If the transmitting
beam is desired to be directed to a known target at (r, θ),
the frequency offset must be deliberately selected to keep the
direction consistent with that of the receiving beam.

3.2. Frequency Offset-Dependent Beam. Let θ′ denote the
apparent angle of the transmitting beam. Then, the relation-
ship between the apparent angle and the nominal angle can
be written as [22, 23]

θ′ = arcsin

(
sin θ − Δ f · 2r

f0 · L
+
Δ f · sin θ

f0

)
. (11)

It should be noted that 2r in (11) indicates the round-trip
distance, which is different from that in [22, 23]. Assume
the nominal angle θ = 0 and the antenna spacing L = λ0/2.
Then, the apparent angle can be written as

θ′ = arcsin

(
4rΔ f

c

)
. (12)

The above equation demonstrates that for a known
nominal angle, if Δ f is fixed, the beam direction is a function
of range r. Such beams are called range-dependent beams.
However, if range r is fixed, the beam direction is a function
of Δ f . Such beams can be defined as frequency offset-
dependent beams.

3.3. Examples of Frequency Offset-Dependent Beam. The
range dependence is first examined for a 10-element standard
ULA with Δ f = 30 kHz and f0 = 10 GHz. Figure 2 depicts
that the beam varies in the range dimension. Note that there
exists π ambiguity, and the beam is directed at angle 00 only
at certain ranges.

The frequency offset-dependent beam for a target at
range r = 50 km is depicted in Figure 3. The beam direction
varies with frequency offset from 0 to 30 kHz. A 1-D cut
of the beam directed at (50 km, 00) with different frequency
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Figure 3: The beam direction varies as a function of frequency
offset.
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Figure 4: The beam directs to a target at (50 km, 00) with different
frequency offsets.

offsets is shown in Figure 4. The beam is repeatedly directed
to the target with some certain frequency offsets, which can
provide additional freedom to choose the frequency offset.

An analytic expression of the frequency offset-dependent
beam directed to the target at (r, θ) can be derived. According
to (11), letting the apparent angle equal the nominal angle
with π ambiguity, we obtain

sin θ′ = nπ + sin θ − Δ f

f0

2r
L

+
Δ f

f0
sin θ, n = 0, 1, . . . .

(13)

Then the frequency offset is

Δ f = nπ
f0

2r/L− sin θ
, n = 0, 1, . . . . (14)

3.4. Orthogonal Waveforms. To separate M radiated wave-
forms at the receiving end or minimize the interference
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Figure 5: Beam pattern for MIMO and MIMO-FD arrays with half
a wavelength spacing.

between waveforms, the correlation of two waveforms must
satisfy

si(t)∗ sHm(t) =
⎧
⎨
⎩
δ(t), i = m,

0, i /=m,
(15)

where ∗ denotes the convolution operator.
If the waveform duration is T , the cross-correlation of

two waveforms is

∫ T/2

−T/2
si(t)s†m(t)dt

= 1
T

∫ T/2

−T/2
exp

[
j2π

(
f0 + (i− 1)Δ f

)
t
]

× exp
[− j2π

(
f0 + (m− 1)Δ f

)
t
]
dt

= sinc
[
π(i−m)Δ f · T],

(16)

where (†) is the complex conjugate operator. So, to make
waveforms orthogonal to each other, Δ f should satisfy

Δ f = n

T
, n = 1, 2, . . . . (17)

The waveforms can coexist if the frequency offset is n/T
between two subarray waveforms, that is, the orthogonality
of waveforms can be achieved by separating the frequencies
of waveforms by an integer multiple of the reciprocal of the
waveform pulse duration.

3.5. Selection of Frequency Offset. The frequency offset of
a MIMO-FD array should satisfy not only (14) to control
the transmitting beam direction, but also (17) to make the
transmitted waveforms orthogonal. Therefore, the frequency
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Figure 6: Beam pattern for MIMO and MIMO-FD arrays with the
sparse distance L = 20λ0/2.

offset Δ f should be a multiple of the least common multiple
(LCM) of (14), (17), that is,

Δ f = n · LCM

[
π f0

2r/L− sin θ
,

1
T

]
, n = 1, 2, . . . . (18)

For comparison, consider a standard ULA with 10
elements. Suppose that the operating frequency is 10 GHz,
and the signal duration is T = 1μs. If the beam is desired
to be directed to a target at (35 km, 00), the set of Δ f can be
selected as

Δ f ≈ n · 67 MHz, n = 1, 2, . . . , (19)

according to (18).
Figure 5 shows the transmit-receive BPs for the MIMO

and the MIMO-FD cases, where the frequency offset is
Δ f = 134 MHz. Compared with the phased-array radar, the
MIMO array decreases the beamwidth by a factor of

√
2 [7].

The peak sidelobe level (PSL) of the MIMO array is about
−26.4 dB, almost twice that of the phased array. The PSL
drops even further to nearly−30 dB for the MIMO-FD array.
This demonstrates the effect of the frequency diversity in
sidelobe reduction.

4. Simulation Results

In this section, the method to suppress grating lobes
based on frequency diversity in coherent MIMO radar with
separated subarrays addressed in Section 3 is evaluated by
simulation. There are 10 subarrays, and each subarray is
a 10-element ULA. The operating frequency is 10 GHz.
The duration of each waveform pulse is 1 μs, the target is
located at (35 km, 00). We change the sparse distance and the
frequency offset to test the suppression effect.
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Figure 7: Grating lobes cancelled by the nulls of the subarray beam
with M = 10 and L = 20λ0/2.
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Figure 8: Beam pattern for MIMO and MIMO-FD arrays with the
sparse distance L = 10λ0/2.

First suppose that the sparse distance between subarrays
is L = 20 · (λ0/2). As described in Section 3, the frequency
offset can be set as Δ f = 134 MHz. Figure 6 depicts the
transmit-receive BP. It can be seen that there exist high
grating lobes in the MIMO BP. However, the PSL is reduced
to nearly −28.5 dB with frequency diverse waveforms trans-
mitted. It should be noted that the subarray beam has two
important effects on the transmit-receive BP. The first is that
it functions as an amplitude filter. The envelope of the MIMO
BP is just the same as the subarray beam. The second is to
cancel out some certain grating lobes using its nulls.
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Figure 9: Beam pattern for MIMO and MIMO-FD arrays with the
sparse distance L = 100λ0/2.
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In fact, for an ULA with the sparse distance L = 20 ·
(λ0/2), there exist twelve grating lobes within the angle
interval [−400, 400]. However, only six remain in either the
MIMO or the MIMO-FD BP (see Figure 6). The reason is
that the null locations of the subarray beam are just the same
as some certain locations of grating lobes. This is shown in
Figure 7. If the number of the nulls in the subarray beam is
just equal to the number of grating lobes, the grating lobes
can be totally cancelled out in whether the MIMO or the
MIMO-FD BP. In this case, the element number of each
subarray is equal to the sparse distance normalized to half a
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Figure 11: The different locations of grating lobes before combin-
ing, Δ f = 201 MHz, L = 20λ0/2.

wavelength. So, we set the sparse distance as L = 10 · (λ0/2),
and the cancellation result is demonstrated in Figure 8. The
PSL for the MIMO BP is −26.4 dB, and it is the same as that
of a filled MIMO array. Note that a lower PSL for MIMO-FD
BP (nearly −31 dB) is achieved.

We further test the suppression effect for an even larger
sparse distance L = 100(λ0/2). The result is depicted in
Figure 9. The suppression effect is degraded with the PSL
improved to −21 dB. The reason is that the receiving beams
formed at different frequencies exhibit similar properties
only in the region of mainlobe and neighboring sidelobes.
Furthermore, for a fixed subarray number and a fixed
subarray size, the larger the sparse distance is, the more
the number of grating lobes in the beam is. With more
neighboring grating lobes exhibiting similar properties, the
suppression effect surely becomes worse.

It is evident that a larger frequency offset is helpful
in suppressing grating lobes. Though the receiving beams
formed at different frequencies exhibit similar properties in
the mainlobe region, the locations of grating lobes become
progressively different with the frequency offset increasing.
When all theM receiving beams are combined, the portion of
the mainlobe region remains unchanged, and in the sidelobe
region, the peaks will reduce to a lower level for a larger
Δ f .

There exists an upper limit to the frequency offset Δ f to
achieve the optimum suppression effect. For the movement
of the nth grating lobe by angle Δθ, the transmit wavelength
should be changed by Δλ with Δθ = sin−1(nλ0/L) −
sin−1(nλi/L) ≈ nΔλ/L. If the (n + 1)th grating lobe for
the wavelength λi moves into the 3-dB beamwidth of the
nth grating lobe for the wavelength λ1, some additional
energy will remain in this location. Thus, the suppression
effect will be degraded. In Figure 10, we compare the
suppression effects for different Δ f with the given simu-
lation parameters. The sparse distance is changed in the
interval [20(λ0/2), 200(λ0/2)]. Evidently, a better grating lobe
suppression effect can be achieved using a larger frequency
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Figure 12: The different locations of grating lobes before combin-
ing, Δ f = 268 MHz, L = 20λ0/2.

offset. However, the suppression effect gets worse for Δ f =
268 MHz than for Δ f = 201 MHz. This is interpreted in
Figures 11, 12, which depict the beams formed at different
frequencies before the coherent combining. It can be seen
that with Δ f = 201 MHz, the 2nd grating lobe for the
frequency f10 is near in the 3-dB beamwidth of the 1st
grating lobe for the frequency f1. However, when Δ f is
larger than 268 MHz, the 2nd grating lobe for the frequency
f9 moves into the 3-dB beamwidth of the 1st grating lobe
for the frequency f1. Since the grating lobes are mixed, the
suppression effect will surely get worse.

5. Conclusion

A method based on frequency diversity to suppress grating
lobes in sparse MIMO aperture radar is proposed in this
paper. By the frequency diversity across the transmitting
array, the locations of grating lobes in the receiving beams
are totally changed. Coherently combining the M receiving
beams formed at different frequencies can suppress grating
lobes to a low level. The resultant transmit-receive BP is
composed of the range-dependent transmitting beam and
the combined receiving beam. We demonstrate that, even
though the transmitting beam is range-dependent, the beam
can be precisely steered to a given target by deliberately
selecting a set of Δ f . The simulation results show that with
a properly selected frequency offset, the method is effective
in suppressing grating lobes in sparse MIMO aperture
radars.

Appendix

A. Deriving the Transmit-Receive BP of
MIMO-FD Array

Let φ = (4πr/c), and let ϕ = −(2π/c)L sin θ, then the
MIMO-FD array response can be rewritten as
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where � represents the Hadamard product, and
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(A.3)

It is worthwhile to notice that B1(θ) can be viewed as the
transmitting array response. B2(θ) represents the receiving
array response with different frequencies transmitted from
the same subarray. By joining the matrixB(θ) into anMM×1
vector, the MIMO-FD array response vector can be written as

aMIMO-FD(θ) = b(r, θ)⊗ IM×1 � a
(
f , θ
)
, (A.4)

where IM×1 is an M × 1 length identity vector, and
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with
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The matched weight vector of the beamformer can be
aMIMO-FD(θ0) = b(r, θ0) ⊗ IM×1 � a( f , θ0), and the resultant
transmit-receive BP is

GMIMO-FD(θ) =
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B. The Relationship between PSL/ASL and Δ f

Since the grating lobe suppression effect is achieved by coher-
ently combining the M receiving beams formed at different
frequencies, the impact of subarray beam is omitted here.
Though the beams formed at different frequencies exhibit
similar properties in the mainlobe region, the correlation
in the remainder part progressively decreases. The manner
in which the region of sidelobes decorrelates with frequency
can be calculated from the cross correlation function of two
beams formed at two different frequencies [20].

Each receiving beam can be written as

Fi(θ) =
M∑

m=1

exp
(
− j

2π
c

fiL(m− 1 )(sin θ − sin θ0)
)

=
M∑
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exp
(
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(
ϕ− ϕ0

))
,

(B.1)

where ϕ0 = −(2π/c)L sin θ0. The cross-correlation function
of the two receiving beams formed at two subsequent
frequencies is
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where E{·} is the expected value of {·}. For a sparse array
M � L/λi and a high fi 	 Δ f , the second term is much
smaller than the first one in the sidelobe region. Then

Ri,i+1
∼=M

sin
[
Δ f
(
ϕ− ϕ0

)
/2
]

Δ f
(
ϕ− ϕ0

)
/2

. (B.3)

The two beams are decorrelated in the sidelobe region when
Δ f (ϕ− ϕ0)/2 = π. And so

Δ f = 2π(
ϕ− ϕ0

) = c
(M − 1)L(sin θ − sin θ0)

= λ0 f0
(M − 1)L(sin θ − sin θ0)

.

(B.4)

In addition, the ratio of the Peak Sidelobe Level (PSL) to
the Average Sidelobe Level (ASL) of a linear random sparse
array is approximately [16]

PSL/ASL ∼= ln
S(1 + |sin θ0|)

λ0
, (B.5)

where S is the array aperture length. If the sparse array
is uniformly distributed, S = (M − 1)L. In this case, the
PSL/ASL is

PSL/ASL ∼= ln
(M − 1)L(1 + |sin θ0|)

λ0
. (B.6)

Combining (B.4) and (B.6) we can obtain

PSL
ASL

∼= ln

(
f0
Δ f

· 1 + |sin θ0|
sin θ − sin θ0

)
. (B.7)

Variation of the frequency offset Δ f does not alter the ASL.
Hence, the PSL can be reduced to get closer to the ASL with
a larger Δ f .
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