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Abstract Estimating the power for a non-linear mixed-

effects model-based analysis is challenging due to the lack

of a closed form analytic expression. Often, computation-

ally intensive Monte Carlo studies need to be employed to

evaluate the power of a planned experiment. This is

especially time consuming if full power versus sample size

curves are to be obtained. A novel parametric power esti-

mation (PPE) algorithm utilizing the theoretical distribu-

tion of the alternative hypothesis is presented in this work.

The PPE algorithm estimates the unknown non-centrality

parameter in the theoretical distribution from a limited

number of Monte Carlo simulation and estimations. The

estimated parameter linearly scales with study size allow-

ing a quick generation of the full power versus study size

curve. A comparison of the PPE with the classical, purely

Monte Carlo-based power estimation (MCPE) algorithm

for five diverse pharmacometric models showed an excel-

lent agreement between both algorithms, with a low bias of

less than 1.2 % and higher precision for the PPE. The

power extrapolated from a specific study size was in a very

good agreement with power curves obtained with the

MCPE algorithm. PPE represents a promising approach to

accelerate the power calculation for non-linear mixed

effect models.

Keywords Non-linear mixed effect models � Hypothesis
test � Power � Monte Carlo method � NONMEM

Introduction

The calculation of the expected power of an experiment is

a standard procedure often required by funding agencies,

ethics boards or regulatory agencies. For simple statistical

models, these calculations can be quickly performed using

a simple analytic equation. For more complex models,

analytic power calculations are often intractable and time

consuming Monte Carlo methods need to be employed.

This is especially true for non-linear mixed-effects models

(NLMEM) which are frequently used within the paradigm

of model-based drug development [7] due to their ability to

handle the clustered, longitudinal nature of clinical trial

data. In this work we present a new algorithm for power

estimation which reduces computational effort consider-

ably and evaluate its performance.

Power calculations for NLMEM are classically done by

simulating a large number of datasets and re-estimating the

simulated data with the planned analysis model to generate

the distribution of the test statistic. This distribution is then

used to obtain a power estimate. With this procedure, a

large number of replicates is required for a stable estimate

as each replicate contributes only dichotomous information

(i.e., smaller or larger than the test threshold). This process

is especially time-consuming if the procedure is to be

repeated for different study sizes to obtain full power

versus study size curves (power curves).

Existing alternatives to obtain power curves for

NLMEM faster are Monte Carlo Mapped Power (MCMP)

and Fisher information matrix-based power calculation

(FIM-PC). MCMP, introduced by Vong et al. [14] and

recently extended by Kloprogge et al. [6], uses the differ-

ence in the individual log-likelihood values derived from a

large dataset simulated from a full model and subse-

quently re-estimated with the full and reduced models.
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The individual log-likelihood values are sampled and

summed multiple times for each study size, and the power

at a given study size is calculated as the fraction of indi-

vidual log-likelihood sums larger than the critical value.

FIM-PC for NLMEM was described by Retout et al. [11]

and studied further by Ueckert et al. [13], it uses the the-

oretical relationship between the expected information

matrix and the Wald test to compute the power curve.

The method presented in this work estimates an

unknown parameter in the theoretical distribution of the

test statistic under the alternative hypothesis and scales this

estimate to obtain the power at different study sizes. Unlike

MCMP, the algorithm does not require any special prepa-

ration of the dataset nor the calculation of the expected

Fisher information matrix as FIM-PC. The algorithm will

be referred to as parametric power estimation (PPE).

In this paper, we first introduce the PPE algorithm as

well as a bootstrap procedure to evaluate uncertainty in the

power estimate and a diagnostic to validate the underlying

assumptions of the algorithm. Afterwards, we evaluate the

proposed methods for a diverse set of NLMEM, for both

continuous and discrete outcomes. The reference for our

evaluation constitutes the classical, purely Monte Carlo-

based way of estimating power, we will refer to this

algorithm as Monte Carlo power estimation (MCPE).

Finally, we demonstrate the practical use of our algorithm

by applying it to a hypothetical disease progression

example using the statistical software toolkit Perl speaks

NONMEM (PsN).

Methods

Notation

Non-linear mixed effect models

Let yi be a vector of ni observations for individual

i (i ¼ 1; . . .;N) and y be the vector of all observations

(y ¼ ðy1; . . .; yNÞT ). It will be assumed that observation

j for individual i can be described through a NLMEM of

the form

yij ¼ f ðtij; h; gi; zijÞ þ eij ð1Þ

when yij is a continuous outcome or, in case yij is discrete,

through

PðyijjgiÞ ¼ hðtij; h; gi; zijÞ ð2Þ

where f and h are non-linear functions, tij is the time of

observation j, h is a vector of fixed effect parameter, gi is a
vector of subject-specific random effect parameter, zij is a

vector of covariates and eij is the residual error random

effect. Both random effects are assumed to follow a normal

distribution with mean 0 and covariance matrix X and R for

gi and eij respectively. Furthermore, let H ¼ ðh;X;RÞT
denote the vector of all unknown parameters.

Hypothesis testing and power

In the framework of NLMEM, a simple two-sided test for a

fixed effect parameter hH can be formalized as

H0 : hH ¼ hH0

H1 : hH 6¼ hH0
ð3Þ

where H0, H1 are the null and alternative hypothesis and

hH0 is the parameter value under the null hypothesis.

In the maximum likelihood (ML) framework, hypothesis

tests are performed using a test statistic tð�Þ which depends

on the ML estimate Ĥ. Two tests with different test

statistics are considered in this work: the log-likelihood

ratio (LLR) test and the Wald test. The LLR test evaluates

the evidence for the null hypothesis in the log-likelihood

domain using the test statistic

tLLR Ĥ
� �

¼ L Ĥ; y
� �

�L Ĥ0; y
� �

ð4Þ

where Lð:Þ denotes the log-likelihood of the observed data

y at the unrestricted maximum likelihood estimate Ĥ ¼
ðĥ; ĥH; X̂; R̂Þ and the restricted maximum likelihood esti-

mate Ĥ0 ¼ ðĥ; ĥ0H; X̂; R̂Þ, respectively. Commonly, the

term full model is used to refer to the model estimated

without restriction and the term reduced model to refer to

the one estimated with the restriction hH ¼ hH0.

Rather then on the log-likelihood domain, the Wald test

considers the evidence for the null hypothesis in the

domain of the parameters using the formula

tWald Ĥ
� �

¼
ĥH � hH0

� �2

Var ĥH
� � ð5Þ

where VarðĥHÞ denotes the variance of ĥH which is gen-

erally determined from the inverse of the observed Fisher

information matrix I�1ðĤÞH;H.
Both LLR and Wald test asymptotically follow a chi-

square distribution with k degrees of freedom given that the

null hypothesis is true [3]. Hence, both tests will reject the

null hypothesis if tðĤÞ[ v2k;1�a where v2k;1�a is the 1� a

quantile of the chi-square distribution with k degrees of

freedom. In this setting, the probability of correctly

rejecting the null hypothesis given a specific alternative

hH ¼ hH� is called the power of the test p, i.e.

p ¼ P t Ĥ
� �

[ v2k;1�ajhH ¼ hH�
� �

ð6Þ
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The power of a study is dependent on its design N, where N
is the set of all individual designs ni, i.e. N ¼ fn1; . . .; nNg.
In this work, mostly the influence of the number of subjects

N on power will be studied and denoted pðNÞ.

Monte Carlo power estimation

The MCPE algorithm estimates the power of a future trial

by simulating SM datasets according to the planned study

design, subsequently re-estimating the simulated datasets

with the intended analysis model and finally calculating the

test statistic for each replicate. The power estimate is then

the fraction of times the null hypothesis was rejected. The

LLR test is used more frequently for MCPE studies as it

can be numerically challenging and more time consuming

to obtain the observed Fisher information, required by the

Wald test, for each of the replicates.

Power versus study size curves

Estimating the power for different study sizes N is a

common task when planning a trial and can be accom-

plished by applying the MCPE algorithm for a predefined

grid of study sizes fN1; . . .;NKg. The procedure for power

estimation through the LLR test-based MCPE algorithm is

described in Algorithm 1.

Parametric power estimation algorithm

Under the alternative hypothesis H1, LLR and Wald test

statistic asymptotically follow a non-central chi-square

distribution with k degrees of freedom and non-centrality

parameter k given as

k ¼ hH � hH0
� �2I�1

H;H
ð7Þ

where I�1
H;H is the entry for hH from the inverse of the

expected Fisher information matrix [3].

The PPE algorithm estimates the unknown non-cen-

trality parameter k from a sample of test statistics using

maximum likelihood estimation. Let fv2ðt; k; kÞ denote the

probability density function of the non-central chi-square

distribution with k degrees of freedom and non-centrality

parameter k, and T a vector of LLR test statistics, then an

estimate of the non-centrality parameter k̂ can be obtained

via

k̂ ¼ argmaxk

XSP
s¼1

log fv2ðt; k; kÞ ð8Þ

Based on k̂ the power is estimated as

p̂P ¼ 1� Fv2ðv21�a;k; k; k̂Þ ð9Þ

where Fv2 is the cumulative distribution function of the

non-central v2 distribution and v21�a;k is the 1� a quantile

of the chi-square distribution.

Power versus study size curves

The expected information matrix for parameters H and

population design N consisting of Nk subjects with identi-

cal design variables n, is given as Nk times the individual

information matrix IðH; nÞ, i.e.
IðH;NÞ ¼ NkIðH; nÞ ð10Þ

For power curves, generally a reference design Nref is

postulated and replicated to arrive at different study sizes.

Hence, combining Eqs. 10 and 7 yields an expression to

scale the non-centrality parameter kref obtained for Nref
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subjects with population design Nref to any study size Nk.

The expression is given as

kk ¼
Nk

Nref
kref ð11Þ

It should be noted that this equation does not require all

subjects to have the same study design, but only assumes

the reference design Nref (potentially including different

groups, etc.) to be replicated for different study sizes.

Combining Eq. 11 with the algorithm outline in the

previous section yields the PPE algorithm for power curves

which is presented in Algorithm 2.

Bootstrap procedure to evaluate Monte Carlo uncertainty

The precision of the estimates from the PPE algorithm

depend on the number of Monte Carlo samples SP used for

the non-centrality parameter estimation. A practical way of

evaluating this influence is through implementation of a

parametric bootstrap procedure [2].

The bootstrap procedure first estimates kref as outlined
in Algorithm 2. In the second step, B sets Tb of random

numbers, each of size SP, are simulated from the non-

central chi-square distribution with k degrees of freedom

and non-centrality parameter kref . Subsequently, an esti-

mates of k̂b is obtained for each Tb. Finally, the 2.5th and

97.5th percentile of all k̂b is determined and used to cal-

culate a 95 % power confidence interval according to

Eq. 9.

Bootstrap-based diagnostic

A parametric bootstrap procedure can also provide a

diagnostic to evaluate the validity of the assumptions

underlying the PPE algorithm. The procedure is almost

identical to the one described in the previous paragraph,

but instead of calculating the power for all k̂b estimates in

the 95 % confidence interval, these estimates are used to

plot the cumulative distribution function of the corre-

sponding non-central chi-square distributions. The result-

ing 95 % confidence band is overlayed with the empirical

cumulative distribution function (ECDF) of the test statis-

tics in T.

Algorithm evaluation

The PPE algorithm and its extensions (bootstrap procedure

and diagnostic) were evaluated in a simulation study with

different pharmacometric models. The evaluation was

performed by comparing the performance of the PPE

algorithm to the MCPE algorithm for power estimation at a

fixed study size (‘‘Bias and precision of MCPE and PPE

algorithm’’ section) as well as in regards to the generation

of power curves (‘‘PPE algorithm-based power curves’’

section). Additionally, the performance of the bootstrap

procedure was evaluated regarding its ability to correctly

estimate the Monte Carlo uncertainty in the PPE power

estimates (‘‘PPE bootstrap procedure’’ section). Finally, the

sensitivity of the diagnostic with respect to the violation of

assumptions was tested (‘‘PPE diagnostic’’ section). All

evaluations were performed with a confidence level of

95 %.

Evaluation models

The evaluation of the power estimation algorithms was

performed based on a simulation study with five different

pharmacometric models for different response types: (1)

binary, (2) time-to-event (TTE), (3) count, (4) pharma-

cokinetic (PK) and (5) pharmacokinetic/pharmacodynamic

(PKPD). For each model the hypothesis test was performed

for a covariate effect of either a dichotomous covariate zi
(binary, TTE and PKPD model) or a continuous covariate

~zi (count and PK model). The model equations as well as

the parameter values and effect sizes used for this com-

parison are given in Table 1.
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The study design used for the different models in the

simulation study are given in Table 2. For the models with

a dichotomous covariate, it was assumed that half the

subjects in the study had a covariate value of 0 and the

other half a value of 1 (e.g., placebo and treatment group).

For the models with a continuous covariate, a normal

distribution with mean 0 and standard deviation 1 was

assumed for the covariate. The study size N� used for the

evaluation was selected to target roughly 80 % power.

Bias and precision of MCPE and PPE algorithm

For all five evaluation models the MCPE and the PPE algo-

rithm were run L ¼ 1000 times with study size N� (as speci-
fied inTable 2) using100, 200 and400MonteCarlo replicates

(SM in Algorithm 1 and SP in Algorithm 2). Furthermore, a

reference power value pref was obtained for each model by

running the MCPE algorithm with SM ¼10,000 replicates.

Measures of bias (relative bias) and precision (standard

deviation (SD) and range) were used to summarize the

algorithm performance for each model and Monte Carlo

sample size. The relative bias was calculated as

bias ðp̂xÞ ¼ 100� �px � pref
pref

ð12Þ

the SD as

sd ðp̂xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L� 1

XL
l¼1

ðp̂x;l � �pxÞ2
vuut ð13Þ

and the range as

range ðp̂xÞ ¼ max
l

p̂x;l �min
l

p̂x;l ð14Þ

where pref is the reference power, p̂x;l the power estimate

obtained with algorithm x (x 2 fM;Pg) and �px the arith-

metic mean of the power estimates �px ¼ 1
L

PL
l¼1 p̂x;l

� �
.

PPE algorithm-based power curves

Theabilityof thePPEalgorithm toobtain full powerversus study

size curves was evaluated by generating 1000 power curves for

all five models based on SP ¼ 400 Monte Carlo samples of

study size N�. The median PPE-based power curves were

compared to reference power values obtained using the MCPE

algorithmwith 10,000 replicates at 25, 50, 75, 100 and 125 %of

study sizeN� (study sizes were rounded to the next even integer
value). This comparison was performed graphically.

PPE bootstrap procedure

The bootstrap procedure (‘‘Bootstrap procedure to evaluate

MonteCarlo uncertainty’’ section)was evaluated for its ability

to characterize the uncertainty due toMonte Carlo noise in the

PPE power estimates. For this evaluation the coverage of the

bootstrap-based 95 %confidence intervals with 1000 samples

was studies for each of the five evaluation models at study

sizesN� using either 100, 200 or 400Monte Carlo samples for

the PPE algorithm. For each model and Monte Carlo sample

size, coverage was calculated as the fraction bootstrap-based

confidence intervals out of 1000 repetitions containing the

reference power value pref (determined as specified in ‘‘Bias

and precision of MCPE and PPE algorithm’’ section).

PPE diagnostic

A formal validation of the bootstrap-based diagnostic

procedure (‘‘Bootstrap-based diagnostic’’ section) is

beyond the scope of this manuscript. However, a quick

evaluation of its diagnostic power was performed by run-

ning the procedure for a scenario representing a violation

of the underlying theoretical assumptions.

For this investigation, the binary example from above

was modified by using h�H ¼ 0:1insteadof0:3asbefore1 and

estimating the full model with the constraint 0� h�H . This
way the null-hypothesis is on the boundary of the param-

eter space and the assumption of a non-central chi-square

distribution of the LLR test statistic might not hold. For

reference, the diagnostic was also generated without this

assumption violation, i.e. �1\h�H\1.

Application example

To illustrate its practical use, the PPE algorithm was

implemented using the R plot template functionality of the

stochastic simulation and estimation (SSE) tool in PsN

version 4.0 and applied to hypothetical example of a phase

II Alzheimer’s disease trial evaluating the relative merits of

a 12, 18 or 24 months long trial.

The disease progression model was taken from the work

of Ito et al. [4, 5] and described the observed disease status

for individual i at time tj through the equation

yij ¼ dpðtjÞ þ pboðtjÞ þ �ij ð15Þ

where dp() and pbo() indicate the disease progression and

placebo components described as

dpðtÞ ¼ S0 þ at ð16Þ

and

pboðtÞ ¼ Aðe�koff t � e�kontÞ ð17Þ

where S0 is the baseline disease status and a the disease

progression rate. In the placebo response model, A is the

1 The violation is more apparent if the alternative hypothesis is close

to the boundary
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placebo amplitude and kon, koff are the rate constants for

the placebo onset and offset, respectively. The parameters

were modeled as follows

S0 ¼ h1 þ g1i
a ¼ ðh2 þ g2iÞð1� hHziÞ
A ¼ h3

koff ¼ h4
kon ¼ h5

where zi is an indicator variable with 0 in the placebo group

and 1 in the treatment group. The parameter values

h ¼ ð56:4; 4:83;�20; 2:77; 1:73ÞT , hH� ¼ 0:3, x2
1 ¼ 14:3,

x2
2 ¼ 6:1, x1;2 ¼ �1:2 and r2 ¼ 7:9 were used. These

values were in part taken from the publication and partly

chosen arbitrarily [4, 5].

A balanced two arm design with placebo and active

treatment group was assumed for this example. Visits were

scheduled every 6 months for a total study duration of

either 12, 18 or 24 months.

Software

The simulations and estimations for all models in the

algorithm comparison were performed in NONMEM

7.3 [1] with the help of PsN version 4.0 [9]. The statistical

software R version 3.0.2 [10] was used to implement the

PPE algorithm, the source code is given in appendix.

Results

Evaluation

Bias and precision of MCPE and PPE algorithm

Table 3 compares the relative bias of the MCPE and the

PPE-based power at Monte Carlo sample sizes of 100,

200 and 400 for all five evaluation models. Unsurpris-

ingly, as also used when calculating the reference, the

MCPE algorithm displayed no major bias in the power

calculation [biasðpMÞ\0:2%] at any sample size for any

of the five models investigated. The bias for the power

calculated using the PPE algorithm, was slightly larger

and differed between models, but remained small for all

models and Monte Carlo sample sizes. The maximal bias

of 1.1 % was observed for the PK model. With the

exception of the TTE model, the bias for the PPE method

was always positive. Furthermore, bias tended to increase

slightly with an increasing Monte Carlo sample size.

The precision of the two algorithms is compared in

Table 4. For both algorithms, precision is increasing with an

increasingMonte Carlo sample size. At the sameMonte Carlo

sample size, however, the power estimates obtained using the

PPE algorithm were considerably more precise than the

MCPE-based estimates. Judging based on the SD, the PPE

algorithm required roughly half the number of Monte Carlo

samples to achieve the same precision. This finding applied

across models and for all samples sizes investigated.

PPE algorithm-based power curves

A comparison of power versus sample size curves as

obtained with the PPE algorithm and the reference power

for all five models is exhibited in Fig. 1. The figure shows

the median PPE-based power curve from 1000 repetitions

as well as the 95 % confidence band together with the

reference. The agreement between reference and median

PPE-based power is high across the whole power curve and

for all models. Only for the binary and the PK model at the

two smallest reference study sizes (N� 60 subjects for

binary and N � 10 subjects for PK) a larger deviation is

observed. The largest deviation with 8 % was observed for

the power estimated using the PK model at N ¼ 6, all other

deviation were smaller than 3 %.

PPE bootstrap procedure

The results of the coverage evaluation for the PPE bootstrap

procedure is shown in Fig. 2. The achieved coverage level

for the different models is a reflection of the bias shown in

Table 2 Study design specifications (study size N�, number and time

of observations and dose) used for the algorithm comparison

Model N� Observations Dose

Binary 110 20 equally spaced between 0 and 1 –

TTE 200 1 between 0 and T ¼ 10 –

Count 160 10 equally spaced between 0 and 1 –

PK 20 9 at 1, 2, 4, 8, 24, 48, 168, 336, 503 150

PKPD 50 3 PK at 0.1, 4, 12 and 3 PD at 4, 6, 12 80

Table 3 Relative bias (%) of power estimates from the Monte Carlo

power estimation (MCPE) and parametric power estimation (PPE)

algorithm for Monte Carlo sample sizes of 100, 200 and 400

100 200 400

MCPE PPE MCPE PPE MCPE PPE

Binary -0.2 -0.2 0.0 0.1 -0.1 0.1

TTE 0.0 -0.8 -0.1 -0.8 0.0 -0.7

Count -0.1 0.4 -0.0 0.5 -0.1 0.5

PK -0.0 1.0 -0.1 1.0 0.0 1.1

PKPD 0.1 0.7 0.1 0.9 -0.0 0.8
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Table 3. For the binary model, with no or minimal bias, the

nominal coverage was achieved, while for all other models,

with a larger bias in Table 3, the coverage was below the

nominal level. The largest deviation from the nominal level

was observed for the PKPD model with a coverage 89 %.

Despite these slight deviations from the nominal cover-

age, the method appears to be sufficiently precise to allow

choosing the number of Monte Carlo samples for the PPE

algorithm.

PPE diagnostic

Figure 3 shows the bootstrap-based diagnostic when the

null hypothesis is forced to be on the boundary of the

parameter space and without this restriction. The former

violates one of the assumptions required to derive the

asymptotic distribution of the test statistic and hence the

basis of the PPE algorithm. The diagnostic clearly indicates

this violation, showing the ECDF of the test statistic out-

side the expected confidence band. In the second panel of

Fig. 3, where the violation is removed, the ECDF of the

test statistic remains within the confidence band.

Application example

For thepreparationof thepower study,first, the full and reduced

version of the disease progression model described in ‘‘Appli-

cation example’’ section were implemented in NONMEM and

saved as dp24m.mod and dp24m_red.mod, respectively

(the r-plots script in PsN uses the convention of a ‘‘_red’’ suffix

in thefilename to identify the reducedmodel). Second, a dataset

with 100 subjects, two groups (treatment and placebo) and

observations at 0, 6, 12, 18 and 24 months was generated in R.

Third, the 18 (dp18m.mod and dp18m_red.mod) and 12

months (dp12m.mod and dp12m_red.mod) full and

reduced models were created by adding an appropriate

IGNORE statement to the 24months version of the model, e.g.

Finally, the necessary steps of data simulation, estimation

with all full and reduced models, running of the PPE

algorithm and plotting were invoked with the PsN com-

mand:

where the -samples=200 argument instructs the soft-

ware to run 200 Monte Carlo samples with 10 parallel runs

(-threads=10). With the -rplots=2 argument, both

power versus study size curves and diagnostic curves are

produced (-rplots=1 would generate the power curves

only).

The resulting power versus study size graph is shown in

Fig. 4, it provides an efficient comparison of the influence

of study size and duration on the power to detect a treat-

ment effect. On the cluster system at hand, the full process

took about 6 min. As a comparison, power curves gener-

ated with the MCPE algorithm using 8 different study sizes

per curve would require about 96 min or 16 times longer (8

points per curve and 2 times the number of samples to

reach the same precision).

Discussion

In this work we proposed and evaluated a novel algorithm

to estimate the power of a future study. The algorithm

estimates the unknown parameter in the theoretical distri-

bution of the test statistic under the alternative hypothesis

to obtain more precise estimates with fewer Monte Carlo

samples. At a fixed study size, the PPE algorithm required

about half as many simulations and estimations to achieve

the same level of precision in the power estimate as a

purely Monte Carlo-based method. Most importantly, the

full power versus study size curve could be obtained from a

set of simulations and estimations at a single study size. In

addition to that, two routines of practical utility were pre-

sented allowing uncertainty evaluation due to Monte Carlo

Table 4 Precision, in terms of

standard deviation (SD) and

range, of power estimates from

the Monte Carlo power

estimation (MCPE) and

parametric power estimation

(PPE) algorithm for Monte

Carlo sample sizes 100, 200 and

400

SD Range

100 200 400 100 200 400

MCPE PPE MCPE PPE MCPE PPE MCPE PPE MCPE PPE MCPE PPE

Binary 4.2 2.9 2.9 2.1 2.1 1.5 28.0 18.0 17.5 13.5 15.0 9.3

TTE 3.9 2.5 2.7 1.8 1.9 1.3 28.0 17.5 16.5 11.4 11.8 8.3

Count 4.3 3.1 3.0 2.2 2.1 1.6 28.0 19.9 19.0 13.2 14.3 10.4

PK 4.1 2.9 2.8 2.0 2.1 1.5 25.0 16.8 17.5 11.9 13.2 10.4

PKPD 3.7 2.3 2.6 1.6 1.8 1.1 25.0 14.7 16.5 12.0 11.0 7.2
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noise as well as an evaluation of the underlying assump-

tions of the algorithm.

The PPE algorithm derives its advantages from addi-

tional assumptions, namely the chi-square distribution and

non-central chi-square distribution of the test statistic under

the null and alternative hypothesis as well as the propor-

tionality of the non-centrality parameter over the whole

study size range. A violation of these assumptions will,
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Fig. 1 Power versus sample

size curves from the parametric

power estimation (PPE)

algorithm in comparison with

the reference power. The solid

black line indicates the median

and the gray band represents the

95 % confidence band of the

PPE-based power from 1000

runs of the algorithm using 400

Monte Carlo samples. The

reference power is indicated by

black dots
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confidence intervals generated

with the parametric power

estimation (PPE) bootstrap

procedure (shown as black dots)

for different models and with

different Monte Carlo sample

sizes. The dashed lines indicate

the nominal confidence level

and the gray bar the uncertainty

associated with running 1000

repetitions
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parametric power estimation

(PPE) algorithm. The panels
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without violation of an

assumption underlying the

algorithm
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therefore, result in a false power prediction. Potential rea-

sons for violations of the two distributional assumptions

include pathological hypotheses (as studied for the evalu-

ation of the diagnostic), biased estimators, local minima in

the likelihood surface, model misspecifications and

numerical problems [15]. The performance of the PPE

algorithm is therefore expected to be model, study design

and even estimation algorithm dependent. Better perfor-

mance is generally expected for simple models with rich

designs and unbiased, exact-likelihood estimation algo-

rithms. For the models evaluated in this work none of those

factors appeared to be a major problem, nevertheless small

violations might be the cause for the slight bias observed

for all examples. The third assumption of a proportionality

of the non-centrality parameter might be violated when

extrapolating to or from very small study sizes. This is a

probable explanation for the discrepancy between PPE

algorithm and reference power for the PK model at a study

size of 6. Another possible factor is an increased type-I

error for the reference power.

When discussing the bias and discrepancy found for the

PPE algorithm, it is important to note that the magnitude

observed here (\2 %) is of little practical relevance.

Generally, the effect of model and parameter uncertainty

will be of much larger magnitude than the bias introduced

through the additional assumptions of the PPE algorithm. It

is also important to acknowledge that the classical MCPE

algorithm implicitly relies on the same distributional

assumptions when the test statistic is compared to the cut-

off from the v2 distribution (v21�a;k). However, while for the

MCPE this assumption can be removed by determining the

distribution under the null hypothesis (type I error correc-

tion), this might not work for the PPE algorithm. Even if

the algorithm can be easily adapted to use a different cutoff

value for the hypothesis test, it appears unlikely for the

alternative hypothesis to follow the theoretical non-central

chi-square distribution when the null hypothesis did not,

but this remains to be investigated.

This investigation focuses on simple, uni-variate

hypotheses involving fixed effect parameters only, the PPE

algorithm, however, extends also to more complex cases.

For multivariate, linear hypotheses, for example, it is suf-

ficient to increase the number of degrees of freedom for the

chi-square distributions (central and non-central) corre-

spondingly. Hypotheses involving variances of random

effect parameters contain some potential theoretical com-

plexities. However, in many practically relevant problems

these do not apply and the PPE algorithm should work

without problems.2 We evaluated this by studying the rel-

ative bias of the PPE algorithm for the Count example with

an additional random effect on the treatment parameter, i.e.

ki ¼ h3 expðgi3 þ ðhH þ gHÞ~ziÞ in Table 1. This scenario

corresponds to hypothesis test with one fixed effect

parameter and one random effect variance (H0 : hH ¼ 0

^x2
H ¼ 0). The PPE diagnostic did not show any violation

and the relative bias was with 0.1, 0.2 and 0.3 % (obtained

with 100, 200 and 400 Monte Carlo samples, respectively)

similar to the relative bias of the uni-variate case.

Nonetheless, it is advisable to judge the results of a power

estimation with a complex hypothesis carefully.

This paper also proposes and evaluates the performance

of two bootstrap-based procedures, one to judge the influ-

ence of the Monte Carlo sample size and one for

assumption checking. The former was evaluated by

studying the coverage of the method for the five different

evaluation models at different Monte Carlo sample sizes. In

this evaluation, the procedure did not always show the

nominal coverage with deviations of up to 6 %. Results

should, thus, be interpreted with caution and resulting

confidence intervals be regarded as approximate. Never-

theless, the uncertainty information provides a valuable

addition from a practical perspective allowing a quick

evaluation whether more Monte Carlo samples are

required. The procedure for assumption checking was not

formally evaluated. For the example with the null

hypothesis on the boundary, the procedure clearly indicated

a violation. However, when applied to the other structural

models of the paper (results not shown) the diagnostic

appeared to be overly sensitive, indicating slight violations

20%

40%

60%

80%

100%

0 100 200 300 400
Study size

Po
w

er

dp12m vs. dp12m_red (1 DF)

dp18m vs. dp18m_red (1 DF)

dp24m vs. dp24m_red (1 DF)

PPE Power Curves

Fig. 4 Parametric power estimation (PPE) algorithm-based power

versus sample size curves for different study lengths of an

Alzheimer’s disease trial automatically generated by the PsN SSE

script

2 When a hypothesis tests the presence of a random effect, i.e.

essentially H0 : x2 ¼ 0, the null-hypothesis is on the boundary of the

parameter space (as variances can not be negative) and one of the

assumptions used to derive the theoretical distribution of the test

statistic is violated. However, this violation will have minor impact if

the power is studied for a parameter value h�H that is not too close to

the boundary.
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in cases where the PPE algorithm performed satisfactorily.

An improvement of the diagnostic procedure is therefore a

potential focus for future work.

Monte Carlo mapped power (MCMP) as described in

the introduction represents an alternative method to obtain

power versus study size curves quickly. The runtime

comparison of MCMP and PPE is not simple, both algo-

rithms are dependent on a number of settings balancing

algorithm speed and precision of the power estimates. A

quick evaluation of the time to generate a power curve for

the binary model resulted in a average time of 15 m 34 s for

the MCMP algorithm and and average time of 23 m 38 s

for the PPE algorithm (without parallelization). This

comparison was performed based on the results presented

by Vong et al. [14] with settings chosen to match the

precision achieved with a 200 sample PPE estimate. In

practice, the choice of different settings or the paral-

lelization of computations can change these results in either

direction. The results are also believed to be model-de-

pendent. A conclusive comparison of both methods’ run-

time should therefore be the focus of a future study.

However, it seems reasonable to assume that both algo-

rithms have runtimes with the same order of magnitude.

The post-processing time, i.e. the sampling for MCMP and

the non-centrality parameter estimation for the PPE, is

significantly faster for the PPE algorithm. The PPE algo-

rithm is also more transparent about potential violations of

the underlying assumptions, as described in the previous

paragraph, provides uncertainty information and does not

require any special inflated data set. Other advantages of

the PPE algorithm are smooth power curves and its gradual

operation where results are available with the very first test

statistic and then continue to improve. The latter allows

users to stop the procedure when a sufficiently precise

estimates have been obtained (not yet implemented in PsN)

or to add samples and increase precision of an earlier run.

Finally, it should be mentioned that both algorithms could

be combined, i.e. one could use MCMP to obtain a few

samples of the test statistic for one study size and then use

the PPE to obtain the full power curve.

Fisher information matrix-based power calculation

(FIM-PC) is clearly the fastest method to obtain power

curve estimates. However, is a purely asymptotic, does not

take the behavior of the estimation algorithm into account

and relies on approximations of the Fisher information

matrix. The calculation of the expected Fisher information

matrix generally requires the implementation of the model

in another software and is challenging for categorical data

NLMEM. Also, the method does not work if the estimation

model is different from the simulation model, such as when

a simpler model is to be used for the analysis of the data.

For the future, a formal comparison between PPE,

MCMP and FIM-PC would be of value. Furthermore, the

PPE algorithm could be extended to be more robust

regarding outliers (i.e. through non-successful runs), sup-

port sampling-based estimation algorithms (e.g., impor-

tance sampling, SAEM) that might lead to negative test

statistics or allow for simulating with parameter

uncertainty.

Conclusions

PPE as a novel algorithm to obtain full power versus

sample size curves was presented and evaluated. The

algorithm is in good agreement with the classical MCPE

algorithm and drastically accelerates the generation of full

power versus sample size curves for NLMEM.
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