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1 Introduction

F-theory provides a geometric formulation of various aspects of non-perturbative type IIB

string theory [1–3]. It is a framework which is particularly appropriate for studying the

realisation of Grand Unified Theories (GUTs) in String Theory, see [4–6] for reviews. From

a IIB perspective these arise on the intersections of 7-branes, while in the geometric F-

theory formulation they correspond to an intricate singularity structure on Calabi-Yau

(CY) manifolds. The minimal GUT group is SU(5) and there has been much work in

recent years on constructing F-theory geometries which exhibit an SU(5) gauge group that

is extended by some further Abelian symmetries [7–29]. Although there are by now quite a

few examples of such constructions we are still missing a systematic understanding of what

are the possible symmetries and matter spectra that can be realised in such models. This

can be contrasted with early F-theory model building where a local approach was used to

build geometries based on the spectral-cover construction [30–36]. There the geometries

could be described as Higgs bundles over the divisor supporting the GUT group where

the Higgs took values inside the commutant of the SU(5) GUT group in E8, which is

again SU(5) due to the decomposition E8 ⊃ SU(5)GUT ×SU(5)⊥. The possible symmetries

and matter charges that can arise from such spectral cover constructions can be easily

classified as they arise from Higgsing E8 to SU(5) using its adjoint representation. Of
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course there remained much data of the theory, such as the massless spectrum and the

values of operators, which depends on the precise details of the background geometry and

fluxes, but the possible Abelian symmetries for any such model were embeddable inside

the group E8 and the possible matter charges under the symmetries were all realised in the

decomposition of a single 248 adjoint representation of E8.

In this paper, with the aim of moving towards a more systematic understanding of the

set of possibilities for F-theory GUT constructions, we study if there is a similar role that

the group E8 can play in constraining the possible symmetries and matter charges in full

global F-theory models. In considering such a possibility there are immediate restrictions

on the role that E8 can play. First we know that certainly the total gauge group of F-theory

models can be much larger than E8 and in fact can contain thousands of E8 factors [37].

However each non-Abelian gauge group will be localised on a separate divisor in the ge-

ometry and therefore in considering the matter spectrum on the specific SU(5)GUT divisor

we are in some sense decoupling the other non-Abelian gauge groups. Another limitation

on E8 is that given an E8 symmetry on a single divisor it is still possible to enhance it

further over subloci [3]. Specifically, according to Kodaira’s classification the discriminant

of the elliptic fibration vanishes to order 10 over an E8 singularity, but it is not difficult to

construct geometries where it vanishes to a higher order, say 12, over subloci. However over

such loci which enhance beyond E8 one finds an infinite tower of massless degrees of free-

dom, the excitations of tensionless strings [38–43]. In F-theory these arise because in the

singular limit some 4-cycle contracts to zero size over the loci extending E8 and M5-branes

wrapping this 4-cycle lead to the aforementioned strings.1 If, for phenomenological reasons,

we insist on the absence of these massless states then such extensions of E8 are forbidden.

Another clear limitation of the role of E8 is that the group over the divisor is SU(5)

which is not in the exceptional branch of the Lie groups, and indeed is part of the infinite

SU(n) branch. Therefore by breaking a high enough SU(n) down to SU(5) one expects an,

at least group theoretically, infinite number of matter spectra and charges to be realisable

in F-theory.2 However we can appeal to phenomenological constraints once more to rule the

possibility of the GUT group originating from a Higgsed down symmetry group which is in

one of the infinite branches (the classical groups). This is because the Yukawa coupling for

the top quark requires an exceptional symmetry enhancement over a co-dimension three

point on the GUT brane [30, 31, 44], and such an exceptional structure can not come from

any Higgsed classical group.

The requirement of a co-dimension three exceptional point rules out a Higgsed classical

group possibility but neither does it imply that the matter spectrum and symmetries

should come from a Higgsed exceptional group. The interplay between the symmetries at

co-dimension three (Yukawas), co-dimension two (matter) and co-dimension one (gauge

groups) is not well understood enough yet for us to be able to systematically restrict or

classify the lower co-dimension data from the higher co-dimension data. The possibility

1In the Heterotic dual they arise from small instantons or in the M-theory picture from M2-branes

stretching between M5-branes that are coinciding with the E8 branes [38, 39].
2There are mild constraints that make this finite due to tadpole cancellation but certainly the rank of

the original SU(n) can be much larger than that of E8.
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that the existence of a point of exceptional symmetry implies that the whole theory on

the GUT brane should be describable as a Higgsed down E8 theory has been disproved by

explicit examples: in [20] it was shown that some global models can not have an embedding

inside a Higgsed E8 theory, following earlier hints that this is so [11, 12]. This raises the

question of whether E8 has any role to play at all in bounding and classifying the possible

F-theory GUT models?

The primary aim of this paper is to define, classify and study a certain well motivated

extension to the set of theories obtained by Higgsing down an E8 theory which can account

for the global models in [20] as well as others in the literature. This set of theories will

extend but be closely tied to E8, and therefore show that E8 may still have a role to

play in the systematics of F-theory GUTs. It could be that the set of theories we will

construct form a complete classification of possible GUT models in F-theory which include

an exceptional point, no infinite tower of massless states, and are generic in a sense that we

will define more precisely later. We have though no completely convincing evidence for this,

but at the least they form a step towards understanding if such a complete classification

exists and if so what it is.3

In short, the extended set of theories that we consider are constructed as follows.

Consider the decomposition of the adjoint of E8 under the breaking E8 → SU(5)GUT ×

SU(5)⊥ → SU(5)GUT ×U(1)4. The adjoint will lead to 20 GUT-singlet fields 1i which have

different charges under the Abelian group. Group theoretically these span the (off-diagonal

components of the) adjoint representation of SU(5)⊥. Therefore a theory which comes from

Higgsing E8 to SU(5)GUT is described by some appropriate vacuum expectation value for

the singlets 1i. The singlet fields form oppositely charged conjugate pairs and in this work

we will only consider backgrounds where each element in the pair has equal vev. The set of

representations that can appear in any theory that comes from a Higgsed E8 is therefore de-

termined by Higgsing a number of these 10 pairs of singlets. Each Higgsing will break a U(1)

in U(1)4 eventually leaving a theory with no symmetries further to SU(5)GUT . Our proposal

is to extend this set of theories by adding a further differently charged 15 pairs of singlet

fields to the SU(5)GUT ×U(1)4 theory, ones which do not come from the adjoint of E8, and

then construct the set of theories that can be reached by Higgsing also these new singlets.

The motivation for adding these 15 new pairs is described in detail in the next section, but

in brief they are the set of fields required such that for any pair of SU(5)GUT -charged fields

there is an associated gauge invariant cubic coupling with some singlet field, of type 155̄.

The result is a classification of some set of theories or more precisely the charges of

the representations that can appear in the theories under any symmetry group present.

It is important to state that we do not construct the F-theory geometries associated to

all these theories, rather only present a group theoretic analysis of their representations.

In section 2.3, we will then compare this set of theories with the ‘experimental data’ of

actual SU(5) F-theory geometries constructed in the literature. We find that of 30 SU(5)

fibrations studied, 3 could not be made flat or generic enough in a sense defined more

3There are certainly some theories that are not included in our classification: those reached by

Higgsing only a chiral singlet rather than a vector-like pair, which should correspond to geometric gluing

modes [45–50].
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precisely below, and of the remaining 27, only one could be embedded into a Higgsed E8

theory but all could be embedded into our extended set of theories.

Following this, in section 2.4, we study some phenomenological applications of the new

set of theories we have classified, in particular with respect to a realisation of Z2 matter

parity which can not arise in a Higgsed E8 theory. In section 3 we study aspects of the

heterotic duals of these theories. We summarise our results in section 4.

2 Global F-theory models and E8

We are interested in models of the type SU(5) × U(1)n, where n ranges between 0 and 4.

Later we will also incorporate discrete symmetries into the framework. A key role will be

played by representations that arise from the decomposition of the adjoint representation

of E8 into SU(5)×U(1)4. It is convenient to consider the embedding of the group into E8

through an intermediate embedding of E8 ⊃ SU(5)GUT × SU(5)⊥. The SU(5)GUT factor is

the remaining non-Abelian group while the U(1)4 part is embedded as the Cartan subgroup

of SU(5)⊥. Then the decomposition of the adjoint of E8 under E8 → SU(5)GUT × SU(5)⊥
yields

248 → (24,1)⊕ (1,24)⊕ (10,5)⊕ (5̄,10)⊕ (1̄0, 5̄)⊕ (5, 1̄0) . (2.1)

Therefore the GUT 10-multiplets are in the fundamental representation of SU(5)⊥ and

the GUT 5-multiplets are in the anti-symmetric of SU(5)⊥. An embedding of a U(1) into

SU(5)⊥ is specified by 5 parameters ai which determine its embedding into the Cartan

S
[

U(1)5
]

and therefore should satisfy a tracelessness constraint
∑

i ai = 0. Our notation

is to write a particular U(1) embedding as

U(1)A =
5

∑

i=1

aAi t
i , (2.2)

where the ti are introduced to determine the U(1) charges of the states as follows. With

this embedding, from the adjoint of E8 we find the following representations of SU(5)GUT

with U(1) charges labeled by ti,

10i : ti , 5̄ij : ti + tj , 1ij : ti − tj , (2.3)

where for the 5̄s and 1s we have that i 6= j. Here the ti correspond to the U(1) charges of

the representations in the sense that for a given U(1), specified by (2.2), the charges are

simply given by the contraction of the ti and ti using tit
j = δji . Note that there are two

types of gauge invariant operators which can be constructed from the fields in (2.3). There

are operators whose charges ti sum to zero, for example 51010 couplings, and operators,

for example 5̄ 5̄ 10 couplings, whose ti sum to t1 + t2 + t3 + t4 + t5.

So far we have discussed only group theory. Next we consider F-theory geometries that

realise an SU(5) gauge group on a divisorW of the Calabi-Yau fourfold which projects down

to a surface S in the base of the fibration. The matter representations are taken to localise

on curves in S. The cubic Yukawa couplings between SU(5)-charged fields occur at points

where three such curves intersect. There are two types which we label as E6 and SO(12)
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and they correspond to couplings of the form 5̄ 5̄ 10 and 5 10 10 respectively. There are

also cubic couplings of the form 1 5 5̄, 1 10 1̄0 which occur at points where two matter

curves intersect and a singlet curve intersects also the point, we label these SU(7) and E6

points respectively. In this paper we are interested in exploring the interaction between

this class of F-theory models and the group E8.

It is useful to introduce some notation at this point. We define:

• A network as the data of the collection of SU(5)-charged matter curves on S and

their intersections.

• A partially complete network as a network where any pair of curves intersect each

other at least once.

• A complete network as a partially complete network where additionally any pair of

5 or 10 matter curves have a cubic coupling with a GUT singlet at some point.

• A flat network as a network where for any point of intersection of two curves there

is an associated cubic gauge-invariant coupling.

These definitions map to specific geometric properties of F-theory fibrations. A par-

tially complete network maps to geometries where the base of the fibration is sufficiently

generic, since on a non-generic base it may be that certain matter curves happen to not

intersect. The data of the matter curves and interactions is then captured completely by

the elliptic fibre equation. The notation of a flat network comes about because in F-theory

constructions with Abelian symmetries, we find that if there is an intersection point which

does not satisfy this criterion the point corresponds to a non-minimal singularity. Such

co-dimension three non-minimal singularities were first studied in [43] and were shown to

be resolved into a non-flat fibration. There are therefore tensionless strings associated to

them, which as discussed could signal going beyond E8, and which we would like to avoid.

Finally the difference between a complete network and a partially complete network is that

there can exist partially complete networks where a pair of 5 matter curves only have a

coupling with a 10 matter curve but no GUT singlet coupling. This would require specific

geometric equations for the curves, examples of which can be found in [29]. Generally we

will be interested in the relation between E8 and complete flat networks.4

Let us return now to the group theory analysis with the charges for the curves given

in (2.3). Then a natural question is: can these charges form a complete flat network as

defined above? It is easy to see that with regards to E6 and SO(12) points the charges

are such that there is always an appropriate cubic combination of curves for each pair that

is gauge invariant. However, this is not the case for SU(7) points, i.e. not every pair of

5s has an appropriately charged singlet that could make a gauge neutral operator with it.

Therefore the adjoint of E8 does not have enough matter to form a complete flat network.

4We expect that for less generic configurations the relation with E8 becomes more complicated. For

example, one could consider a network which splits into two factors that do not share any intersections,

and that the point of E6 enhancement lies in only one factor. Then it is not clear why the other factor in

the network of curves should be tied to the exceptional groups at all.

– 5 –



J
H
E
P
0
6
(
2
0
1
5
)
0
3
9

It is worth noting for later that the lack of singlets in the adjoint of E8 occurs only for

SU(5) as a GUT group. For SO(10) or larger GUT groups the Abelian charges are such

that the matter curves and singlets can always form a complete flat network.

The natural conclusion one can reach from these considerations is that F-theory fibra-

tions which form complete flat networks can have more singlet fields than those coming

from a single adjoint representation of E8. This observation leads to a natural extension of

the spectrum of fields coming from the adjoint of E8 as follows: for each pair of 5 matter

curves we impose that there should be a singlet field such that there is a gauge invariant

1 5 5̄ coupling. This extends the 10 singlets in (2.3) by a further 15 singlets. Starting from

this extended set of fields we can now consider Higgsing down the number of U(1)s using

not only the E8 singlets but also the newly added ones. The resulting set of theories with

a smaller Abelian sector will include the theories coming from a single adjoint Higgsing of

E8 only as a subset. They will form a set of theories that have charges which allow for a

complete flat network which are based on E8 but extend it.

In the next section we will give an example geometry of this Higgsing process of non-E8

singlets. In section 2.2 we will then construct the full set of resulting theories coming from

Higgsing down beyond E8. In section 2.3 we will then proceed to compare this new set of

theories with explicit F-theory geometries.

2.1 An example of Higgsing beyond E8

In this section we present a geometric example which embodies the main ideas of the

paper. We will consider the case of Higgsing E8 down to SU(5)×U(1) with a Higgs bundle

embedded in S [U(3)×U(2)] ⊃ SU(5)⊥. The matter states coming from the adjoint of E8

under this decomposition are

101−2 , 10
2
3 , 5

1
−6 , 5

2
4 , 5

3
−1 , 1

1
5 , (2.4)

where the subscript denotes their charge under the U(1). Note that there is a singlet of

charge 10 missing from the spectrum, which we denote, 1210, that would be needed for this

to form a complete network since there is no possible 12105
1
−65̄

2
−4 coupling.

In [11] a global F-theory fibration based on this Higgsing of E8 was constructed. The

idea was to take the spectral cover description of this Higgsing process, which amounts to

a 3-2 factorisation of the spectral cover [34], and restrict the fibration in Tate form such

that the Tate coefficients match those of the spectral cover. In [11] two formulations of

this construction were given, the first in Tate form, while the second was as a fibration in

P[1,1,2]. The Tate form of the fibration begins from the fibre equation

y2 = x3 + a1xyz + a2x
2z2 + a3yz

3 + a4xz
4 + a6z

6 , (2.5)

and restricts the coefficients to be of the form

a1 = e2d3 ,

a2 = (e2d2 + αδd3)w ,

a3 = (αδd2 + αβd3 − e2δγ)w
2 ,
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a4 =
(

αβd2 + βe2γ − αδ2γ
)

w3 ,

a6 = αβ2γw5 . (2.6)

Here α, β, γ, δ, e2, d3 are functions of the base coordinates, and w = 0 is the SU(5) divisor.

First let us map this into a fibration in P[1,1,2]. We start from the form given in [51] for

the general single U(1) fibration

P[1,1,2] = w2 + b0u
2w + b1uvw + b2v

2w − u
(

c0u
3 + c1u

2v + c2uv
2 + c3v

3
)

, (2.7)

and restrict the coefficients as follows [11]

b0=−wd3α , b1=−e2d3 , b2=δ , c0=w3 αγ , c1=w2 (d2α+e2γ) , c2=w e2 d2 , c3=w β .

The SU(5) singularity is over w = 0 and the resulting matter curves are [11, 34]

101−2 : w = d3 = 0 , 1023 : w = e2 = 0 ,

51−6 : w = δ = 0, 524 : w = βd3 + d2δ = 0,

53−1 : w = α2c2d
2
2 + α3βd23 + α3d2d3δ − 2αc22d2γ − α2c2d3δγ + c32γ

2 = 0. (2.8)

This model has two singlet fields, with the second one being precisely the one lying outside

of E8. This singlet 1
2
10 is localised on the curve β = δ = 0 and so intersects the GUT brane

at the point w = δ = β = 0 where also 51−6 and 524 meet to form a cubic coupling. We

therefore observe that in constructing the global F-theory geometry based on the Higgsed

E8 theory we automatically find the extra singlet required to make the complete network

over a generic base.

Note that this fibration has a non-minimal singularity at α = e2 = 0. Further, in [11] a

resolution of this fibration was presented but there remained a singularity over α = γ = 0.

These two issues can both be bypassed by setting α to a non-vanishing constant [11, 20].

So far we have seen a realisation of the first part of our extension of E8: the inclusion of

new singlets. The second part is the Higgsing of these singlets to reach new theories. We can

present a geometric realisation of this by deforming the fibration in a way which corresponds

to Higgsing the 1210 singlet. This particular deformation has been recently studied in [26,

27, 52–54]. It amounts to adding a term c4v
4 to (2.7). We just need to modify it slightly

by a factor of w in order to account for the additional SU(5) so we write c4 = c4,1w.

After the deformation one finds that the two matter curves 51−6 and 524 recombine into

a single matter curve with equation

5̃1 : δ (βd3 + d2δ) + e2c4,1d
2
3 = w = 0 . (2.9)

The other matter curves remain unchanged. The Higgsing deformation performed breaks

the U(1) to a Z2. The resulting charges of the matter curves under this Z2 are

1010 , 10
2
1 , 5̃

1
0 , 5

3
1 , 1

1
1 , (2.10)

This model does not lie in a possible Higgsing of E8 and we therefore reach a new model

precisely through the process described in the previous sections. As an aside, note that

this is the first example of such a Z2 model with two 10-matter curves.

– 7 –
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It is interesting to map the Higgsing back into the factorised Tate form. The Higgsing

then amounts to a deformation

a4 → a4 − c4,1α
(

αd23 + 4γw
)

w3 ,

a6 → a6 + c4,1 (−αd2 + e2γ)
2w5 . (2.11)

An important point is that the Higgsing involves the next-to-leading order in w coefficient

of a4, or in the usual notation a4,4 → a4,4 + 4c4,1αγ. This modification ensures the cor-

rect discriminant enhancement at the coupling point 111 5̃10 5̄31.
5 Note that by contrast

Higgsing the singlets from the adjoint of E8, in this case 115, can be done by deforming

just the leading order coefficients in the Tate fibration. An example where this is clear

is the Higgsing of the factorised Tate 4-1 model [20]. In the case of a model based on

S [U(4)×U(1)] ⊃ SU(5)⊥ one finds that there are only 2 5-matter curves and the singlet

at their intersection has an embedding in the adjoint of E8. A particular restriction of this

fibration gives the U(1)-restricted Tate model [7] which simply amounts to setting a6 = 0

in the generic Tate polynomial. Then Higgsing the singlet can be done by taking a6,5 6= 0

and leaving the other coefficients unchanged, a deformation which only affects therefore

the leading order (in w) behaviour of the Tate coefficients.

The Higgsing away from E8 studied in this section forms a small branching in the full

classification of such possible Higgsing to which we now turn.

2.2 Classifying Higgsing beyond E8

Recall the E8 singlets are defined through their charges as in (2.3). Similarly we define the

15 additional beyond E8 singlets in terms of the ti as

1ijkl : ti + tj − tk − tl , (2.12)

where i 6= j 6= k 6= l. This set of states ensures that there exists a gauge-invariant coupling

for every pair of 5 states.

The set of theories we wish to study are defined as starting from the maximal de-

composition of E8 to SU(5)GUT × U(1)4 and then Higgsing all the possible combinations

of GUT singlets in the theory. The gauge group that remains G will be the commuting

subgroup of SU(5)GUT ×U(1)4 with all the Higgsed singlets and the matter representations

of the theory will be the representations of G that descend from the adjoint of E8 plus the

additional singlets. We denote the set of Higgsed singlets by 1α, with α ranging over the

different singlets α = 1, . . . , N . The charges of a given singlet 1α under U(1)5, i.e. before

imposing the tracelessness constraint, are denoted Qi (1α). To work out the group G and

its representations for a given set of Higgsed singlets we introduce a 5 × N matrix M of

the Higgsed singlets charges

Miα = Qi (1α) . (2.13)

5Indeed as pointed out in [20], generally the 155̄ couplings depend on the higher order terms in w in

the Tate coefficients. Note that this is not inconsistent with the fact that the point of coupling can be

determined purely from the leading order terms of coefficients since it corresponds to the intersection of

two 5-matter curves. Indeed the global aspect of a U(1), or section, ensures that the sub-leading parts are

such that there is an appropriate discriminant enhancement at the intersection of two 5-matter curves.
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The tracelessness constraint is implemented in this framework by including in the Higgs

matrix M a singlet with charges (1, 1, 1, 1, 1), which breaks the U(1)5 to S
[

U(1)5
]

. To

proceed, following the methodology of [55], we change the basis of U(1)s such that each

Higgsed singlet is charged under only one U(1) combination. This is the Smith Form D

associated to M which is reached by acting with two unimodular matrices K ∈ SLN (Z)

and J ∈ SL5 (Z)

KMJ = D = diag(d1, . . . , dr, 0, . . . , 0) , (2.14)

where the integer entry di−1 divides di for all i = 2, . . . , r = Rank(D). The matrix J

determines the appropriate change in basis of U(1)s such that the charge vector Qi of any

state transforms to Q′
i = (QJ )i. In particular the integer charges under the unbroken

gauge group G are therefore given by Q′
i for i = r + 1, . . . , 5.

Note that some of the U(1)s may be broken to a remnant discrete symmetry if their

charges are not unitary. Since the Smith form is reached by a unimodular transformation

the remnant discrete gauge group is simply

GDiscrete = Zd1 × · · · × Zdr . (2.15)

Note that some of GDiscrete may be part of the Z5 centre of SU(5) in which case the true

discrete subgroup would be GDiscrete/Z5.

The above procedure of calculating G from a given set of Higgsed singlets must be per-

formed for all the possible combinations of Higgsing the singlets. Since the initial theory has

25 singlets we have 25 possibilities for Higgsing 1 singlet, 300 possibilities for Higgsing 2 sin-

glets, 2300 possibilities for Higgsing 3 singlets and 12650 possibilities for Higgsing 4 singlets.

However there is significant redundancy in this counting and the final set of physically inde-

pendent possibilities is much smaller in magnitude. For example it is clear that for the case

of 1 singlet there are only 2 physically distinct possibilities: Higgsing a 1ij or a 1ijkl state,

with all such sets being equivalent up to relabeling. The similar analysis of redundancies

can be feasibly performed for 2 singlets analytically, but is much harder for more singlets.

We performed this analysis using computer scanning, with some analytic checks. The final

result is shown in tables 2.1 and 2.2. The models are labeled by three numbers denoting the

number of differently charged 10, 5 and 1 representations respectively. The number of phys-

ically distinct models with 3, 2, 1 and 0 U(1)s is given by 2, 6, 11, 6 respectively. The paths

which can be taken to reach each of the models as a Higgsing process are shown in figure 1.
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{5,10,25}

{4,7,12} {5,9,18}

{3,4,4} {3,5,6} {4,6,7} {4,6,8} {5,8,12} {5,8,12}
2

{2,2,1} {2,3,2}{3,3,2} {3,4,3}
2 {3,4,3} {4,5,4} {4,5,5}

2
{5,7,7}

2{5,7,6} {5,7,8}
3

{5,7,7}
(2,2)

{2,2,1}
2

{3,3,2}
3

{4,4,3}
4

{4,4,3}
(2,2)

{5,6,5}
6

{5,5,4}
5

Figure 1. The set of theories that can be reached by Higgsing down from SU(5) × U(1)4 using the GUT singlets. Each rectangle denotes a

spectrum of fields, with the numbers giving the number of differently charged 10, 5 and 1 representations, and the subscript denoting the order

of any discrete group present. The spectra of all the models are given in tables 2.1 and 2.2. The paths connecting the models denote Higgsing of

GUT singlets. The blue nodes and paths correspond to the set of theories reached from adjoint Higgsing of E8, though the spectrum of singlets in

these models is extended beyond E8. The decreasing levels denote a decreasing number of U(1)s.
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Model 101 102 103 104 105 5̄1 5̄2 5̄3 5̄4 5̄5 5̄6 5̄7 5̄8 5̄9

Three U(1)’s models

{4, 7, 12} (−2,−1,−1) (1, 0, 0) (0, 1, 0) (0, 0, 1) — (−2,−1, 0) (−2, 0,−1) (−1,−1,−1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (2, 0, 0) — —

(0, 1,−1), (1,−1, 0), (1, 0,−1),(4, 1, 0), (4, 0, 1), (2, 2, 1), (2, 1, 2), (1, 2, 2), (2,−1,−1), (3, 2, 0), (3, 0, 2), (3, 1, 1)

{5, 9, 18} (−2,−2, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1,−1) (−2,−2, 1) (−2,−1, 0) (−1,−2, 0) (1, 1, 0) (1, 0, 1) (0, 1, 1) (−1,−1,−1) (1, 2,−1) (2, 1,−1)

(4, 3,−2), (4, 2,−1), (3, 4,−2), (3, 3,−1), (3, 2, 0), (3, 1, 1), (2, 4,−1), (2, 3, 0), (2, 2, 1), (2, 1, 2), (2, 0,−2), (1, 3, 1), (1, 2, 2), (1, 1,−2), (1, 0,−1), (1,−1, 0), (0, 2,−2), (0, 1,−1)

Two U(1)’s models

{3, 4, 4} (−3,−1) (1, 0) (0, 1) — — (−3, 0) (−2,−1) (1, 1) (2, 0) — — — — —

(1,−1), (3, 2), (4, 1), (5, 0)

{3, 5, 6} (−2,−2) (1, 0) (0, 1) — — (−2,−1) (−1,−2) (1, 1) (2, 0) (0, 2) — — — —

(1,−1), (1, 4), (2,−2), (2, 3), (3, 2), (4, 1)

{4, 6, 7} (−1, 2) (0,−4) (1, 0) (0, 1) — (−1,−2) (−1, 3) (0,−3) (0, 2) (1,−4) (1, 1) — — —

(0, 5), (1,−6), (1,−1), (1, 4), (2,−7), (2,−2), (2, 3)

{4, 6, 8} (−2,−2) (0, 1) (1, 0) (3, 3) — (−4,−4) (−2,−1) (−1,−2) (1, 1) (3, 4) (4, 3) — — —

(1,−1), (2, 3), (3, 2), (4, 6), (5, 5), (6, 4), (7, 8), (8, 7)

{5, 8, 12} (−4, 6) (−1, 1) (0, 1) (2,−4) (3,−4) (−5, 7) (−4, 7) (−2, 2) (−1, 2) (1,−3) (2,−3) (3,−3) (5,−8) —

(1, 0), (2,−5), (2, 0), (3,−5), (4,−5), (5,−10), (5,−5), (6,−10), (7,−10), (8,−10), (9,−15), (10,−15)

{5, 8, 12}2 (−2,−2)0 (1, 0)0 (0, 1)0 (1, 0)1 (0, 1)1 (−2,−1)0 (−1,−2)0 (1, 1)0 (−2,−1)1 (−1,−2)1 (1, 1)1 (2, 0)1 (0, 2)1 —

(1,−1)0, (1, 4)0, (2,−2)0, (2, 3)0, (3, 2)0, (4, 1)0, (0, 0)1, (1,−1)1, (1, 4)1, (2, 3)1, (3, 2)1, (4, 1)1

One U(1) models

{2, 2, 1} −4 1 — — — −3 2 — — — — — — —

5

{2, 3, 2} −3 2 — — — −6 −1 4 — — — — — —

5, 10

{3, 3, 2} −1 0 1 — — −1 0 1 — — — — — —

1, 2

Table 1. First part of the summary of the SU(5)-charged spectra for the models reached by Higgsing SU(5) × U(1)4. The numbers indicate

charges under the U(1)s present, with subscripts indicating a discrete charge. The second row for each model lists the GUT singlets present.

Models in bold are models accessible by Higgsing only E8 singlets and therefore have charged matter spectra arising from the adjoint of E8 but

with additional singlets.

–
11

–



JHEP06(2015)039

Model 101 102 103 104 105 5̄1 5̄2 5̄3 5̄4 5̄5 5̄6 5̄7 5̄8 5̄9
One U(1) models (Continued)

{3, 4, 3} −4 1 6 — — −8 −3 2 7 — — — — —
5, 10, 15

{4, 5, 4} −8 −3 2 7 — −11 −6 −1 4 9 — — — —
5, 10, 15, 20

{5, 7, 6} −2 −1 0 1 2 −3 −2 −1 0 1 2 3 — —
1, 2, 3, 4, 5, 6

{3, 4, 3}2 −40 10 11 — — −30 −31 20 21 — — — — —
01, 50, 51

{4, 5, 5}2 −30 −31 20 21 — −61 −10 −11 40 41 — — — —
01, 50, 51, 100, 101

{5, 7, 7}2 −40 −41 10 11 60 −81 −30 −31 20 21 70 71 — —
01, 50, 51, 101, 100, 150, 151

{5, 7, 8}3 −31 −32 20 21 22 −60 −10 −11 −12 40 41 42 — —
01, 02, 50, 51, 52, 100, 101, 102

{5, 7, 7}2,2 −40,0 10,0 10,1 11,0 11,1 −30,0 −30,1 −31,0 −31,1 20,1 21,0 21,1 — —
00,1, 01,0, 01,1, 50,0, 50,1, 51,0, 51,1

Zero U(1) models
{2, 2, 1}2 0 1 — — — 0 1 — — — — — — —

1

{3, 3, 2}3 0 1 2 — — 0 1 2 — — — — — —
1, 2

{4, 4, 3}(2,2) (0, 0) (0, 1) (1, 0) (1, 1) — (0, 0) (0, 1) (1, 0) (1, 1) — — — — —
(0, 1), (1, 0), (1, 1)

{4, 4, 3}4 0 1 2 3 — 0 1 2 3 — — — — —
1, 2, 3

{5, 5, 4}5 0 1 2 3 4 0 1 2 3 4 — — — —
1, 2, 3, 4

{5, 6, 5}6 0 1 2 4 5 0 1 2 3 4 5 — — —
1, 2, 3, 4, 5

Table 2. Second part of the summary of the SU(5)-charged spectra for the models reached by Higgsing SU(5) × U(1)4. The numbers indicate

charges under the U(1)s present, with subscripts indicating a discrete charge. For the pure discrete symmetry models the discrete charges are not

sub-scripted. The second row for each model lists the GUT singlets present. Models in bold are models accessible by Higgsing only E8 singlets and

therefore have charged matter spectra arising from the adjoint of E8 but with additional singlets.
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The final set of models with no U(1) symmetry are differentiated purely by their dis-

crete symmetries. Indeed it is interesting to note that models with discrete symmetries lie

outside the Higgsed E8 subset, marked in bold in the tables, so discrete symmetries are only

induced by Higgsing non-E8 singlets. However there is a set of discrete symmetries which

are not captured by our analysis. From the perspective of a Higgsed E8 theory these arise

from symmetries lying in SU(5)⊥ which are not embedded in its Cartan subgroup. They

occur when the Higgs vev is restricted beyond just which components are non-vanishing

but there are relations between the non-vanishing components.6 These non-generic Higgs

backgrounds can lead to models with discrete symmetries that come from a Higgsed E8.

We have not attempted to implement these in our classification because it is not clear what

the prescription should be to extend these beyond the Higgsed E8 picture. It would be

interesting to understand such symmetries better from a global perspective and thereby

gain some intuition as to how they may be implemented beyond a Higgsed E8.

2.3 Embedding known models

In the previous section we derived a class of theories that were specified by the symmetries

and representations present. Although motivated from F-theory geometry the analysis

was purely group theoretic. The correspondence between the theories described and F-

theory geometry should be essentially that the massless gauge fields and matter modes in

the geometry match those of the theories, and that the gauge invariant couplings between

fields correspond to points on SGUT where matter curves intersect. However there are some

differences to be expected which we should outline.

Of course the SU(5)GUT factor should match the associated non-Abelian singularity in

F-theory and its corresponding massless matter. The Abelian symmetries could correspond

to massless Abelian symmetries in F-theory, which would be additional sections of the

fibration. However in principle they could also correspond to massive Abelian symmetries.

If the symmetries are made massive through a Higgsing process, which geometrically is a

complex-structure deformation, then we expect this to be the same as Higgsing a GUT

singlet in our analysis and so the theory would just flow to a theory with less U(1)s in

our classification. In type IIB string theory we also know of two other ways that a U(1)

could become massive which do not correspond to a Higgsing by an open-string mode. The

first is through coupling to some background flux, and the second is through a geometric

mass, see for example [60–62]. In F-theory these are expected to uplift to backgrounds

supporting G-flux, which can lead to a mass for a U(1) as studied in detail for example

in [63], and to backgrounds which include a particular set of non-closed forms as studied

in [7, 62]. Since we are considering geometries with no background flux the first potential

mass term should be absent. The second mass term we expect to also be absent, at least in

the geometric constructions that we will consider, though since it is not fully understood in

an F-theory context one can not rule the possibility that it is present. One piece of evidence

6In terms of the Spectral Cover approach such symmetries occur when the Galois group of the roots

of the spectral cover is not a product of permutation groups (dictated by the U(1) factorisation) but

sub-groups of them. Or using earlier terminology when the monodromy group is not the full permutation

group. See [33, 56–59] for studies of this.
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for the absence of a hidden massive U(1) is that the discriminant splits into components

which have differing charges under the massless Abelian sector. If there was a massive

U(1) then one would expect further factorisation, as occurs for example in the models

where the U(1) is Higgsed to a discrete symmetry [26, 27]. Further, there are no additional

selection rules on Yukawa couplings in the geometries we will study beyond those of the

U(1)s (and possibly discrete remnants from Higgsing). Finally, it was argued in [7, 62, 64]

that one would expect such mass U(1)s would lead to geometries which do not allow for a

CY resolution.7 Therefore in looking to how geometric models constructed are embedded

in our classification we will take the most constrained embedding where the Abelian sector

is completely massless. We should however, in the absence of a solid proof, keep in mind

the possibility that a given geometric model can still be embedded inside one of our theories

with a larger Abelian sector and then the charges of the matter fields would be under some

subgroup of this large Abelian symmetry group which is the massless sector.

The matter representations should correspond to matter curves. In a given F-theory

geometry we certainly should not expect all the possible representations in our theories

to be present. An embedding of a geometric model in our classification should entail

showing that the massless matter present in an F-theory model forms a subset of the

representations in our model. The additional data of whether a representation corresponds

to actual massless matter is purely geometric and matter curves can indeed be turned on

and off by appropriate choices of fibrations.

We now come to consider which class of F-theory geometries we might expect to

be captured by our classification. Using the definitions in section 2 it is most natural

to study embeddings of F-theory geometries which form flat complete networks into our

classification. The flatness criterion affects most of the models in the literature since

they exhibit non-flat points. However, given a construction, the elliptic fibration can

be restricted further to turn off these non-flat points by choosing the parameters of the

fibration not generic but setting some to constants. Turning off the non-flat points in

this way restricts the fibration further and may turn off some of the matter loci. It is this

restricted fibration that we then attempt to embed into our set of theories. The criterion of

a partially complete network simply amounts to considering a generic base for the fibration

which we therefore assume in our embeddings. Finally, although most of the constructions

in the literature form complete networks there are a few which only form partially complete

networks. We will discuss these special cases below.

In table 3 we give the possible embeddings of models in the literature into our classi-

fication. We considered 30 fibrations. 8 of these had an SU(5) charged matter spectrum

which was embeddable in a Higgsed E8 theory, but apart from one (the 4 − 1 factorised

Tate of [11]) all of them also had GUT singlets which were not embeddable in the adjoint

of E8. Therefore 29 models were in fact not embeddable in a Higgsed E8 theory. One

model could not be made flat over a generic base, and of the remaining 29, once they were

constrained to be flat, 27 could be embedded into our classification. We present the analy-

7Note though that this was refined in [54] where it was shown that the non-CY element is present only

if the discrete symmetry is present already in M-theory, while if it only emerges in the F-theory limit then

it is possible to present a CY fibration.
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sis of restricting the fibrations to be flat in appendix A. In addition we did not list the four

models constructed in [11] with more that one U(1) which were based on a global extension

of Higgsed E8 theories (because a smooth resolution of them was not presented). There

the results are known by construction: the charged matter spectrum can be embedded in

a Higgsed E8 theory, while the GUT singlet spectrum can not be embedded.

There are two models, constructed in [29], which were not embeddable in our clas-

sification. They contain non-flat points but the analysis in appendix A shows that in

principle, for a restricted class of bases of the fibration, it is possible to turn them off by

an appropriate choice of fibration. This also turns off some of the matter curves but still

the remaining spectrum is not embeddable. There are two features of these models which

may be related to this property. The first is that they do not form complete networks but

only partially complete ones (as defined in section 2), ie. there are 5 matter curves which

do not have a 155̄ coupling. If one attempts to restrict the fibration so as to turn off these

5 matter curves then also the single 10 matter curve must be turned off and there is no E6

Yukawa point which places them outside our classification. They are the only models which

have this feature. Therefore our classification still includes all of the 27 models which form

complete flat networks.

The second interesting feature of the models is that they exhibit co-dimension three

points, located on matter curves, where the discriminant potentially enhances in vanishing

order but there is no coupling associated to the point. As an example, the discriminant for

the model I
s(0|12)
5 takes the schematic form

∆ ∼ σ2∆5w
5 +∆6w

6 +O
(

w7
)

. (2.16)

Here σ2 = w = 0 corresponds to a 5-matter curve [29]. The component ∆5 is some function

which does not vanish over σ2 = 0. The unusual property is that

∆6|σ2=0 = s3,1∆̃6 , (2.17)

where s3,1 is some section of the fibration. However there is no intersection of matter curves

at the locus σ2 = s3,1 = w = 0. Now the vanishing order of the discriminant at this point

can be either 6 or 7 depending on the vanishing order of σ2 at this point. If σ2 vanishes to

order one, then the discriminant vanishes to order 6, as it does over the rest of the matter

curve, and there is no enhancement. However if the vanishing order of σ2 is higher then

there is an enhancement of the vanishing order of the discriminant over this locus, but no

known associated physics. It can be checked that it is not possible to turn off all such

points where this feature occurs in the fibration consistently. We do not know if the fact

that these models are not embeddable is related to this feature or not.8

2.3.1 SO(10) models

The extension of the set of theories reached by Higgsing E8 in the case of SU(5) was based

on the fact that the SU(5) singlets coming from the adjoint of E8 were not sufficient to

8It is also interesting to note that this dependence of the vanishing order of the discriminant on the

vanishing order of some sections occurs in other models in the literature. In particular for top 2 in [20] one

finds this over the full matter curve c2,1 = w = 0. This curve also happens to exhibit a non-flat point. It

would be interesting to study this feature of fibrations further.
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Model spectrum embedded in

No U(1) models

[26, 27] {2, 2, 2}2
[27] {2, 2, 2}2

One U(1) models

[12] {3, 4, 3}

[20, 24] fiber type I
(01)
5 {3, 3, 2}

[24] fiber type I
(01)
5,ncnc {3, 3, 2}

[20, 24] fiber type I
(0|1)
5 {4, 5, 4} or {2,3,2}

[20, 24] fiber type I
(0|1)
5,nc {2,3,2}

[20, 24] fiber type I
(0||1)
5,nc {3, 4, 3}

Two U(1)’s models

[11] 4− 1 split {2,2,1}

[11] 3− 2 split {2,3,2}

Top 1 {3,5,6}

Top 2 {5, 8, 12}

Top 3 {4, 6, 7}

Top 4 {4, 6, 8}

[28] {5, 8, 12}

I
s(0|1||2)
5 (2, 2, 2, 0, 0, 0, 0, 0) {3,4,4}, {4, 6, 7}, {5, 8, 12} ∗

I
s(0|1|2)
5 (2, 1, 1, 1, 0, 0, 1, 0) {3,5,6}

I
s(0|1||2)
5 (2, 1, 1, 1, 0, 0, 1, 0) {5, 8, 12}

I
s(1|0|2)
5 (3, 2, 1, 1, 0, 0, 0, 0) {5, 8, 12}

I
s(01|2)
5 (3, 2, 1, 1, 0, 0, 0, 0) {4, 6, 8}

I
s(0|12)
5 (4, 2, 0, 2, 0, 0, 0, 0) Not embeddable

I
s(012)
5 (5, 2, 0, 2, 0, 0, 0, 0) Not embeddable

I
s(01||2)
5 (2, 2, 2, 0, 0, 0, 0, 0) {4, 6, 7}

I
s(0|1||2)
5 (2, 1, 1, 1, 0, 0, 0, 0) {3,5,6} *

I
s(01||2)
5 (2, 1, 1, 1, 0, 0, 0, 0) {4, 6, 7}

I
s(1|0|2)
5 (2, 1, 1, 1, 0, 0, 0, 0) {5, 8, 12}

I
s(0|2||1)
5 (1, 1, 1, 1, 0, 0, 1, 0) {5, 8, 12}

I
s(0|1||2)
5 (1, 1, 1, 0, 0, 0, 0, 0) No consistent way to turn off non-flat points.

[15] 2 Fibrations Any of the 2 U(1) models

Table 3. Known models and the spectrum they are embeddable in. The two U(1) models come

from [20] and [29]. An asterisk means that one needs to turn off the non-flat points to find an

embedding. The models marked in bold have SU(5) charged matter which is associated to the E8

part of the tree, see figure 1, though all such embeddings, with the exception of {2,2,1}, require

beyond E8 singlets.
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Model 10-matter 16-matter 16 16 10 coupling Non-flat loci

SO(10)×U(1) models

Top 1 b2 , c1,2 c2,1 c2,1 ∩ b2 c2,1 ∩ c1,2

Top 2 b0,2 , c3 c2,1 c2,1 ∩ b0,2 c2,1 ∩ c3

Top 3 b2c1,2 − b0,1c3,1 b0,1 , b2 b0,1 ∩ b2 , b0,1 ∩ c1,2 c3,1 ∩ b2

Top 4 c3,1 b2 - c3,1 ∩ b2 , b0,1

Top 5 c1,2 b0,1 c1,2 ∩ b0,1 b2

SO(10)×U(1)×U(1) models

Top 1 b0 , d1,1 d0 d1,1 ∩ d0 d0 ∩ b0 , c1,1

Top 2 c2 , b2,2d0 − c1,1d2,1 d0 , c1,1 d0 ∩ c2 , d0 ∩ c1,1 d0 ∩ d2,1 , c1,1 ∩ c2 , c1,1 ∩ b2,2

Top 3 b2,2 , c2 c1,1 - c1,1 ∩ b2,2 ,c1,1 ∩ c2 , d0

Top 4 c2 , d2,1 d0 c2 ∩ d0 d0 ∩ d2,1 , c1,1

Top 5 c2 , d0,1 b0 - b0 ∩ c2 , b0 ∩ d0,1 , b2,1

Table 4. SO(10) models based on the top constructions in [65]. We show the matter curves, the

coupling points, and the non-flat loci. The notation ci,j is such that the second index denotes the

vanishing order of the section in the coordinate defining the SO(10) divisor.

form a complete network with the charged matter. As mentioned already, this is not the

case for the higher GUT groups. Consider the next case of an SO(10) GUT which arises

from the breaking E8 → SO(10)× SU(4). Then the decomposition of the adjoint of E8 is

248 → (45,1)⊕ (16,4)⊕
(

16,4
)

⊕ (10,6)⊕ (1,15) . (2.18)

In terms of charges of the Cartan of SU(4) we have that the 16 reps are associated to ti,

10 reps are associated to ti + tj , and the SO(10) singlets are associated to ti − tj , with

i = 1, . . . , 4 and
∑

i ti = 0. Then the analogue situation to the pairs of 5 and 5̄ we can

make for SU(5) would be pairs of 10 representations here, but we see that for any such

pair there is an appropriate singlet to make a cubic coupling.

With this in mind it is interesting to consider SO(10) F-theory geometries with Abelian

sectors and their possible embedding in a Higgsed E8. We could expect that if the fact that

the SU(5) geometries were not embeddable in E8 is attributed to the missing singlets this

should not occur for the case of SO(10). Let us consider then some example SO(10) models.

We construct these as the tops over the P[1,1,2] and P[1,1,1] fibrations (which are the most

general ones for one and two U(1)s [13, 14, 51]) following [65] . Note that some aspects of the

one U(1) cases were studied already in [24]. The elliptic fibre for the two cases are given by

P[1,1,2] = w2 + b0u
2w + b1uvw + b2v

2w − u
(

c0u
3 + c1u

2v + c2uv
2 + c3v

3
)

, (2.19)

P[1,1,1] = vw (c1w + c2v) + u
(

b0v
2 + b1vw + b2w

2
)

+ u2 (d0v + d1w + d2u) . (2.20)

In table 4 we present the matter curves, their couplings and the non-flat points for the con-

structions. We did not calculate the U(1) charges as we will see that they are not needed

for our purposes. There are two immediately apparent differences between the SO(10) and
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SU(5) constructions: firstly the number of matter curves for SO(10) models is very small,

and secondly the non-flat loci are more prolific in the SO(10) case. These two facts together

imply that flat SO(10) fibrations are very restricted. We see that apart from Top 3 for

SO(10)×U(1) all the models are such that flatness implies a single 10 curve and a single 16

curve with a coupling intersection.9 Such a setup is easily embedded in a Higgsed E8 theory.

Top 3 for SO(10)×U(1) can lead to a flat model by setting c3,1 to be a constant, which leads

to a model with two 16 matter curves, denoted 161 and 162, and a single 10 matter curve.

The couplings present are 161 161 10 and 161 162 10. This implies a one parameter family

of possible charges for the curves. A one parameter family of charges satisfying the condi-

tions for such gauge invariant couplings to be present can be reached by Higgsing E8 by set-

ting t1 = t2 = t3. Therefore this model is also embeddable in a Higgsed E8. The full set of

models constructed therefore are all embeddable in a Higgsed E8 theory, consistent with the

fact that the singlet coming from the adjoint of E8 are sufficient to form a complete network.

2.4 Some phenomenological applications

The models constructed in section 2.2 open up phenomenological applications which were

not considered in local model building based on the Higgsing of E8, see [6] for a review of

this literature. We will not present a systematic study of the possible phenomenologically

realistic models that can arise from this set of theories, but discuss instead a number

of interesting aspects. One such aspect of the new models is that they admit discrete

symmetries. It is therefore natural to identify the MSSM matter-parity with a Z2 factor.

Note that in [66] a similar phenomenological study of models based on the top constructions

of [20], and some extensions of them, was performed and in particular also matter parity

candidates were constructed. In table 5 we list the possible embedding of matter parity

in the models which also allows for a gauge invariant top quark Yukawa coupling. As an

example consider the first model in table 5 based on {3, 4, 3}2. We consider taking all three

generations to be supported on one matter curve. In this case the assignment of charges

under the U(1)× Z2 symmetry group is

Q (10up) = 11 , Q (5̄down) = 21 , Q (5Hu
) = −20 Q (5̄Hd

) = −30 . (2.21)

With these charges the µ-term can be induced through the vev of the singlet Q (1µ) =

50, or through the F-term of its conjugate via the Giudice-Masiero mechanism [67]. It

is also possible to implement neutrino masses in this model in two ways. The first is

through the see-saw mechanism by choosing the right-handed neutrino to be the singlet

with charge Q (1νR) = 01. Note that it naturally picks up a Majorana mass since it has a

gauge invariant mass term. The other option is, following the mechanism in [68], to take

Q (1νR) = −51 which forbids a Dirac or Majorana mass but allows for the Kähler potential

term (5̄Hd
)
†
5̄down1νR which leads to the correct Neutrino mass scale after supersymmetry

and electroweak symmetry breaking.

9The model based on Top 2 for SO(10)×U(1)×U(1) requires a bit of analysis to show that there is no

possibility to make it flat while keeping two 16 curves, but it can be shown to not be possible by requiring

effectiveness of the sections in the fibration in an analysis similar to those presented in appendix A.
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up Yukawa down Yukawa µ-term Dir. mass D-5 PD Maj. Mass RHN

5
0

Hu
10

1

M10
1

M 5̄
0

Hd
5̄
1

M10
1

M 1
0
5̄
1

M5
1

Hu
5
0

Hu
5̄
1

M1
1

νR
1
0
1
1

νR
1
1

νR
(5̄0

Hd
)†5̄1

M1
1

νR

{3, 4, 3}2 10M : (1)1 5̄Hd
: (−3)0 1 : (5)0 1νR : (0)1 × X 1νR : (−5)1

5Hu
: (−2)0 5̄M : (2)1

{3, 4, 3}2 10M : (1)1 5̄Hd
: (2)0 × 1νR : (5)1 X × 1νR : (5)1

5Hu
: (−2)0 5̄M : (−3)1

{4, 5, 5}2 10M : (2)1 5̄Hd
: (4)0 × 1νR : (10)1 X × 1νR : (10)1

5Hu
: (−4)0 5̄M : (−6)1

{5, 7, 7}2 10M : (1)1 5̄Hd
: (−3)0 1 : (5)0 1νR : (0)1 × X 1νR : (−5)1

5Hu
: (−2)0 5̄M : (2)1

{5, 7, 7}2 10M : (1)1 5̄Hd
: (2)0 × 1νR : (5)1 X 1 : (10)0 1νR : (5)1

5Hu
: (−2)0 5̄M : (−3)1

{5, 7, 7}2 10M : (1)1 5̄Hd
: (7)0 1 : (−5)0 1νR : (10)1 × × 1νR : (15)1

5Hu
: (−2)0 5̄M : (−8)1

Table 5. Table showing the models which support a top quark Yukawa coupling and a Z2 symmetry

with charges matching those of matter parity in the MSSM.

A proposition made in [57] is to associate different generations to different matter

curves. In particular this potentially allows for an understanding of flavour physics of

the Standard Model in terms of the additional U(1) symmetries via the Froggatt-Nielsen

mechanism [69].10 We explored if the new theories beyond E8 offer new opportunities for

realising this idea. However we find no nice implementations of models where each gener-

ation is on a different curve and also dimension four proton decay operators are forbidden.

The underlying reason is that essentially one needs to have a generation-universal U(1)

symmetry to control dimension four proton decay operators. Now since the single three-

U(1) model beyond E8 does not enjoy a gauge-invariant rank one up-quark Yukawa matrix

at tree level, realistic flavor physics should come from two-U(1) models. Combined with

one U(1) being used for proton decay operators this does not leave sufficient freedom to

create the full flavour structure. We do find models where two generations lie on the same

curve which can partially reproduce realistic flavour physics but clearly not fully. Of course

if one was to dismiss dimension four proton decay operators, say by considering high-scale

supersymmetry breaking, then realistic flavour models can be found. We will not discuss

this possibility further at this point though.

3 Comments on heterotic duality

Some F-theory vacua are dual to compactifications of the Heterotic string. The general

statement is that the Heterotic string compactified on a Calabi-Yau (n + 1)-fold Xn+1

which is an elliptic fibration over a base Bn is dual to F-theory on a Calabi-Yau (n + 2)-

10We note that the non-E8 singlets play a nice role in the flavour physics model presented in [57]. There

was a problem in that model that the Guidice-Masiero mechanism for the µ-term required coupling to a

singlet which had charges beyond those of the E8 ones. The new singlets however have the appropriate

charges to play the role of the Guidice-Masiero field.
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fold Yn+2 which is elliptically fibered over a base B̂n+1 that is itself a P
1 fibration over

the original Heterotic base Bn. Since the perturbative Heterotic string is based on a ten-

dimensional E8 × E8 theory the role of E8 as a group which is Higgsed down is apparent.

Given the duality a natural question then arises regarding what are the Heterotic duals

of the singlets lying outside E8? In this section we study this question. Heterotic/F-

theory duality is not so well understood for the compactifications that we are considering,

in particular the presence of additional sections and these being four-dimensional rather

than six-dimensional compactifications means that the duality is rather complicated (see

however [70] for some work on this). This means that we will not be able to specifically

identify the dual states on the Heterotic side but instead present a collection of results

which may provide clues as to their nature.

The geometry on the F-theory side maps to both bundle data and geometry on the

Heterotic side. Specifically, if w = 0 is the locus of the non-Abelian divisor, in this case

carrying SU(5), then we should consider a Weierstrass formulation of the fibration

y2 − x3 = fx+ g , (3.1)

and expand the f and g coefficients in powers of w

f =
∑

i

fiw
i , g =

∑

i

giw
i . (3.2)

The prescription introduced in [3] is that fi with i = 0, . . . , 3 and gi with i = 0, . . . , 5

encode the information on the bundle in the E8 factor containing the SU(5). The terms f4
and g6 encode the geometry of the CY. And the higher order terms encode information on

the second E8. We will study the geometry on the Heterotic side for the specific example

models constructed in [20]. First though we can make some general statements regarding

the bundle data.

3.1 Bundle data

We begin be reviewing how the bundle data is recovered in the familiar case of compact-

ifications to six dimensions [3, 71]. In this case the base of the F-theory elliptic fibration

must be a Hirzebruch surface Fn with base coordinate z. Then the coefficients of the

expansions (3.2) have to be functions of z of degrees given by

deg (fi) = 8 + n (4− i) , deg (gi) = 12 + n (6− i) . (3.3)

Such configurations are dual to Heterotic bundles with 12 + n instantons in the first E8

and 12 − n instantons in the second E8. The particular role of E8 that we are interested

in is as the group in which the instantons are embedded, which determines their moduli

space. In particular if we want to preserve an SU(5)GUT so that the instantons must sit

completely in SU(5)⊥, then their moduli space is of dimension 36+5n. More generally, and

appropriately for generalising this configuration to four dimensions, the bundle associated

to the instantons is described by 36+5n parameters which are the coefficients of 5 functions
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bi where i = 0, 2, 3, 4, 5 with degrees 12+n−2i.11 The 5 functions bi are then the data of the

spectral cover description of the Heterotic bundle [72]. Now the fi and gi are ten functions

which, if generic, would encode 114+31n degrees of freedom, far more than 36+5n. They

are however not generic because they must be restricted so that we have a remaining SU(5)

singularity. This implies that they have relations which reduce their degrees of freedom to

the correct number and we will come back to the precise form of these relations soon.

Generalising this to four-dimensional compactifications the actual parameter counting

will change, since now the fi and gi are functions on a surface rather than P1, see [72] for

the generalisation, but the overall logic remains the same. The bundle on the Heterotic side

is still an SU(5) spectral cover bundle which is specified by 5 functions bi of the appropriate

degree in the base coordinates. These count deformations of the bundle inside of E8. We

now come to the map between the fi and gi and the bi. If we restrict to fibrations which can

be written in Tate form then this relation can be deduced by mapping to Weierstrass form

thereby getting a relation between the ai,j and the fi and gi. Then one can attempt to write

the ten functions fi and gi in terms of five functions bi which will themselves be functions

of the ai,j . An analysis of this was performed in [71] focusing on six-dimensional compact-

ifications with no additional sections. We find the general solution to this problem is

f0 = −1/48b45 , f1 = −1/12b25b4 , f2 = −1/12(b24 − 6b5b3) , f3 = 1/24b2 , (3.4)

g0 = 1/864b65 , g1 = 1/144b45b4 , g2 = 1/72b25(b
2
4 − 3b5b3) ,

g3 = −1/864(3b2b
2
5 − 8b34 + 72b5b4b3) , g4 = 1/144(−b2b4 + 36b23) + ∆g4 ,

g5 = 1/288b0 ,

where the functions which appear are given explicitly by

b5 = a1,0 ,

b4 = 2a2,1 + a1,1b5 ,

b3 = a3,2 + 1/12(−a21,1b5 − 4a2,2b5 − 2a1,2b
2
5) ,

b2 = 24a4,3 + (a31,1b5 + 4a1,1a2,2b5 + 12a3,3b5 − 4a2,3b
2
5 − 2a1,3b

3
5 − 2a21,1b4

−8a2,2b4 − 4a1,2b5b4 + 12a1,1b3) ,

b0 = 288a6,5 −
(

a21,1b2 + 4a2,2b2 − 12a21,1a3,3b5 − 48a2,2a3,3b5 + 2a1,2b2b5

−12a1,2a3,3b
2
5 + 12a1,1a3,4b

2
5 + 24a4,5b

2
5 + a21,1a1,3b

3
5 + 4a1,3a2,2b

3
5 + 12a3,5b

3
5

−2a1,1a1,4b
4
5 − 4a2,5b

4
5 − 2a1,5b

5
5 + 24a1,1a3,3b4 + 48a4,4b4

+2a21,1a1,2b5b4 + 8a1,2a2,2b5b4 + 24a3,4b5b4 − 8a1,1a1,3b
2
5b4

−16a2,4b
2
5b4 − 8a1,4b

3
5b4 − 8a1,1a1,2b

2
4 − 16a2,3b

2
4 − 8a1,3b5b

2
4

−144a3,3b3 + 24a1,1a1,2b5b3 + 48a2,3b5b3 + 36a1,3b
2
5b3 + 24a1,2b4b3

)

,

∆g4 = 1/576b25
(

a41,1 + 8a21,1a2,2 + 16a22,2 − 24a1,1a3,3 − 48a4,4 + 2a21,1a1,2b5 + 8a1,2a2,2b5

−24a3,4b5 + 2a21,2b
2
5 + 4a1,1a1,3b

2
5 + 8a2,4b

2
5 + 4a1,4b

3
5 + 8a1,1a1,2b4 +

16a2,3b4 + 8a1,3b5b4 − 24a1,2b3) . (3.5)

11The degrees of the functions lead to 13+9+7+5+3+5n = 37+5n parameters but one must subtract

an overall rescaling of all the functions which is a rescaling of w.
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The important point is that it is not possible to write the fi and gi in terms of just the

bi but there is a left-over piece ∆g4. Note that if we restrict the Tate coefficients to only

their leading components in the expansion in w, so setting ai,n = 0 for n > i− 1, then we

find ∆g4 = 0 and bi ∼ a6−i,5−i. So the leading order coefficients in the Tate form can be

mapped to the degrees of freedom associated to a bundle embedded in E8 through the spec-

tral cover. However the sub-leading coefficients can not all vanish else the dual heterotic

geometry would be singular (the discriminant of the dual elliptic fibration would vanish

identically). We therefore see that applying the Heterotic/F-theory duality prescription

reveals more degrees of freedom than would be associated to E8, those encoded in ∆g4,

which are associated to the sub-leading powers in w in the Tate model. Note that this

is consistent with the results of section 2.1 where we showed that Higgsing away from E8

involves a deformation of also the sub-leading terms, in that case a4,4.

It is interesting to note that the inability to write the fi and gi in terms of the degrees

of freedom associated to the spectral cover occurs for the first time for a spectral cover

of SU(5). In the sense that for SU(2) we have that f must vanish to order 3 and g to

order 5 so the data is encoded in two functions, f3 and g5 which match the spectral cover

data. For SU(3) we have f3, g4 and g5, which match onto the 3 functions in the spectral

cover. For SU(4) we have f2, f3, g3, g4 and g5. Now there are 5 functions on the F-theory

side but only 4 functions are needed to specify an SU(4) bundle. However if we take f

and g to originate from a Tate form, then it is simple to find a single relation between

the functions f3
2 ∼ g23, and therefore there are only 4 independent functions, matching the

spectral cover degrees of freedom. Another way to see this is that ∆g4 vanished over the

locus b5 = 0 which enhances SU(5) to SO(10). The first discrepancy therefore appears for

SU(5) matching the observation already raised that the singlets extending the adjoint of E8

are only necessary for a complete network in the case of an SU(5) GUT, while for SO(10)

and higher this is not so. It is tempting therefore to associate the additional degrees of

freedom in ∆g4 with the additional singlet fields present on the F-theory side. However a

specific map would require a more detailed understanding of the duality.

3.2 Geometry data

Since the additional singlets on the F-theory side are not embeddable in the adjoint of E8 it

is natural to associate their heterotic duals with non-perturbative states.12 The appearance

of non-perturbative gauge symmetries in the Heterotic string have been studied through

F-theory duality extensively in six dimensions, see [42, 72] for early papers, and there have

been some studies of four-dimensional cases, for recent work which includes a literature

overview see [75]. In the six-dimensional case non-perturbative Heterotic gauge symmetries

appeared when small instantons/bundle degenerations, or colliding M5-M9 branes, were

placed on a singularity in the geometry. On the F-theory side they appeared as non-minimal

singularities which required a blow-up of the base geometry. There are straightforward four-

dimensional generalisations of this phenomenon to curves of bundle degenerations [73, 74].

12It appears unlikely that they are perturbative states associated with the second E8 factor since at finite

string coupling the two E8 branes are separated and states charged under both become massive.
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singular singlets f4 g6 ∆het Singularity type

top 2 13 1 2 3 SU(2)

top 3 11 2 2 4 SU(2)

top 4 13 0 0 2 SU(2)

15 2 2 4 SU(2)

Table 6. Table showing the vanishing order of f4, g6 and ∆het over points associated to the

intersection of singlets with the GUT divisor in F-Theory.

In four-dimensions also co-dimension three non-minimal loci/bundle degenerations can oc-

cur [37]. The Heterotic origin of the additional singlets however remains unclear to us, in

this section we simply study some potential clues. In particular we are interested in a pos-

sible correlation between non-E8 singlets and singularities in the dual heterotic geometry.

Our first analysis was of the tops constructions of [20]. We relegate the details of the

analysis to appendix B, and here present an outline of the calculation and state the results.

We consider these fibrations on a general base which is appropriate for Heterotic duality,

ie. such that it is a P
1 fibration. The top fibrations exhibit non-flat points and so the

first step is to restrict them such that these non-flat loci are absent. We find that this

is possible, but restrictive, for tops 2, 3 and 4, while for top 1 it is not possible. Next

we analysed the dual Heterotic geometry by studying the discriminant from the f4 and g6
coefficients. We find that there are singular loci in the Heterotic geometry over points in

the base where in the F-theory geometry some singlet matter intersects the GUT brane.

The particular singlets responsible for the singularities, and the detail of the singularities

are shown in table 6. Note that they are all SU(2) singularities, similar to those found on

the F-theory side over curves supporting the singlets.

For tops 2 and 3 it is possible to restrict the fibration further such that the singular loci

in table 6 are absent and the heterotic dual geometry is smooth. In that case also the matter

spectrum is reduced, since some of the curves get turned off, and the resulting spectrum can

be embedded in a Higgsed E8 theory. If we do not restrict to a smooth fibration we find that

the spectrum for both top 2 and 3 can not be embedded in E8. These results are consistent

with an association of the heterotic duals of the singlets beyond E8 with singularities.

However, such an identification does not apparently work for a different type of fibra-

tion constructed in [11], the 3-2 factorised Tate fibration presented in section 2.1. There

the non-E8 singlet was associated to the point δ = β = w = 0, and it can be checked that

the Heterotic dual geometry does not exhibit a singularity over this point.13 We therefore

do not find a complete correlation between geometric properties of the heterotic dual and

the F-theory singlets extending E8. For the top models the singlets beyond E8 can be

associated to singular loci in the heterotic geometry, but this does not appear to hold for

the factorised Tate model.

13This is true for generic coefficients for the subleading, in w, terms of the Tate sections. It is possible to

find non-generic choices where there is a singularity present at that point. However we have no arguments

for why that particular choice must be imposed.
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4 Summary

In this work we studied the interplay between global F-theory GUTs and the group E8. In

particular we defined an extension of the set of theories that can be reached by a standard

Higgsing of E8. The extension amounts to introducing additional GUT singlets which do

not arise from the adjoint representation of E8 and Higgsing using these singlets to reach

new theories. We gave an explicit geometric construction of this process where a global F-

theory model, the so called 3-2 Factorised Tate model, included such an additional singlet

and could be deformed to a different fibration which amount to Higgsing by this additional

singlet. We then classified the full set of possible theories that could be reached by this

process, extending the 6 Higgsed E8 model types by an additional 20. We presented the

full set of representations and Abelian charges for these theories.

We went on to compare this extended set of theories with explicit fibrations constructed

in the literature. In total we considered 44 fibrations: 30 resolved SU(5) fibrations listed

in table 3, 10 SO(10) fibrations in table 4, and 4 more given as factorised Tate models

in [11] for which no resolution was presented. Of these, one could not be made flat and

two more did not form complete networks (as defined in section 2) and the remaining 37

resolved fibrations could all be embedded into our extended set of theories. Of these only

11 could also be embedded into a Higgsed E8 theory: the 10 SO(10) models and the 4− 1

factorised Tate. We noted that this could correspond to the fact that, in contrast to SU(5),

in Higgsing E8 to SO(10) no new singlets need to be introduced in order for all the possible

cubic couplings between fields to be present.

We also made some comments regarding the heterotic duals of the F-theory fibrations

which lie outside a Higgsed E8 theory. We noted that sometimes, but not always, there

can be a correlation between singlets outside of E8 and singularities on the heterotic dual

geometry. Also that the F-theory data which should encode bundle data on the heterotic

side contains more degrees of freedom than an E8 spectral cover bundle construction.

However we could not identify explicitly the heterotic dual origin for the singlet fields

extending E8 that were introduced in this work on the F-theory side.

The work presented is very much just an initial exploration of the relation between

E8 and global F-theory GUTs. There are many possible directions to explore along this

path. Most straightforwardly is to continue to check for more F-theory geometries which

are embeddable in E8, which in our extended set of theories, and which in neither. The

more ambitious goal, which this could be a step towards, is a geometric derivation of the

implications of the existence of a co-dimension three E6 point for the full theory on the GUT

surface. It is likely that the intersection structure of the matter curves would play a crucial

role in such a geometric understanding. In this work we restricted to complete networks

which means that the fibration is generic enough that all the cubic couplings which could

be present by gauge invariance are present. A next logical step would be an understand of

what happens in less generic cases where the fibration is such that some intersection points

are missing. Along the same lines, an incorporation of further more complicated effects

like fluxes and gluing modes into the question of the relation with E8 would be interesting.
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b0 b1 b2 c1 c2 d0 d1 d2

α− β + K̄ K̄ −α+ β + K̄ −α+ K̄ −β + K̄ α+ K̄ β + K̄ α+ β + K̄

Table 7. The classes of the sections in the fibration of [13, 14, 29]. K̄ is the anti-canonical class of

the base B3.

A general direction of future work which relates to some of the themes explored in

this paper is a better understanding of Heterotic/F-theory duality in four dimensions and

with additional sections. The fact that this duality has not been studied to any great

detail was one of the reasons we found identifying the Heterotic states dual to the F-theory

singlets difficult. It would be very nice to have a better understanding of this duality

and the relation to both perturbative line bundle models [76–78] and extensions of the

perturbative E8 symmetry.

The new models arising from Higgsing beyond E8 in F-theory have potential appli-

cations to phenomenological model building and therefore it would be worthwhile to con-

struct their associated geometries explicitly. Something which we noted is the presence

of additional discrete symmetries. Another point, raised in [12], is that additional matter

representations can relax anomaly cancellation constraints on hypercharge flux as studied

in [79–81] leading to more possible realisations of this mechanism.
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A Embedding in the presence of non-flat points

Some of the two U(1) models studied in [29] are not directly embeddable in the tree. They

however contain non-flat points that once turned off also turn off matter curves. These

models are labeled by their Kodaira fiber I and the two sets

(n1, n2, n3, n4, n5, n6, n7, n8)

[d2,n1
, d0,n2

, b0,n3
, d1,n4

, b1,n5
, c2,n6

, b2,n7
, c1,n8

] . (A.1)

The integers ni denote the leading non-vanishing order of the Tate model coefficients,

while the terms in square brackets define a specialisation of the Tate form coefficients. The

homology classes of the coefficients are combinations of three classes on the base B3 denoted

K̄, α, and β and are given in table 7. There are five a priori non-embeddable models:

1. The first model is

I
s(0|1||2)
5 :

{

(2, 2, 2, 0, 0, 0, 0, 0)

[−,−,−, σ2σ5, σ2σ4 + σ3σ5, σ3σ4, σ1σ2, σ1σ3]

}

. (A.2)
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It has non flat points at the loci {σ2 = σ3 = 0} and {σ4 = σ5 = 0}. From table 7, we

can read off the classes of the sections σi to be:

[d2,2] = α+ β + K̄ − 2ω

[d0,2] = α+ K̄ − 2ω

[b0,2] = α− β + K̄ − 2ω

[d1] = [σ2] + [σ5] = β + K̄

[b1] = [σ2] + [σ4] = [σ3] + [σ5] = K̄

[c2] = [σ3] + [σ4] = −β + K̄

[b2] = [σ1] + [σ2] = −α+ β + K̄

[c1] = [σ1] + [σ3] = −α+ K̄

There are thus four possibilities to turn them off:

(a) [σ2] = [σ4] = 0: this implies that the anti-canonical bundle K̄ = 0, which is

inconsistent.

(b) [σ3] = [σ5] = 0: same case as the previous one, hence inconsistent.

(c) [σ2] = [σ5] = 0: this implies [d1] = −α and [b2] = α. At least one of those

classes are not effective, which is inconsistent.

(d) [σ3] = [σ4] = 0. In that case, we must turn off two 5̄ curves. The resulting

spectrum is then embeddable in several models (see table 3).

2. Model

I
s(0|1||2)
5 :

{

(2, 1, 1, 1, 0, 0, 0, 0)

[−, σ1ξ3, σ1ξ2,−, σ4ξ3, σ4ξ2, ξ3ξ4, ξ2ξ4]

}

(A.3)

has three non-flat points at {σ1 = σ4 = 0}, {σ4 = ξ4 = 0} and {ξ2 = ξ3 = 0}. Using

a similar reasoning as before, one finds that the only consistent possibility to turn off

these points is to set at least [ξ4] trivial, turning off a 5̄ that then allow an embedding

in a {3, 5, 6} model.

3.

I
s(1|02)
5 :

{

(4, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ3σ4,−, σ2σ4 + σ3σ5, σ1σ3, σ2σ5, σ1σ2]

}

(A.4)

has non flat points at the loci {σ2 = σ3 = 0} and {σ4 = σ5 = 0}. There are therefore

four consistent ways to turn off the non flat points. The first is to set [σ2] = [σ5] = 0.

This constraints the classes to β = α − K̄ ≤ 0, ω ≤ α/2. The second possibility is

to set [σ3] = 0 = [σ4]. This leads to the same constraints as before, with the role of

α and β reversed. The two remaining possibilities lead to a vanishing anti-canonical

class, which is inconsistent.

We however find that even with a reduced spectrum, there is still no possible embed-

ding into the tree.
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4.

I
s(012)
5 :

{

(5, 2, 0, 2, 0, 0, 0, 0)

[−, σ1σ2, σ2σ5, σ1σ3, σ2σ4 + σ3σ5,−, σ3σ4,−]

}

(A.5)

is similar to the previous one: it has non-flat points at the same loci, and there

are two consistent ways to turn off the non-flat points. Either one sets the classes

[σ2] = 0 = [σ5]. The classes are then constrained to α ≤ 0, β = α + K̄ ≥ 5ω/2.

The other consistent possibility is to set [σ3] = 0 = [σ4]. This gives rise to the same

constraints on the classes, with the role of α and β reversed.

As for the previous case, we find no possible embedding in the tree.

5. The last case,

I
s(0|1||2)
5 :

{

(1, 1, 1, 0, 0, 0, 0, 0)

[ξ3δ3δ4, δ4(δ3ξ2 + δ2ξ3), ξ2δ2δ4, ξ3δ1δ4,

δ1(δ2ξ3 + δ3ξ2), δ1δ2ξ2, σ1ξ3, σ1ξ2]

}

(A.6)

has five non flat points:

{δ1 = δ2 = 0} {δ1 = δ4 = 0}

{δ1 = σ1 = 0} {δ2 = δ3 = 0}

{ξ2 = ξ3 = 0}

We find that there is no consistent way to turn them off by setting classes of the

different sections to zero.

B Heterotic duality and SU(5) × U(1) × U(1) tops

We begin by reviewing the necessary elements of the constructions in [20]. The elliptic

fibrations that we will use are written as a hypersurface in P
2

PT = vw(c1w+ c2 v) + u (b0 v
2 + b1 vw + b2w

2) + u2(d0 v + d1w+ d2 u). (B.1)

This hypersurface is singular and can be resolved through two blow-ups whose exceptional

divisors are associated to the two sections responsible for the U(1)×U(1) gauge symmetry.

The homology classes of sections appearing in (B.1) are combinations of three classes on the

base B3 denoted K̄, α, and β and are given in table 7. In order to induce a further SU(5)

singularity we require certain vanishing orders for the bi, ci and di in the GUT divisor w.

The possibilities are classified as the tops on this fibration which give 4 different models [20].

We are interested in studying the heterotic duals of these models which means we can

assume that the base B3 is a P
1 fibration over a base B2 which means that the anti-canonical

class can be written as

K̄ = c1 (B2) + 2w + t , (B.2)

where w is the is the divisor supporting the SU(5)GUT group and t is some class specifying

the P
1 fibration.
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top 1 top 2 top 3 top 4

non-flat point {b1 = d1 = 0} {b1 = c2,1 = 0} {b1 = c1 = 0} {b1 = b0,1 = 0}

restriction on cannot be aw = 2 aw = 2 aw = −1

aw, bw satisfied bw = 1 bw = 0 bw = 0

Table 8. Constraints on aw and bw from the effectiveness of the ki,j and turning off the non-flat

points.

The four top fibrations studied in [20] had co-dimension three points where the fibration

was non-flat and the fibre jumped in dimension. As mentioned previously such loci are

associated to tensionless strings from wrapped M5-branes which we should avoid in thinking

about an embedding in E8. Since these are co-dimension 3 points it may be that on a

specific base they would just be absent, but if we wish to keep the analysis general and

only study the fibration structure the way to guarantee their absence is to restrict the bi, ci
and di sections in such a way as to forbid the non-flat points. Before we consider a particular

top model, let us outline the general procedure we are going to follow. First we expand

the line bundles α and β into a piece depending on the base B2 and one depending on w

α = αB2
+ aww , β = βB2

+ bww , aw, bw ∈ Z . (B.3)

For a specific base B3 we could further expand the first piece into the generators of the

Mori cone of B2. However we wish to consider generic P1 fibrations here and so can not do

this. We can nevertheless derive some general restrictions: since w is independent from the

classes coming from the B2 piece we can consider it separately. Effectiveness of the classes

of bi, ci and di will then give a set of inequalities acting on the w coefficients aw and bw. Of

course such an analysis only gives a necessary constraint rather than a sufficient one, as we

do not consider the effectiveness in the expansion of generators of B2. The non-flat points

are determined as an intersection of two curve classes and we turn the non-flat points off

by setting one of the curve classes trivial in homology. This will then give an additional

equality to be satisfied.

As an example consider top 2 from [20]. In this model the leading vanishing orders of

the sections in the coordinate w normal to the divisor are given by:

b0 = b0,3w
3 , c2 = b2,1w , d0 = d0,2w

2 , d2 = d2,1w . (B.4)

Top 2 has a non-flat point at {b1 = c2,1 = 0}, which we turn off by setting

[c2,1] = K̄ − w − β = 0 , (B.5)

since we want to keep the 10 matter curve at b1 = 0. This therefore fixes bw = 1. Now

requiring that all the bi, ci and di are effective also uniquely fixes aw = 2. The results of

applying the same analysis to the other top models can be found in table 8. In summary,

for the models top 2–4 there is a unique choice of the w-coefficients of the line bundles α,

β such that all sections are effective and the non-flat point is turned off. In contrast, there
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constr. on coupling turned off curves

top 2 (×) α = 2c1(B2) + 2t+ 3w

(X) α = c1(B2) + t+ 2w 1(1),1(3),1(5),5(1),5(2)

top 3 (×) β = 2c1(B2) + 2t+ 2w

(X) β = c1(B2) + t 1(1),1(3),1(5),5(2)

top 4 (×) α = c1(B2) + t+ w

(×) 2c1(B2) + 2t+ 3w = 0

α = −w

Table 9. Different choices to turn off the singular singlets. The X and × symbol indicate whether a

particular choice agrees with the constraints derived from turning off the non-flat point and having

effective sections. Note that there is a unique choice to do so in top 2 and 3 and no such choice in

top 4. The last column which curves are turned off by these restrictions.

top 2 top 3

U(1)1 −t1 + 4t2 − t3 − t4 − t5 t1 − 4t2 − 4t3 + 6t4 + t5

U(1)2 −2t1 + 3t2 + 3t3 − 2t4 − 2t5 t1 + t2 − 4t3 + t4 + t5

10 t1 t1

5̄A t2 + t3 t2 + t5

5̄B t1 + t2 t3 + t4

5̄C t1 + t4 t3 + t5

5̄D t3 + t4 t2 + t4

1A t2 − t3 t1 − t2

1B t1 − t2 t3 − t1

1C t3 − t1 t2 − t3

Higgsing t1 = t4 = t5 t1 = t2 = t4

Table 10. Two example embeddings of matter and relevant singlet spectrum in E8 for top 2 and 3

once the heterotic geometry is restricted to be smooth. Note that in these embeddings the singlets

giving rise to singularities in the heterotic geometries are not embeddable.

is no possibility to do this for top 1, that is it does not allow for a heterotic dual in terms

of the geometries considered.

Having restricted the fibrations to be flat on the F-theory side we calculated the dis-

criminant of the fibration of the Heterotic dual geometry (constructed from the f4 and g6
coefficients of the F-theory fibrations). We find that there are singularities in the Heterotic

geometry over the points where in the F-theory dual some of the singlets intersect the GUT

brane. In table 6 we present the singularities and which singlet intersection points they

are associated to.
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For tops 2 and 3 it is possible to restrict the fibration so that the singularities are

absent. The restriction is shown in table 9. Restricting the fibration in this way also turns

off some of the GUT singlets and charged matter on the F-theory side. For both top 2 and

top 3 we find that before turning off the singular heterotic loci it is not possible to embed

the matter (including the singlets) spectrum in E8, while after restricting the fibration so

that the Heterotic dual is smooth the resulting spectrum can be embedded in E8. This

embedding is given in table 10.
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