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Abstract
Background: Neuropathic pain is characterized by pain hypersensitivity to innocuous stimuli
(tactile allodynia) that is nearly always resistant to known treatments such as non-steroidal anti-
inflammatory drugs or even opioids. It has been reported that some antidepressants are effective
for treating neuropathic pain. However, the underlying molecular mechanisms are not well
understood. We have recently demonstrated that blocking P2X4 receptors in the spinal cord
reverses tactile allodynia after peripheral nerve injury in rats, implying that P2X4 receptors are a
key molecule in neuropathic pain. We investigated a possible role of antidepressants as inhibitors
of P2X4 receptors and analysed their analgesic mechanism using an animal model of neuropathic
pain.

Results: Antidepressants strongly inhibited ATP-mediated Ca2+ responses in P2X4 receptor-
expressing 1321N1 cells, which are known to have no endogenous ATP receptors. Paroxetine
exhibited the most powerful inhibition of calcium influx via rat and human P2X4 receptors, with
IC50 values of 2.45 μM and 1.87 μM, respectively. Intrathecal administration of paroxetine produced
a striking antiallodynic effect in an animal model of neuropathic pain. Co-administration of
WAY100635, ketanserin or ondansetron with paroxetine induced no significant change in the
antiallodynic effect of paroxetine. Furthermore, the antiallodynic effect of paroxetine was observed
even in rats that had received intrathecal pretreatment with 5,7-dihydroxytryptamine, which
dramatically depletes spinal 5-hydroxytryptamine.

Conclusion: These results suggest that paroxetine acts as a potent analgesic in the spinal cord via
a mechanism independent of its inhibitory effect on serotonin transporters. Powerful inhibition on
P2X4 receptors may underlie the analgesic effect of paroxetine, and it is possible that some
antidepressants clinically used in patients with neuropathic pain show antiallodynic effects, at least
in part via their inhibitory effects on P2X4 receptors.

Published: 23 April 2009

Molecular Pain 2009, 5:20 doi:10.1186/1744-8069-5-20

Received: 11 November 2008
Accepted: 23 April 2009

This article is available from: http://www.molecularpain.com/content/5/1/20

© 2009 Nagata et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

https://core.ac.uk/display/81541685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19389225
http://www.molecularpain.com/content/5/1/20
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Molecular Pain 2009, 5:20 http://www.molecularpain.com/content/5/1/20
Background
Neuropathic pain is caused by lesions of the central or
peripheral nervous system, mainly in patients with diabe-
tes, post-herpetic neuralgia or cancer. Neuropathic pain is
especially problematic because of its chronic, severe and
intractable pain state, and is characterized by tactile allo-
dynia, which drastically affects the quality of patients'
lives. Although a number of patients suffer from neuro-
pathic pain, its pathogenesis is not fully understood. It is
widely known that neuropathic pain is nearly always
resistant to general analgesics, such as non-steroidal anti-
inflammatory drugs or even opioids, but some antidepres-
sants and anticonvulsants have been successful in treating
neuropathic pain.

Antidepressants have been used for over 30 years to man-
age several intractable pain states including chronic head-
ache, low back pain, rheumatoid arthritis and
fibromyalgia [1,2]. Accumulated evidence has proved
their effectiveness for neuropathic pain states and antide-
pressants are now considered a mainstay of pharmacolog-
ical treatment for neuropathic pain, as are anticonvulsants
[1]. Tri-cyclic antidepressants (TCAs: amitriptyline,
nortriptyline, imipramine, desipramine and clomi-
pramine) have been shown to produce potent analgesic
effects in patients with diabetic neuropathy [3-7] and
postherpetic neuralgia [8-11]. TCAs achieve analgesic
effects at lower doses and with shorter durations of drug
exposure than those required to express antidepressive
effects [2], indicating putative analgesic mechanisms
independent of their antidepressive effect. Among the
selective serotonin reuptake inhibitors (SSRIs), it has been
shown that fluoxetine and citalopram are less active in
treating diabetic neuropathy [12,13]. However, paroxet-
ine (one of SSRIs) has been reported to be effective in
patients with diabetic neuropathy [14].

It has been well known that antidepressants induce anti-
depressive effects via their inhibitory effects on 5-hydrox-
ytryptamine (5-HT) and norepinephrine (NE)
transporters in the central nervous system [15]. Monoam-
inergic neurons descending from the rostral ventral
medulla to the spinal cord have been shown to modulate
pain transmission, suggesting that inhibition of monoam-
ine transporters may explain the analgesic effects of anti-
depressants. However, this hypothesis is not fully
accepted because antidepressants show non-correlativity
between their effectiveness in treating neuropathic pain
and their potency of inhibition of monoamine transport-
ers [2,15].

In addition to their inhibitory effects on monoamine
transporters, antidepressants have been reported to affect
multiple neurotransmitter receptors and ion channels
implicated in pain transmission such as NMDA receptors

[16,17] and opioid receptors [18]. Recently, it was noted
that some antidepressants block several types of sodium
channels and calcium channels in recombinant culture
[19-22] and neuronal tissue [23]. Although many phar-
macological actions of antidepressants have been
described, the exact mechanism of action for treating neu-
ropathic pain is not fully understood.

We have recently demonstrated that activating P2X4 recep-
tors in activated microglia plays a key role in the patho-
genesis of neuropathic pain. Spinal nerve injury induced
upregulation of P2X4 receptors on activated microglia in
the spinal cord and spinal blockade of P2X4 receptors
induced significant antiallodynic effects [24]. This report
strongly suggests that inhibiting P2X4 receptors may be a
new therapeutic strategy for patients with neuropathic
pain, and it is possible that inhibition of P2X4 receptors
may underlie the analgesic effects of the drugs used to
treat patients with neuropathic pain. In the present study,
we investigated a possible role of antidepressants as inhib-
itors of P2X4 receptors and analysed their analgesic mech-
anism using an animal model of neuropathic pain.

Results
Antidepressants inhibit rat and human P2X4 receptor 
function
To evaluate whether the antidepressants clinically used in
patients with neuropathic pain have an influence on P2X4
receptors, we used a real-time calcium imaging system to
measure intracellular calcium levels in 1321N1 human
astrocytoma cells stably expressing rat or human P2X4
receptors. Native 1321 N1 cells, which are devoid of ATP
receptors, showed no [Ca2+]i response to ATP stimulation
(data not shown). 1321N1 cells stably expressing rat P2X4
receptors displayed a reproducible [Ca2+]i response to ATP
stimulation (30 μM, 20 sec) (Figure 1a). The ATP-evoked
[Ca2+]i response disappeared when extracellular calcium
was eliminated with EGTA (500 μM) (Figure 1b). Pretreat-
ment of cells with paroxetine (10 μM, 10 min) strongly
inhibited the ATP-evoked [Ca2+]i response via rat P2X4
receptors (Figure 1c). Some antidepressants and anticon-
vulsants (10 μM, 10 min) showed inhibitory effects on the
ATP-evoked [Ca2+]i response via rat P2X4 receptors (Figure
1d). Paroxetine dose-dependently inhibited the ATP-
evoked [Ca2+]i response via rat P2X4 receptors with an IC50
value of 2.45 μM for 30 μM ATP stimulation (Figure 1e).
Using 1321N1 cells stably expressing human P2X4 recep-
tors, we next determined whether the antidepressants
modulate human P2X4 receptors. Pretreatment of cells
with paroxetine, fluoxetine, maprotiline or clomi-
pramine, which potently inhibit rat P2X4 receptors,
strongly inhibited the ATP-evoked [Ca2+]i response via
human P2X4 receptors (Figure 2a). Paroxetine dose-
dependently inhibited the ATP-evoked [Ca2+]i response
via human P2X4 receptors with an IC50 value of 1.87 μM
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for 30 μM ATP stimulation (Figure 2b). Both in rat and
human P2X4 receptor-expressed 1321N1 cells, paroxetine
inhibited the maximum response of ATP-evoked [Ca2+]i
increase (Figure 1f and 2c). To elucidate whether paroxet-
ine directly affect recombinant rat P2X4 receptors on
1321N1 cells and native P2X4 receptors on microglia, the
electrophysiological experiments were performed. Pre-
treatment of cells with paroxetine (10 μM, 10 min) signif-
icantly inhibited ATP-evoked currents in rat P2X4
receptor-expressed 1321N1 cells (Figure 3a and 3b) and
primary micloglia (Figure 3c and 3d).

Paroxetine produces a significant antiallodynic effect in an 
animal model of neuropathic pain
Next, we investigated whether paroxetine, which showed
the strongest inhibitory effect on rat and human P2X4
receptors, has antiallodynic effect, because we have shown
that inhibiting P2X4 receptors reversed tactile allodynia in
neuropathic rats [24]. A unilateral L5 spinal nerve injury
resulted in a marked decrease in the paw withdrawal
threshold (PWT) from 15.0 g of pressure (n = 24) before
the injury to 3.7 ± 0.2 g (n = 24) at day 7 (Figure 4a) and
3.1 ± 0.8 g (n = 24) at day 14 (Figure 4b) after nerve injury.
Intrathecal administration of paroxetine resulted in signif-
icant increase in the PWT at doses of 3 nmol (**p < 0.01
and *p < 0.05; Figure 4a) or 10 nmol (#p < 0.05; Figure 4a)
at day 7 after nerve injury. After the intrathecal adminis-

Effect of antidepressants on the ATP-evoked [Ca2+]i response via rat P2X4 receptorsFigure 1
Effect of antidepressants on the ATP-evoked [Ca2+]i response via rat P2X4 receptors. Three rounds of ATP stimu-
lation (30 μM, 20 sec) induced [Ca2+]i response in a reproducible fashion (a). Effect of pretreatment of cells with EGTA (500 
μM, 10 min) (b) or with paroxetine (10 μM, 10 min) (c) on [Ca2+]i response evoked by the second ATP stimulation. Traces 
indicate 340/380 fura-2 emission ratios averaged from (a) 48 cells, (b) 66 cells and (c) 18 cells obtained from each representa-
tive experiment. Effect of pretreatment of cells with TNP-ATP, antidepressants and anticonvulsants (10 μM, 10 min) on the 
ATP-evoked [Ca2+]i response via rat P2X4 receptors (d). Paroxetine dose-dependently inhibited the [Ca2+]i response via rat 
P2X4 receptors with an IC50 value of 2.45 μM for 30 μM ATP stimulation (e). ATP dose-response curve was generated in the 
presence of increasing concentrations of paroxetine (f). Data are means ± SEM of at least 10 cells (d, e and f).
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tration of 3 nmol paroxetine, the PWT increased gradu-
ally, peaking at about 150 min after the injection, and
then returned to the pre-injection level. Intrathecal
administration of 3 nmol paroxetine also resulted in a sig-
nificant increase in the PWT at day 14 after nerve injury
(*p < 0.05; Figure 4b).

Fluvoxamine but not citalopram produces an antiallodynic 
effect in an animal model of neuropathic pain
In order to evaluate whether the potencies of inhibition
on P2X4 receptors are correlated to the antiallodynic
effect, we next investigated other SSRIs, fluvoxamine and
citalopram, which have similar pharmacological proper-
ties as with paroxetine. Intrathecal administration of 10
nmol fluvoxamine resulted in a moderate increase in the
PWT (**p < 0.01 and *p < 0.05; Figure 5a) at day 7 after
nerve injury. Intrathecal administration of 10 nmol citalo-
pram had no effect on the PWT at day 7 after nerve injury
(p > 0.05; Figure 5b).

Co-administration of 5-HT receptor antagonists did not 
reverse the antiallodynic effect of paroxetine
We next investigated whether 5-HT upregulation induced
by inhibition of 5-HT transporters is involved in the
antiallodynic effect of paroxetine using antagonists for
three types of 5-HT receptors (5-HT1A, 5-HT2A and 5-HT3
receptors), because their abundant expression in the spi-
nal cord and behavioural studies showing pro- or antino-
ciceptive effects have been reported [25-27]. The 5-HT1A
receptor antagonist WAY100635, the 5-HT2A receptor
antagonist ketanserin or the 5-HT3 receptor antagonist
ondansetron were intrathecally co-administered with par-

oxetine. No significant change in PWT was observed fol-
lowing co-administration of 100 nmol WAY100635, 30
nmol ketanserin or 30 nmol ondansetron with 3 nmol
paroxetine compared with 3 nmol paroxetine alone (p >
0.05; Figure 6).

Spinal 5-HT deprivation did not reverse the antiallodynic 
effect of paroxetine
To further elucidate the interactions between spinal 5-HT
system and the antiallodynic effect of paroxetine, we next
examined whether pretreatment of cells with 5,7-dihy-
droxytryptamine (5,7-DHT), which depletes 5-HT in the
spinal cord, would affect the antiallodynic effect of parox-
etine. Immunohistochemistry revealed that 5-HT immu-
noreactivity was dramatically reduced throughout the
dorsal horn of the spinal cord nine days after 5,7-DHT
treatment compared with the saline-treated group (Figure
7a). Double immuno-labelling for P2X4 receptors and
OX42, a marker for microglia, showed that L5 spinal
nerve injury induced upregulation of P2X4 receptors on
hyperactive microglia at the same level in the 5,7-DHT-
treated group as in the saline-treated group, seven days
after nerve injury (data not shown). 5,7-DHT-treated rats
developed tactile allodynia in the same way as saline-
treated rats after nerve injury (Figure 7b). No significant
change in the antiallodynic effect of paroxetine was
observed in 5,7-DHT-treated rats compared with saline-
treated rats (p > 0.05; Figure 7b).

Discussion
We investigated a possible role of antidepressants as anal-
gesics for neuropathic pain based on their inhibitory

Effect of antidepressants on ATP-evoked [Ca2+]i response via human P2X4 receptorsFigure 2
Effect of antidepressants on ATP-evoked [Ca2+]i response via human P2X4 receptors. Effect of pretreatment of 
cells with antidepressants (10 μM, 10 min) on the ATP-evoked [Ca2+]i response via human P2X4 receptors (a). Paroxetine 
dose-dependently inhibited the ATP-evoked [Ca2+]i response via human P2X4 receptors with an IC50 value of 1.87 μM for 30 
μM ATP stimulation (b). ATP dose-response curve was generated in the presence of increasing concentrations of paroxetine 
(c). Data are means ± SEM of at least 3 cells (a, b and c).
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effects on P2X4 receptors. The cDNAs for rat or human
P2X4 receptors were transfected individually into 1321N1
human astrocytoma cells, which are known to be devoid
of endogenous ATP receptor activity and widely used for
the analysis of recombinant ATP receptors [28,29]. A lack
of responsiveness to ATP stimulation under the calcium-
free condition indicates that the ATP-evoked [Ca2+]i
increase in 1321N1 cells was induced by calcium influx
from extracellular fluid via P2X4 receptors. Recombinant
rat or human P2X4 receptors expressed in 1321N1 cells
showed pharmacological properties similar to those pre-
viously described [30,31]. TNP-ATP (10 μM, 10 min), a
well known non-selective blocker of rat P2X4 receptors,
exhibited the same degree of inhibition on ATP-evoked
[Ca2+]i response via rat P2X4 receptors as previously

reported (IC50; 15 μM) [32]. Thus the assay system used
here is considered to be appropriate for the screening of
P2X4 receptor blockers.

For the first time, we found that antidepressants inhibit
rat and human P2X4 receptor function. Among the drugs
used here, paroxetine showed the strongest inhibition of
rat and human P2X4 receptors, with IC50 values of 2.45
μM and 1.87 μM respectively.

In rat and human P2X4-expressed 1321N1 cells, the max-
imum response of ATP-evoked [Ca2+]i increase was mark-
edly suppressed by paroxetine, suggesting that paroxetine
inhibits rat and human P2X4 receptors in a non-competi-
tive manner. Using an electrophysiological technique, we

Effect of antidepressants on ATP-evoked currents in 1321N1 cells expressing rat P2X4 receptors and primary microgliaFigure 3
Effect of antidepressants on ATP-evoked currents in 1321N1 cells expressing rat P2X4 receptors and primary 
microglia. Paroxetine (10 μM, 10 min) inhibited ATP (30 μM, 10 sec) evoked currents in rat P2X4 receptor-expressed 
1321N1 cells (a and b) and primary micloglia (c and d) (***p < 0.001; paroxetine vs. vehicle, unpaired t-test). Data are means ± 
SEM of more than three separate experiments.
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Effect of intrathecal administration of paroxetine on the decrease in the PWT after nerve injuryFigure 4
Effect of intrathecal administration of paroxetine on the decrease in the PWT after nerve injury. A significant 
antiallodynic effect was observed following intrathecal administration of paroxetine at doses of 3 nmol and 10 nmol at day 7 (a), 
and 3 nmol at day 14 (b) after nerve injury (**p < 0.01 and *p < 0.05; paroxetine 3 nmol vs. control, #p < 0.05; paroxetine 10 
nmol vs. control by a Dunn's multiple comparison test after a Kruskal-Wallis test). Data are means ± SEM of 5–8 rats.
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Effect of intrathecal administration of fluvoxamine and citalopram on the decrease in the PWT after nerve injuryFigure 5
Effect of intrathecal administration of fluvoxamine and citalopram on the decrease in the PWT after nerve 
injury. A significant antiallodynic effect was observed following intrathecal administration of 10 nmol fluvoxamine at day 7 after 
nerve injury (a). (**p < 0.01 and *p < 0.05; fluvoxamine 10 nmol vs. control by a Mann-Whitney U-test.) No significant change 
was observed following administration of 10 nmol citalopram (b). (p > 0.05 by a Mann-Whitney U-test.) Data are means ± SEM 
of 5–10 rats.
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Effect of intrathecal co-administration of 5-HT receptor blockers with paroxetine on the decrease in the PWT after nerve injuryFigure 6
Effect of intrathecal co-administration of 5-HT receptor blockers with paroxetine on the decrease in the PWT 
after nerve injury. No significant change was observed by intrathecal co-administration of 100 nmol WAY100635, 30 nmol 
ketanserin or 30 nmol ondansetron with 3 nmol paroxetine compared with 3 nmol paroxetine alone. (p > 0.05 by a Dunn's 
multiple comparison test after a Friedman test.) Data are means ± SEM of 5–6 rats.
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Effect of spinal 5-HT depletion on the antiallodynic effect of paroxetineFigure 7
Effect of spinal 5-HT depletion on the antiallodynic effect of paroxetine. 5-HT immunoreactivity in the dorsal horn of 
the spinal cord nine days after intrathecal injection of either saline or 5,7-dihydroxytryptamine (a). A marked reduction in the 
number of 5-HT immunoreactive fibres was observed in the dorsal horn of the L5 spinal cord after 5,7-DHT treatment com-
pared with the saline-treated group. No significant change in the antiallodynic effect of paroxetine was observed in the 5,7-
DHT-treated group compared with the saline-treated group (b). (p > 0.05 by a Dunn's multiple comparison test after a Fried-
man test.) Data are means ± SEM of 5–6 rats.
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found that similar to the results in calcium imaging, the
pretreatment of cells with paroxetine strongly inhibited
the ATP-induced currents on rat P2X4 receptor-expressed
1321N1 cells. Therefore, it is proposed that paroxetine
directly inhibits P2X4 receptors. Furthermore, paroxetine
strongly inhibited the ATP-induced currents on primary
cultured microglial cells. We have previously shown that
an exposure of such concentration of ATP to primary
microglia selectively activates P2X4 receptors [33]. These
findings indicate that paroxetine inhibits native P2X4
receptors expressed in microglia.

In general, typical serum concentrations of antidepres-
sants range from about 100 to 1000 nM [15]. Antidepres-
sants tend to accumulate in tissues because of their
lipophilic nature [34], so in the central nervous system
they may reach the effective range for inhibition of P2X4
receptors observed in this experiment. Antidepressants
modulate many kinds of ion channels at a wide range of
concentrations (0.1 to 1000 μM) in vitro [20,35,36], but
only the effects observed near the serum concentration are
considered to have an influence in vivo. Sometimes, the
analgesic effect of antidepressants is explained by their
inhibitory effects on voltage-dependent sodium channels
and calcium channels, that are observed at relatively low
concentrations (0.1 to 10 μM) in vitro [19]. For example,
paroxetine showed inhibitory effects on hNav1.3 (effec-
tive range; >2 μM) [21] and hNav1.7 (Ki = 1.45 μM) [20],
at concentrations very close to that needed to affect P2X4
receptors in this experiment. These findings indicate that
antidepressants may have some influence on spinal P2X4
receptors in patients with neuropathic pain.

Intrathecal administration of paroxetine showed a potent
antiallodynic effect at 7 days and 14 days after nerve
injury. We have previously shown that intrathecal admin-
istration of TNP-ATP induces significant antiallodynic
effects at higher doses (10 or 30 nmol) [24] than paroxet-
ine, indicating that there is a correlation between the dose
needed to express the antiallodynic effect in vivo and the
potency of inhibition of P2X4 receptors in vitro. The antial-
lodynic effect of paroxetine was greater at day 7 than day
14 after nerve injury, which is a common feature with the
antiallodynic action of intrathecally administered TNP-
ATP. In several time points both at day 7 and day 14, par-
oxetine was more effective at 3 nmol than 10 nmol. It has
been reported that paroxetine increases [Ca2+]i level at
high concentrations greater than 50 μM and induces
apoptosis in MG63 cells [37]. The weak antiallodynic
effect of paroxetine 10 nmol may be due to its cell toxicity.

We also found that fluvoxamine produced a much weaker
antiallodynic effect than paroxetine, and citalopram pro-
duced no antiallodynic effect, although these SSRIs (par-
oxetine, fluvoxamine and citalopram) have similar

inhibitory action on 5-HT transporters. Citalopram has
been reported to be less effective than paroxetine in
patients of diabetic neuropathy [14,38]. Interestingly, we
found that citalopram (10 μM, 10 min) had no effect on
ATP-evoked [Ca2+]i response mediated by human P2X4
receptors (additional file 1: Effect of citalopram on ATP-
evoked [Ca2+]i response via human P2X4 receptors). These
results indicate that the difference in the potency of inhi-
bition on P2X4 receptors may explain the difference in the
clinical effectiveness of antidepressants in patients of neu-
ropathy.

It has been well known that microglia express P2X7 recep-
tors as well as P2X4 receptors [39]. We observed that par-
oxetine (10 μM, 10 min) inhibited BzATP (100 μM, 20
sec) induced [Ca2+]i response of P2X7 receptor-expressed
1321N1 cells (additional file 2: Effect of paroxetine on
BzATP-evoked [Ca2+]i response via rat P2X7 receptors).
Therefore, it is conceivable that intrathecally administered
paroxetine may also inhibit P2X7 receptors in the spinal
cord. However, we have previously shown that PPADS, a
non-selective antagonist for P2X receptors including
P2X7, has no effect on mechanical allodynia in neuro-
pathic pain model [24]. Therefore, these results suggest
that subtypes of P2X receptors sensitive to PPADS are not
involved in the antiallodynic effect of paroxetine under
our experimental conditions.

It has been widely accepted that serotonergic neurons
descending from the rostral ventral medulla into the spi-
nal cord participate in endogenous antinociceptive mech-
anisms. Activation of this descending inhibitory pathway
or intrathecal administration of 5-HT induced analgesia
in several behavioural tests [40-42]. The main pharmaco-
logical action of paroxetine is an inhibition of 5-HT trans-
porters, which induces upregulation of 5-HT [15]. Thus
we next investigated whether the spinal 5-HT system is
involved in the antiallodynic effect of paroxetine. We
focused on three subtypes of 5-HT receptors (5-HT1A, 5-
HT2A and 5-HT3 receptors) because of their abundant
expression in the spinal cord [25-27] and behavioural
studies showing pro- or antinociceptive effects induced by
intrathecal administration of selective drugs for them. In
neuropathic rats, systemic administration of F 13640, a 5-
HT1A receptor agonist, attenuated tactile allodynia [43]
and intrathecal administration of α-methyl-5-HT maleate,
a 5-HT2A receptor agonist, attenuated thermal hyperalge-
sia, which was abolished by pretreatment with ketanserin
[44]. In the spinal cord injury model, a pro-nociceptive
effect has been observed following intrathecal administra-
tion of m-chlorophenylbiguanide, a 5-HT3 receptor ago-
nist [45]. These reports indicate pain modulation by the
spinal 5-HT system in neuropathic rats, but we observed
no significant change in the antiallodynic effect of parox-
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etine following co-administration with 5-HT receptor
blockers.

In neuropathic rats, it has been reported that spinal
administration of 5-HT produced only a weak analgesia
and needed a 100- to 1000-fold higher dose than that
required to achieve the antinociceptive effect in normal
rats [40,46]. This indicates some physiological changes in
the serotonergic system in the spinal cord of neuropathic
rats, leading to less analgesia induced by spinal 5-HT
administration. In this report, the 5-HT upregulation
induced by spinal-administered paroxetine may not be
involved in the antiallodynic effect in the same way as in
the previous report.

It has been well established that intrathecal administra-
tion of 5,7-DHT depletes spinal 5-HT content [45,47],
and we observed a significant reduction of spinal 5-HT
immunoreactivity at day 9 after intrathecal administra-
tion of 5,7-DHT. Spinal 5-HT depletion induced no signif-
icant changes in the degrees of tactile allodynia and
immunoreactivity for OX42 and P2X4 receptors at day 7
after nerve injury. No significant change in the antiallo-
dynic effect of paroxetine in 5,7-DHT-treated rats supports
a putative antiallodynic mechanism independent of the
spinal 5-HT system.

Conclusion
In this study, we found that some antidepressants and
anticonvulsants clinically used in patients with neuro-
pathic pain have inhibitory effects on rat and human P2X4
receptor function. Among the drugs used, paroxetine
showed the strongest inhibition on rat and human P2X4
receptor function. Intrathecal administration of paroxet-
ine and fluvoxamine, but not citalopram, resulted in an
antiallodynic effect in an animal model of neuropathic
pain, which correlates the potency of inhibition of rat
P2X4 receptors. Co-administration of 5-HT receptor antag-
onists (WAY100635, ketanserin or ondansetron) and spi-
nal 5-HT depletion did not reverse the antiallodynic effect
of paroxetine, which indicates an antiallodynic mecha-
nism independent of the spinal 5-HT system. Powerful
inhibition of P2X4 receptors may be responsible for the
analgesic effect of paroxetine and it is possible that some
antidepressants clinically used in patients with neuro-
pathic pain produce antiallodynic effects mediated at least
in part via their inhibitory effect on P2X4 receptors.

Methods
Culturing 1321N1 cells
The cDNAs encoding rat and human P2X4 receptors [pro-
vided by Prof. Susumu Seino (Kobe University Graduate
School of Medicine, Hyogo) and Prof. Joji Ando (The Uni-
versity of Tokyo, Japan), respectively] incorporated into
pcDNA3.1+ (Clontech Laboratories, Inc., Mountain.

View, CA) [48] were introduced into 1321N1 human
astrocytoma cells (a gift from Dr. Michael W. Salter, Uni-
versity of Toronto, Toronto, Canada) using FuGENE6
transfection reagent (Roche Applied Sciences, Basel, Swit-
zerland). 1321N1 cells stably expressing P2X4 receptors
were maintained in Dulbecco's modified Eagle's medium
supplemented with 10% fetal bovine serum in a humidi-
fied atmosphere of 95% air and 5% CO2 at 37°C and split
1/6 every three days. For the measurement of [Ca2+]i, the
cells were plated onto poly-L-lysine-coated glass cover-
slips, placed in silicon rubber walls (Flexiperm, Greiner
Bio-One GmbH, Frickenhausen, Germany) and main-
tained for about 48 hr.

Culturing primary microglia
Primary cultured microglia were prepared according to
the method described previously [24]. In brief, the mixed
glial culture was prepared from brain of neonatal Wistar
rats (Kyudo, Saga, Japan) and maintained for 9–15 days in
DMEM with 10% fetal bovine serum. Microglia were
obtained as floating cells over the mixed glial culture. The
floating cells were collected by gentle shaking and trans-
ferred to culture dishes and then the microglia were cul-
tured for 1–6 h and used for whole-cell patch clamp. The
cultures were of >99% purity, determining by immunos-
taining for OX-42 and Iba1 [33].

Measurement of [Ca2+]i in single cells
[Ca2+]i in single cells was monitored by a fura-2 ratio
imaging system. The cells were incubated with 2.5 μM
fura-2AM (Wako Pure Chemical Industries, Ltd., Osaka,
Japan) for 45 min in a balanced salt solution (BSS; com-
position in mM: NaCl 150, KCl 5, CaCl2 1.8, MgCl2 1.2,
D-glucose 10 and HEPES 25; pH 7.4) at room tempera-
ture. Then, the cells were washed with BSS and mounted
on an inverted fluorescence microscope (ECLIPSE
TE2000-U: Nikon, Tokyo, Japan) equipped with a Xenon-
lamp (Xe75W; Nikon) and band-pass filters of 340 nm
and 380 nm. The emission fluorescence was measured at
510 nm. Image data were detected with Aquacosmos
(Hamamatsu Photonics, Hamamatsu, Japan), and [Ca2+]i
was expressed as the ratio of the fluorescence intensities at
340 nm and 380 nm. Applying 30 μM ATP for 20 sec to
the 1321N1 human astrocytoma cells expressing rat or
human P2X4 receptors, a first [Ca2+]i response (S1) was
measured. Drugs were added to the cells for 10 min, and
[Ca2+]i response (S2) was measured by a second ATP
application. Inhibitory effects of the drugs were evaluated
by the S2/S1 ratio. After washing out the drugs by BSS, we
confirmed recovery of [Ca2+]i response by a third ATP
stimulation.

Whole-cell patch clamp
Whole-cell currents were recorded at a holding potential
of – 60 mV with Patch clamp L/M-EPC7 (List Medical-
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Electronic). The cells were placed in a recording chamber
and continuously superfused at room temperature (22 –
24°C) in an extracellular solution composed of the fol-
lowing: 140 mM NaCl; 5 mM KCl; 2.5 mM CaCl2; 1 mM
MgCl2; 10 mM HEPES; and 10 mM D-glucose, and the pH
was adjusted to 7.4 with NaOH. Patch pipettes were filled
with buffer containing: 130 mM KCl; 1 mM CaCl2; 2 mM
MgCl2; 10 mM HEPES and 10 mM EGTA, and the pH was
adjusted to 7.2 with CsOH. All experimental parameters
were controlled using Clampex software (version 9,
Molecular Devices) and analyzed with Clampfit (version
9, Molecular Devices). All solutions were applied using
custom made Y-tube apparatus. Applying 30 μM ATP for
10 sec to the cells, a first response (S1) was measured.
Drugs were added to the cells for 10 min, and a second
response (S2) was measured by an ATP application.
Inhibitory effects of the drugs were evaluated by the S2/S1
ratio. After washing out the drugs by external solution, we
confirmed recovery of response by a third ATP stimula-
tion.

Animals
Male Wistar rats weighing 250–270 g were used in this
study. Rats were housed at a temperature of 22 ± 1°C with
a 12-h light/dark cycle (light on 8:30 to 20:30) and were
fed food and water ad libitum. All of the animals used in
the present study were treated in accordance with the
guidelines of Kyushu University.

Neuropathic pain model
We used the spinal nerve injury model [49] with some
modifications. A unilateral L5 spinal nerve of rats was
tightly ligated and cut just distal to the ligature under iso-
flurane (2.5%) anesthesia. To assess tactile allodynia, cal-
ibrated von Frey filaments (0.4–15.1 g, Stoelting Co.,
Wood Dale, IL) were applied to the plantar surface of the
hindpaw from below the mesh floor. The 50% paw with-
drawal threshold was determined by the up-down
method [50,51]. Drugs were intrathecally administered to
rats 7 days or 14 days after nerve injury and tactile allody-
nia was measured for 6 hr.

Intrathecal drug administration
Surgery to place an indwelling catheter was conducted
about 5–7 days before spinal nerve ligation. Under isoflu-
rane (2.5%) anesthesia, rats were implanted with cathe-
ters for intrathecal injection according to a method
described previously [52]. A polyethylene tube was
inserted through the atlanto-occipital membrane to the
lumbar enlargement (close to the L4-L5 segments) and
externalized through the skin. Rats were injected intrathe-
cally with drugs using a 25-μl Hamilton syringe with 28-
gauge needle.

5,7-DHT administration
Rats were pretreated with desipramine hydrochloride (20
mg/kg, dissolved in 5% DMSO in saline, i.p., Sigma-
Aldrich, Saint Louis, MO) to prevent uptake of the 5,7-
DHT into noradrenergic neurons. After 45 min, rats
received intrathecal injection of either saline or 5,7-DHT
(100 μg, dissolved in 1% ascorbic acid in saline, Sigma-
Aldrich) in a volume of 20 μl followed by 10 μl saline
flush. This dose of 5,7-DHT has been reported to be suffi-
cient to deplete endogenous spinal 5-HT [45,47]. Spinal
nerve ligation was conducted 2 days after 5,7-DHT admin-
istration.

Immunohistochemistry
Seven days after spinal nerve ligation, vehicle or 5,7-DHT
treated rats were deeply anesthetized with pentobarbital
(100 mg/kg, i.p.) and perfused transcardially with 100 ml
of phosphate-buffered saline (PBS, composition in mM:
NaCl 137, KCl 2.7, KH2PO4 1.5, NaH2PO4 8.1; pH 7.4),
followed by 250 ml of ice-cold 4% paraformaldehyde.
The fifth lumbar (L5) segments of the spinal cord sections
was removed and postfixed at 4°C for 5 hr and then trans-
ferred to 30% sucrose/PBS for 24 hr. Transverse L5 spinal
cord sections (30 μm) were incubated for 2 hr at room
temperature in a blocking solution (3% normal goat
serum) and then incubated for 48 hr at 4°C with rat anti-
serotonin monoclonal antibody (1:100, Millipore Corpo-
ration, Billerica, MA), mouse anti-OX42 antibody
(1:1000, Chemicon, Temecula, CA) or rabbit anti-P2X4
receptor antibody (1:1000, Alomone Labs, Jerusalem,
Israel). Following incubation, tissue sections were washed
and incubated for 3 hr at room temperature in the second-
ary antibody solution (goat anti-rat IgG-conjugated Alexa
Fluor 546, goat anti-mouse IgG-conjugated Alexa Fluor
546 or goat anti-rabbit IgG-conjugated Alexa Fluor 488,
1:1000, Molecular Probes, Eugene, OR). The spinal cord
sections were analysed using an LSM confocal imaging
system (Carl Zeiss Japan, Tokyo, Japan).

Drugs
For in vitro experiments, adenosine 5'-triphosphate diso-
dium salt (ATP), amitriptyline hydrochloride, citalopram
hydrochloride, clomipramine, desipramine hydrochlo-
ride, doxepin hydrochloride, fluvoxamine maleate, imi-
pramine hydrochloride, maprotiline, mianserin
hydrochloride, milnacipran hydrochloride, nortriptyline
hydrochloride, zonisamide sodium salt and TNP-ATP
were purchased from Sigma-Aldrich and dissolved in BSS.
Gabapentin (Toronto research chemicals Inc., North York,
Ontario, Canada) and fluoxetine HCl (Biomol, Philadel-
phia, PA) were dissolved in BSS. Carbamazepine (Sigma-
Aldrich) and paroxetine hydrochloride (Toronto Research
Chemicals Inc.) were dissolved in 0.1% dimethyl sulfox-
ide (DMSO) in BSS. For in vivo experiments, paroxetine,
fluvoxamine and citalopram were dissolved in 5% DMSO
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in PBS. WAY100635 (Sigma-Aldrich), ketanserin (Sigma-
Aldrich) and ondansetron (Sigma-Aldrich) were dissolved
in 5% DMSO in saline for co-administration with paroxe-
tine.

Statistical analysis
Differences between groups were analyzed using an
unpaired t-test, a Friedman test with a Dunn's multiple
comparison post-hoc test, a Kruskal-Wallis test with a
Dunn's multiple comparison post hoc-test or a Mann-
Whitney U-test. A p value < 0.05 was considered to be sta-
tistically significant.

Abbreviations
TCAs: tri-cyclic antidepressants; SSRIs: selective serotonin
reuptake inhibitors; 5-HT: 5-hydroxytryptamine; NE:
norepinephrine; 5,7-DHT: 5,7-dihydroxytryptamine; BSS:
balanced salt solution; PBS: phosphate-buffered saline;
ATP: adenosine 5'-triphosphate disodium salt; DMSO:
dimethyl sulfoxide.
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Additional File 1
Effect of citalopram on ATP-evoked [Ca2+]i response via human P2X4 

receptors. Effect of pretreatment of cells with citalopram (10 μM, 10 
min) on the ATP-evoked [Ca2+]i response via human P2X4 receptors. Cit-
alopram has no effect on the ATP-evoked [Ca2+]i response via human 
P2X4 receptors. Data are means ± SEM of 164–181 cells.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1744-
8069-5-20-S1.pdf]

Additional File 2
Effect of paroxetine on BzATP-evoked [Ca2+]i response via rat P2X7 

receptors. Paroxetine (10 μM, 10 min) significantly inhibited the BzATP 
(100 μM, 20 sec) induced [Ca2+]i response in rat P2X7-expressed 
1321N1 cells (***p < 0.001 by unpaired t-test). Data are means ± SEM 
of 95–113 cells.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1744-
8069-5-20-S2.pdf]
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