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Abstract

Background: Normalization in real-time qRT-PCR is necessary to compensate for experimental variation. A popular
normalization strategy employs reference gene(s), which may introduce additional variability into normalized
expression levels due to innate variation (between tissues, individuals, etc). To minimize this innate variability,
multiple reference genes are used. Current methods of selecting reference genes make an assumption of
independence in their innate variation. This assumption is not always justified, which may lead to selecting a
suboptimal set of reference genes.

Results: We propose a robust approach for selecting optimal subset(s) of reference genes with the smallest
variance of the corresponding normalizing factors. The normalizing factor variance estimates are based on the
estimated unstructured covariance matrix of all available candidate reference genes, adjusting for all possible
correlations. Robustness is achieved through bootstrapping all candidate reference gene data and obtaining the
bootstrap upper confidence limits for the variances of the log-transformed normalizing factors. The selection of the
reference gene subset is optimized with respect to one of the following criteria: (A) to minimize the variability of
the normalizing factor; (B) to minimize the number of reference genes with acceptable upper limit on variability of
the normalizing factor, (C) to minimize the average rank of the variance of the normalizing factor. The proposed
approach evaluates all gene subsets of various sizes rather than ranking individual reference genes by their stability,
as in the previous work. In two publicly available data sets and one new data set, our approach identified subset(s)
of reference genes with smaller empirical variance of the normalizing factor than in subsets identified using
previously published methods. A small simulation study indicated an advantage of the proposed approach in
terms of sensitivity to identify the true optimal reference subset in the presence of even modest, especially
negative correlation among the candidate reference genes.

Conclusions: The proposed approach performs comprehensive and robust evaluation of the variability of
normalizing factors based on all possible subsets of candidate reference genes. The results of this evaluation
provide flexibility to choose from important criteria for selecting the optimal subset(s) of reference genes, unless
one subset meets all the criteria. This approach identifies gene subset(s) with smaller variability of normalizing
factors than current standard approaches, particularly if there is some nontrivial innate correlation among the
candidate genes.

Background
Normalization is important in real-time qRT-PCR analy-
sis because of the need to compensate for intra- and
inter-kinetic RT-PCR variations [1-3]. Such variations
may be due, for example, to the difference in amount of
starting material between the samples, difference in

RNA integrity, cDNA sample loading variation, or dif-
ference in RT efficiency. One of the most popular meth-
ods is normalizing a target gene expression to the
ribosomal RNAs (rRNA) or messenger RNAs (mRNA)
from an internal control or reference gene(s). Such
reference genes, also called housekeeping genes, should
be expressed in abundance, not be co-regulated with the
target gene, and have minimal innate variability. On the
other hand, the expression of these genes should vary in
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accordance with the experimental error associated with
the technique (due to sample processing and loading,
etc) in order to correct for these errors through
normalization.
The variability of a reference gene has two major

sources, experimental variability associated with the tech-
nology and the innate or natural variability of the refer-
ence gene (between tissues, individuals, etc). The original
approach to normalization was to find a single reference
gene with the most stable (in the sense of the smallest
variability) expression across tissues and individuals.
Starting with the work of Vandesompele et al [4], nor-
malization is carried out using a geometric mean (inverse
natural logarithm of the mean of the log-transformed
gene expressions) of multiple internal control genes as a
normalizing factor. The rationale is that the same experi-
mental error should be present in all genes expressed in
the same sample, if all genes are processed simulta-
neously. Thus, the experimental errors of individual
replicates are averaged across the reference genes, and a
geometric mean provides a more robust estimate of the
experimental error than individual reference genes. In
cases of unregulated and uncorrelated reference genes,
the innate variance component of the geometric mean
variance is no larger than the largest innate variance
component of individual reference genes divided by
their total number. Therefore, by increasing the number
of reference genes with bounded innate variance, one
can theoretically make the innate variance of their
geometric mean as small as desired. However, it is
expensive and impractical to process too many reference
genes for each sample. Thus, careful selection of a small
reference genes subset with optimal properties is very
important.
It is well documented that optimal reference genes

vary according to tissues and treatments [5-7] and that
the final choice of the reference genes should be vali-
dated for each particular qRT-PCR study [1,2,6]. Thus,
as a part of assay validation, candidate reference genes
are studied and optimal genes selected for inclusion into
normalizing factors.
Vandesompele et al [4] proposed an algorithm that

ranks individual candidate reference genes according to
their stability measure, which is the average pairwise
variation of a particular gene with all other candidate
reference genes. The pairwise variation is defined as the
standard deviation of the log-transformed ratios of
expressions of paired genes. The algorithm first selects a
pair of two candidate reference genes that have the
highest expression agreement (that is the smallest varia-
bility in the ratios) among all possible pairs of genes.
Then, the next stable reference gene is identified as the
one, which has the highest agreement with the rest of
the candidate genes and with the geometric mean of the

first two selected reference genes, and so on. Thus, the
algorithm relies on sequential pair-wise comparisons,
which does not guarantee that the optimal subset of
three or more genes would be identified.
A more comprehensive approach to selection of the

optimal subset of reference genes is to fit a common
model that would allow simultaneous quantification and
comparison of variability in all candidate genes. This is
the approach taken, for example, in [8-10], where var-
ious ANOVA and linear mixed effects models were
used for the log-transformed gene expression ratios of
all candidate reference genes at once. These models
incorporate the average gene effect or the average gene-
by-tissue type effect (if multiple tissue types are consid-
ered), the effect of each individual sample (within each
tissue type) and heteroscedastic error terms with the
variances that differ by gene and tissue type. Szabo et al
[9] used the variance component estimates from the
model to rank the variances of the candidate reference
genes and estimate the standard deviation of the log
geometric means of the best (in the sense of the smal-
lest variability) gene set for each possible set size (1, 2,
3, and so on). Andersen et al [8] proposed a new mea-
sure of gene expression stability based on the variance
components estimates from the fitted ANOVA model.
Similar to [4], this stability measure also allows ranking
individual candidate reference genes from the most to
the least stable. Abruzzo et al [10] considered linear
mixed effects models for log-transformed gene expres-
sion and demonstrated that treating experimental errors
as random effects provides a much better model fit
than using ANOVA models, whose assumptions were
violated.
The crucial assumption underlying all these methods

is independence in innate variation of the candidate
reference genes. The corresponding statistical models
assume that correlation between expressions of different
genes in the same sample comes exclusively from the
experimental variation in the sample. In contrast, we
have observed that even after subtracting the random
(or fixed) effects of sample, residuals may exhibit non-
trivial correlation between some candidate reference
genes (see Results). Therefore, estimates of the standard
deviation of the log geometric mean may change sub-
stantially when correlation is properly estimated and
incorporated. This, in turn, can change the ranking of a
subset of candidate reference genes with respect to
optimality for inclusion into normalization factors.
We developed a robust approach for directly selecting

optimal subset(s) of reference genes rather than addres-
sing stability of individual candidate genes. Our
approach is based on estimating the unstructured covar-
iance matrix of all available candidate reference genes
and using this covariance matrix to estimate the
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variances of the log normalizing factors (geometric
means of the expression of multiple genes) correspond-
ing to all possible subsets of reference genes. Robustness
is achieved through bootstrapping candidate reference
gene samples and obtaining the bootstrap upper confi-
dence limits for the variances of the log transformed
normalizing factors and average ranks of reference gene
subsets with respect to the variance of their geometric
mean in all bootstrap samples. A bootstrap procedure
was proposed earlier [11] to maximize the robustness of
the approach in [4] for ranking individual genes. In con-
trast, our procedure ranks the entire gene subsets of all
possible sizes. Using the proposed approach, the optimal
subset of the reference genes may be selected (A) to
minimize the variability of the normalizing factor; (B) to
minimize the number of reference genes with acceptable
upper limit on variability of the normalizing factor; or
(C) to minimize the average rank of the variance of the
normalizing factor.
Two publicly available data sets and one new data set

from the validation study of five candidate reference
genes for normalization of guanylyl cyclase C (GUCY2C)
mRNA expression in blood are used to illustrate the pro-
posed method and compare to earlier published results.
In addition, a small simulation study was conducted to
evaluate the performance of the proposed approach
under known correlation structures assuming varying
degrees of innate correlation among candidate reference
genes.

Methods
Model for the log-transformed expression levels of
candidate reference genes
To incorporate all correlations among candidate reference
genes, we simultaneously model their log-transformed
expression levels or threshold cycle (Ct) numbers in a
multivariate linear mixed effects model with unstructured
covariance matrix. The normality assumption is usually
appropriate for log-transformed expression levels or
Ct numbers in homogeneous populations of samples.
Let yjik be the kth, k = 1,..., K, replicate of the log-

transformed expression level or threshold cycle Ct for
the candidate reference gene j, j = 1,..., J, in sample i, i =
1,..., N. Denote by Yik = [y1ik,..., yJik]

T the vector of log-
transformed expression levels for all J candidate reference
genes in replicate k of sample i. For a homogeneous
population of samples, vector Yik may be modeled as

Y g s r eik i i ik= + + + , (1)

where vector g = [g1,...,gJ]
T and gj is the average log-

transformed expression level for the candidate reference
gene j, si = [si,..., si]

T is the random effect of ith sample,
which reflects the experimental variation and is the

same for all genes, so that si = si [1,...,1]
T, ri = [ri1 ,..., riJ ]

T is the vector of random gene effects in sample i, and
eik = [eik1 ,..., eikJ ]

T is the vector of error terms in repli-
cate k.
It is assumed that sample random effects si, random

gene effects vectors ri, and the error terms vector eik are
all independent, si are identically normally distributed as
N(0, s2), vectors ri are identically normally distributed as
J-variate normal distribution MVNJ(0,R), and eik are
identically distributed as MVNJ(0,D), D = Diag(τ1

2,..., τJ
2).

For each gene j and sample i, model (1) implies that

y jik i ji jik= + + +g s r ej

and vectors Yik have a multivariate normal distribution

, ,Y g Vik J= ( )MVN (2)

where V = s21J×J + R + D and 1J×J is J×J matrix of
ones.
Our model (1) generalizes models 4 and 5 in [10] by

assuming a general unstructured positive definite matrix
R rather than imposing a simple uncorrelated structure
with R = Diag(δ1

2,..., δJ
2). Sunberg et al [12] also men-

tion in discussion a model similar to (1) in terms of
covariance structure.
For multiple tissues and possible covariates affecting

Yik the mean vector g would have to be replaced by
some linear mean model. Since the proposed methodol-
ogy utilizes only covariance parameters estimates, it is
straightforward to extend developments to the case with
a linear mean model instead of the mean vector g. The
standard way to write a general linear mean model is
Ab, where A is some design matrix and b is the vector
of unknown parameters. For model (1), A is just the
identity matrix and b = g. In the general case, the
model is written as

Y A s r eik i i ik= + + + . (3)

Notably, such extension has no effect on the assumed
covariance structure of the data. For example with just
multiple tissues, t = 1,.., T, one can use the model

Y g g s r etik i i ik= + + + +t ,

where vector g = [g1,...,gJ]
T represents now across tis-

sues average log-transformed expression levels for all
candidate reference genes j = 1,..., J, and vector gt repre-
sents the mean differences in expression attributed to
tissue t.
In most analyses of qRT-PCR data, the Ct numbers

for the replicates of the same reaction are averaged, and
the majority of methods for selecting optimal subsets of
reference genes also operate with averaged replicates,
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which is appropriate if averaged replicates are to be used
for normalizing the target gene. For this reason, and to
simplify notation, in further development we do not use
multiple replicates of the same reaction. With averaged
replicates, vectors Yik and eik in model (1) no longer
depend on index k and model (1) is simplified to:

Y g s ri i i= + + , (4)

where vectors ri effectively incorporate both, the
random gene effects and the errors of gene expression
measures. The multivariate formulation (2) still applies
to model (4) with V = s21J×J + R. If we consider a speci-
fic case of model (4) with si being fixed rather than
random effects (so that V = R) and R = Diag(δ1

2,..., δJ
2)

then we obtain model 1a in [9].
In general, the variance components s21J×J, R, and D

in models (1) and (4) are not identifiable unless one
imposes additional constraints on the structure of R and
D. In previous work, R was constrained to be diagonal,
which corresponds to the independent random effects of
reference genes. Our approach is to estimate V as an
unstructured covariance matrix without separating the
variance components, and then use V to compute the
variance of the log geometric mean of any possible
subset of reference genes. An unstructured J×J matrix
V has J(J + 1)/2 unknown parameters, with the total of
J(J + 1)/2 + J = J(J + 3)/2 unknown parameters for
model (2). Hence, one needs at least samples of size
N > (J + 3)/2 to estimate model (2). With a moderate
number of samples available, the estimates of V may not
be reliable. To overcome this, we propose to utilize
bootstrap re-sampling and compute the upper confi-
dence bounds for the variances of the geometric means.
Such upper confidence bounds would properly reflect
uncertainty in estimation of the variances.

Variability of geometric means of multiple genes
Further we focus on single or averaged multiple repli-
cates of a gene in the sample and assume model (4)
with V = s21J×J + R. The log geometric mean expression
of a subset of L ≤ J reference genes j1, j2 ,...,jL in sample
i is computed as

F j j Li 1 L, , ( ) / ( ) = + +y yij ijL1 (5)

In a vector form, (5) may be written as

F j j Li 1 L
1, , , ,( ) = −

…CT
j jL i1 Y

where Jx1 vector Cj1,...,jL has elements equal to 1, if j =
j1, j2 ,..., jL, and elements equal to 0 otherwise. Since
Yi = MVNJ (g, V), the variance of Fi(j1,..., jL) is

Var F j j Li 1 L
2, , , , , ,( )⎡⎣ ⎤⎦ = −

… …C CT
j jL j jL1 1V (6)

Thus, the total variance of the log geometric mean of
any subset j1, j2,..., jL of reference genes may be esti-
mated using (6) with the corresponding vector Cj1,...,jL

and matrix V, which is estimated by fitting model
Yi ~MVNJ (g, V). Representation (6) allows computing
the variance of all possible Fi(j1,..., jL) through the nested
J cycles exhausting all possibilities for vectors Cj1,...,jL.
When V = s21J×J + R, then (6) implies

Var F j j Li 1 L
2 2, , , , , ,( )⎡⎣ ⎤⎦ = + −

… … C CT
j jL j jL1 1R (7)

Hence, the log geometric mean of any subset of refer-
ence genes includes the same variance component s2

corresponding to the experimental error present in all
gene expressions for the same sample. Therefore, mini-
mizing the total variability of the log geometric mean is
equivalent to minimizing the variability described by R.

Selection of the optimal subset of reference genes
Using model (4) and expression (6), we propose a robust
approach for selecting optimal subset(s) of reference
genes with the smallest variance of the corresponding
normalizing factors. Robustness is achieved through
bootstrapping candidate reference genes data to obtain
the bootstrap upper confidence limits for the variances
of the (log) normalizing factors (geometric means) for
all possible gene subsets as well as the distribution of
ranks of these variances. The bootstrapping also allevi-
ates the uncertainty in estimation of potentially large
number of parameters in unstructured covariance
matrix V.
Specifically, for each bootstrap sample, the following

analyses are performed:

(i) Unstructured covariance matrix V of all available
candidate reference genes is estimated from model
(2). In this work, the estimates of V were computed
in SAS PROC MIXED (SAS 9.2, SAS Institute, Cary,
NC), but any other software capable of fitting liner
mixed effects or MANOVA models may be used as
well.
(ii) Vectors Cj1,...,jL for all possible subsets of reference
genes are generated and expression (6) is used to
compute the variance of the log geometric mean for
each possible subset of reference genes. There is a
finite, although rather large number, 2J-1, of possible
subsets of J reference genes, and the absolute mini-
mum is always attained. In practical qRT-PCR valida-
tion studies, the number of candidate reference genes
J would not be expected to be much larger than 10.
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(iii) All possible subsets of reference genes are
ranked from the smallest to the largest variance of
the corresponding log geometric mean.

Based on results for all bootstrap samples, we compute
the bootstrapped upper 95% confidence limit for the var-
iance of the log geometric mean and the average rank of
this variance for all possible subsets of the reference
genes. Then the optimal subset of the reference genes
may be selected using one of the following criteria:

(A) to minimize the upper 95% confidence limit on
variability of the log geometric mean regardless of
the number of reference genes required;
(B) to minimize the number of reference genes given
that the upper 95% confidence limit on variability is
under some acceptable level;
(C) to minimize the average rank of the variance of
the log geometric mean.

The last criterion is similar in spirit to the bootstrap
ranking procedure in [11], with an essential difference
that they rank individual genes using the approach in

[4], while our procedure ranks the entire gene subsets of
all possible sizes. Also, rather than considering the
entire distribution of ranks, which is cumbersome for
(2J-1) possible subsets instead of just J reference genes,
we use the mean rank (average in all bootstrap samples)
as the measure of optimality in criterion (C). In the
absence of a desired limit on variability in criterion (B),
one ideally would want to find a reference gene subset
that satisfies both, criteria (A) and (C). To address cri-
teria (A) and (C) simultaneously, we plot the upper 95%
confidence limits vs. the average rank by the size of
gene subset (Figures 1, 2, 3). Such plots help to evaluate
how far or how close the competing gene subsets are in
terms of both criteria. A subset which is closest to the
lower left corner is optimal using both criteria (A) and
(C). If more than one subset is approximately the same
distance from the lower left corner (Figure 3), then it is
reasonable to pick the one with the smaller number of
genes as an optimal.
A simple direct comparison of our method vs. pre-

viously proposed methods was performed by computing
the log geometric mean and its variance for the optimal
subsets (for each set size) selected by different

Figure 1 Breast tumor data: 95% UCL vs. the average overall rank of the normalizing factors. Each point represents one of the possible
63 = 26-1 gene subsets. Different colors are used for the subsets with different numbers of genes included. The x-coordinate is the average
overall rank of the corresponding normalizing factor variance. The y-coordinate is the upper 95% confidence limit (95% UCL) for the standard
deviation of the log normalizing factor. The red dot, which is closest to the lower left corner, represents the optimal (in the sense of criteria
A and C) combination of two genes, ACTB and SF3A1.
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Figure 2 Neuroblastoma data: 95% UCL vs. the average overall rank of the normalizing factors. Each point represents one of the possible
1023 = 210-1 gene subsets. Different colors are used for the subsets with different numbers of genes included. The x-coordinate is the average
overall rank of the corresponding normalizing factor variance. The y-coordinate is the upper 95% confidence limit (95% UCL) for the standard
deviation of the log normalizing factor. Only sets with average rank less than 200 are shown on the plot.

Figure 3 Blood data: 95% UCL vs. the average overall rank of the normalizing factors (Ct numbers). Each point represents one of
the possible 33 = 25-1 gene subsets. Different colors are used for the subsets with different numbers of genes included. The x-coordinate is the
average overall rank of the corresponding normalizing factor variance. The y-coordinate is the upper 95% confidence limit (95% UCL) for the
standard deviation of the log normalizing factor.
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procedures. The advantage is direct evaluation of the log
geometric mean of interest while ignoring the rest of the
genes, which mimics the prospective use of the selected
reference genes (the other candidate reference genes
would not be available).
The macros implementing the proposed methodology

were developed in SAS 9.2 (SAS Institute, Cary, NC).
The corresponding SAS code is included as Additional
file 1. Simulation study was also performed using SAS
9.2. The real data were analysed in SAS 9.2 and geNorm
3.5 (VBA applet for Microsoft Excel 2000/XP/2003,
version 3.5 http://medgen.ugent.be/~jvdesomp/genorm/).

Results
Data Sets
The first dataset includes relative expression levels of 6
reference genes (ACTB, GAPDH, MRPL19, PSMC4,
PUM1, and SF3A1) quantified in 80 breast tumor sam-
ples. These data are described in detail in [9] and avail-
able for download http://genomebiology.com/content/
supplementary/gb-2004-5-8-r59-s1.xls. The second data-
set includes expression levels for 10 reference genes
ACTB, B2M, GAPDH, HMBS, HPRTI, RPLI3A, SDHA,
TBP, UBC, YWHAZ) quantified in 37 neuroblastoma
samples. These data (available at the web site http://gen-
omebiology.com/2002/3/7/RESEARCH/0034/additional/)
are part of the data from various tissues that were used
and described in [4]. This subset was selected because
the number of neuroblastoma samples (37) was the
highest among all tissue types included in the study
reported in [4].
The third dataset comes from a validation study of

five candidate reference genes for normalization of gua-
nylyl cyclase C (GUCY2C) mRNA expression in blood.
The RT-PCR assay to quantify GUCY2C mRNA in tis-
sues and blood employing external calibration standards
of RNA complementary to GUCY2C (cRNA) is
described in [13]. This work is a part of the ongoing
multi-institutional NCI-funded study of GUCY2C as a
biomarker for colorectal cancer [14]. The study will
determine the utility of GUCY2C mRNA expression in
blood for early detection of recurrence in patients with
colorectal cancer. Five candidate reference genes for
normalization of GUCY2C expression include ACTB,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
transferrin receptor (TFRC), peptidylprolyl isomerase
B (PPIB), and hypoxanthine-guanine phosphoribosyl-
transferase (HPRT). These genes were previously
considered as candidate reference genes for normalizing
mRNA expression of various targets in blood. RT-PCR
experiments were conducted using an ABI 7900
Sequence Detection System (Applied Biosystems, Foster
City, CA). Blood samples from 25 healthy volunteers
were analyzed as a part of the validation study of five

candidate reference genes. Blood was collected in Pax-
Gene Blood RNA tubes (Qiagen), and RNA was purified
according to the manufacturer’s instructions.
Here, the log transformed expression levels were com-

puted from the threshold cycle (Ct) numbers as in the
MS Excel add-on software gNorm, which implements
the method described in [4]. For each candidate refer-
ence gene, the largest Ct number is subtracted from the
Ct number for each sample, and the difference is expo-
nentiated with the base 2. The resulting expression
levels range between 0 and 1, with 1 corresponding to
the sample with the smallest threshold cycle number
and presumably the largest copy number of the corre-
sponding reference gene.

Results for the breast tumour data
In the breast tumour data, we first investigated innate
correlation among 6 reference genes using the residuals
from model 1a in [9]:

y ji i ji= + +g s ej , (8)

where si are assumed to be fixed rather than random
effects and each gene is assumed to have different var-
iance, yji ~N (gj, τj

2). The residuals were computed as

e y g sij ij j i

∧ ∧ ∧

= − − (9)

where g j

∧
and s i

∧ are estimated by fitting model (8).
Since si represents experimental variability in yji com-
mon for all reference genes in sample i, the residuals

e ij
∧ represent only the innate between-individual varia-
bility. Table 1 presents the Pearson correlation matrix of
residuals (9) from model (8) fitted to the data from
80 breast tumor samples. Note that the Pearson correla-
tion coefficient is significantly different from zero for
seven pairs of genes (in bold). Hence, the variance of

Table 1 Pearson correlation matrix of the residuals from
model (8) fitted to the data from 80 breast tumor
samples

ACTB GAPDH MRPL PSMC4 PUM

GAPDH Coeff.1 -0.112

p-value 0.324

MRPL Coeff.1 -0.476 0.021

p-value <.0001 0.851

PSMC4 Coeff.1 -0.246 -0.108 0.014

p-value 0.028 0.340 0.903

PUM Coeff.1 0.077 -0.352 -0.432 -0.510

p-value 0.496 0.001 <.0001 <.0001

SF3A1 Coeff.1 0.147 -0.086 -0.567 -0.313 0.160

p-value 0.194 0.447 <.0001 0.005 0.156
1Pearson correlation coefficient with p-value testing that it is zero
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the geometric means should depend not only on the
variances of the corresponding genes, but also on their
correlation, which cannot be ignored.
The proposed algorithm was applied to the breast

tumor data with 1000 bootstrapped (sampled with repla-
cement) data sets of size 80 from 80 samples. For each
possible gene subset size (1-6), Table 2 lists subsets with
the lowest bootstrap upper 95% confidence bound for
the variance of the log geometric mean. The absolute
lowest bound for the geometric mean variance (shown
in bold) is achieved by the combination of two genes,
ACTB and SF3A1. Thus, according to criterion (A),
ACTB and SF3A1 provide the optimal gene subset.
Table 3 presents the top 10 gene subsets with lowest
overall (regardless of the set size) average rank of geo-
metric mean variance in 1000 bootstrap samples. The
same subset of two genes, ACTB and SF3A1, comes up
optimal using the criterion (C). Figure 1 shows the
upper 95% confidence bound for Var(GM) vs. the aver-
age overall rank of the corresponding gene subset, visua-
lizing the optimality of ACTB and SF3A1. The subset of
three genes, ACTB, PUM1, and SF3A1 is very close to
ACTB and SF3A1 with respect to criterion (A) but not
with respect to criterion (C), which adds confidence in
ACTB and SF3A1 as the optimal set of reference genes.

In contrast, using the model in [9], the geometric
mean of four genes, MRPL19, PUM1, PSMC4, and
SF3A1, has the smallest estimated variability (the innate
standard deviation = 0.1490). The geometric mean cor-
responding to three genes, MRPL19, PUM1, and
PSMC4 (the innate standard deviation = 0.1494) yields
just a small increase in standard deviation. Thus,
MRPL19, PUM1, and PSMC4 may be considered an
optimal subset using the approach in [9].
For direct comparison of results, the empirical var-

iances of the geometric means of selected gene subsets
were computed for the actual log geometric means
based on the optimal subsets identified by the proposed
selection method and methods [4] and [9]. Table 4
reports these geometric means variances for gene sub-
sets of size from 2 to 4 since the size of the optimal
subsets ranges from 2 for the new method to 4 for the
method [9]. The optimal 4-gene subset using the
method [4] is not reported in [9]. Note that for any sub-
set size from 2 to 4, the geometric mean variance of the
genes selected using the proposed method is smaller
than for the other two methods. The geometric mean of
two genes, ACTB and SF3A1, selected as an optimal
subset using the proposed method, has the smallest var-
iance among all subsets (in bold in Table 4), and the

Table 2 Breast tumor data: Top ranked by set size bootstrap 95% upper confidence limit (UCL) for the variance and
standard deviation of the log geometric mean (GM)

Set Size(*) ACTB GAPDH MRPL19 PSMC4 PUM SF3A1 95% UCL Var(GM) 95% UCL StdDev(GM)

1 1 0 0 0 0 0 0.407 0.638

2 1 0 0 0 0 1 0.349 0.591

3 1 0 0 0 1 1 0.356 0.596

4 1 1 0 0 1 1 0.398 0.631

5 1 1 0 1 1 1 0.429 0.655

6 1 1 1 1 1 1 0.465 0.682

(*) in the column with gene name, 1 indicates that the corresponding gene is included in the subset and 0 that it is not included.

Table 3 Breast tumor data: Ten gene subsets with the smallest mean overall ranks of the variance of the log
geometric mean (GM)

Set Size(*) ACTB GAPDH MRPL19 PSMC4 PUM SF3A1 Mean rank of Var(GM)

2 1 0 0 0 0 1 1.2

3 1 0 0 0 1 1 2.0

2 1 0 0 0 1 0 3.2

2 0 0 0 0 1 1 4.7

4 1 0 0 1 1 1 6.1

1 1 0 0 0 0 0 6.4

3 1 0 0 1 0 1 8.1

1 0 0 0 0 0 1 8.8

4 1 0 1 0 1 1 9.2

4 1 1 0 0 1 1 10.3

3 1 0 1 0 0 1 10.6

(*) in the column with gene name, 1 indicates that the corresponding gene is included in the subset and 0 that it is not included.
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number of genes in this optimal subset is smaller than
the number of genes in the optimal or nearly optimal
subsets identified by using the approaches in [4] or [9].

Results for neuroblastoma data
For 34 neuroblastoma samples, the proposed new algo-
rithm yielded the smallest upper bound for the variance
of the geometric mean of six genes, ACTB, B2M,
GAPDH, HPRT1, TBP, and YWHAZ. However, the sub-
sets of four genes, ACTB, B2M, GAPDH, and TBP have a
negligibly higher upper bound (0.303 vs. 0.298, Table 5).
For these data, the methods in [4,9] yielded the same
results for any gene set size from 2 to 6. These appro-
aches yielded the optimal subset of again six but not the
same reference genes (GAPDH, HPRT1, SDHA, UBC,
HMBS, YWHAZ). That is, only three genes, GAPDH,
HPRT1, and YWHAZ, were common for two optimal
subsets using criterion (A) and previous approaches.
Table 6 presents the top 10 gene subsets with the
lowest overall (regardless of the set size) average rank

of geometric mean variance in 1000 bootstrap samples.
In these data, using the criterion (C) we do not identify
the same subsets as using (A) as optimal. The overall
average lowest rank corresponds to another set of
6 genes (ACTB, B2M, GAPDH, RPL13A, TBP, and
YWHAZ). However, the optimal sets of six genes by cri-
terion (A) and (C) have 5 genes (ACTB, B2M, GAPDH,
TBP, and YWHAZ) in common and differ only by
inclusion of RPL13A or HPRT1. Respectively, only two
genes, GAPDH and YWHAZ, are common for two
optimal subsets using criterion (C) and previous
approaches.
Figure 2 indicates that the set of 7 genes that include

all the genes selected using criteria (A) and (C) (ACTB,
B2M, GAPDH, HPRT1, RPL13A, TBP, and YWHAZ)
may be considered optimal with respect to both criteria
(A) (0.005 difference from the minimum upper bound
in Table 5) and (C) (second lowest average rank in
Table 6). However, the advantage of addressing both cri-
teria may not be worth the increase of the set size from
4 (ACTB, B2M, GAPDH, and TBP) to 7 by adding
HPRT1, RPL13A, and YWHAZ. In this situation, criter-
ion (B) with the acceptable upper limit of 0.55 on the
standard deviation scale would yield the optimal set
ACTB, B2M, GAPDH, and TBP.
Table 7 reports the geometric mean variances and

corresponding standard deviations for empirical geo-
metric means based on gene subsets of sizes from 2 to 6
selected using the new approach (gene subsets reported
in Table 5) and previously proposed approaches. Again,
for any subset size from 2 to 6, the geometric mean var-
iance of the genes selected using the proposed method
is smaller than for the other two methods. Furthermore,
even though previous and new approaches selected an
optimal subset of six genes, the subset selected ignoring
the correlation (GAPDH, HPRT, SDHA, UBC, HMBS,
YWHAZ) has 18% higher standard deviation than the

Table 4 Breast tumor data: Variability of log geometric
means based on optimal gene subsets identified by
various methods

Set
Size

Method Optimal set Variance
logGM

Std Dev
logGM

2 Szabo et al MRPL19, PUM1 0.517 0.719

2 Vandes. et al MRPL19, PSMC4 0.629 0.793

2 New ACTB, SF3A1 0.321 0.567

3 Szabo et al MRPL19, PUM1, PSMC4 0.531 0.729

3 Vandes. et al MRPL19, PUM1, PSMC4 0.531 0.729

3 New ACTB, SF3A1, PUM1 0.327 0.572

4 Szabo et al 1 MRPL19, PUM1, PSMC4,
SF3A1

0.464 0.681

4 New ACTB, SF3A1, PUM1,
GAPDH

0.369 0.607

1Same results using either the method of Vandesompele et al [4] or Szabo
et al [9]

Table 5 Neuroblastoma data: Top ranked by set size bootstrap 95% upper confidence limit (UCL) for the variance and
standard deviation of the log geometric mean (GM)

Set Size(*) AC1 B2M GA2 HM3 HP4 RP5 SD6 TBP UBC YW7 95% UCL Var(GM) 95% UCL StdDev(GM)

1 0 0 1 0 0 0 0 0 0 0 0.458 0.677

2 0 0 1 0 0 0 0 0 0 1 0.340 0.583

3 1 0 1 0 0 0 0 0 0 1 0.340 0.583

4 1 1 1 0 0 0 0 1 0 0 0.303 0.550

5 1 1 1 0 1 1 0 0 0 0 0.299 0.547

6 1 1 1 0 1 0 0 1 0 1 0.298 0.546

7 1 1 1 0 1 1 0 1 0 1 0.303 0.550

8 1 1 1 0 1 1 1 1 0 1 0.317 0.563

9 1 1 1 1 1 1 1 1 0 1 0.334 0.578

10 1 1 1 1 1 1 1 1 1 1 0.353 0.594

(*) in the column with gene name, 1 indicates that the corresponding gene is included in the subset and 0 that it is not included
1AC - ACTB; 2GA - GAPDH; 3HM - HMBS; 4HP - HPRT1; 5RP - RPL13A; 6SD - SDHA; 7YW - YWHAZ
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subset selected using the proposed approach (ACTB,
GAPDH, B2M, HPRT1, TBP, YWHAZ). Also, the opti-
mal subsets of size 4, 5, and 6 selected by the new
approach have virtually the same standard deviation of
the actual geometric means. Hence by selecting the opti-
mal subset of 4 genes (ACTB, B2M, GAPDH, and TBP)
one may expect ~15% reduction in the standard devia-
tion of the normalizing factors and a smaller number of
genes (4 vs. 6) to be processed for each sample.

Results for five reference genes for GUCY2C in blood
For five candidate reference genes for GUCY2C (ACTB,
GAPDH, HPRT, PPIB, and TFRC), the new approach
was applied to the log transformed relative expression
levels for direct comparison with previously proposed
methods and to the threshold cycle (Ct) numbers

because Ct numbers are actually used for efficiency
adjusted relative quantification [15].
Tables 8 and 9 shows the subsets of each possible size

(1-5) with the lowest bootstrap upper 95% confidence
bound for the variance of the log geometric mean and
corresponding standard deviations based on the log
transformed relative expression levels and Ct numbers,
respectively. For all set sizes except 4, the same gene
subsets are selected using relative expression levels and
Ct numbers. However, the smallest upper 95% confi-
dence bound is achieved by a single gene (GAPDH) if
we use the relative expression levels (Table 8), and by
two genes (GAPDH and TFRC) using the Ct numbers.
Tables 10 and 11 present the top 10 gene subsets with
lowest overall (regardless of the set size) average rank
(in 1000 bootstrap samples) of geometric mean variance
based on the log transformed relative expression levels
and Ct numbers, respectively. Notably, GAPDH and
TFRC have the lowest average rank under both condi-
tions. Hence, this set of 2 genes is optimal with respect
to both criteria (A) and (C) if we use the Ct numbers
(see Figure 3). Figure 4 shows that single GAPDH and
the subset GAPDH and TFRC are very close in terms of
both criteria (A) and (C) if we use the log transformed
relative expression levels. These results suggest that the
use of relative expression levels may alter the correlation
pattern among the candidate reference genes, and if Ct
numbers are used for relative quantification, then selec-
tion of the reference genes should utilize the Ct num-
bers as well.
For comparison, model 1a in [9] was also fitted treat-

ing the sample effects as fixed and assuming that the
correlation is zero. Based on this model, the estimated
variances of the reference genes were ordered as 0.110
(TFRC), 0.377 (GAPDH), 0.400 (PPIB), 0.441 (HPRT),
3.059 (ACTB). The variances of corresponding the geo-
metric means were 0.122 (geometric mean of TFRC,
GAPDH), 0.099 (geometric mean of TFRC, GAPDH,

Table 6 Neuroblastoma data: Ten gene subsets with the smallest mean overall ranks of the variance of the log
geometric mean (GM)

Set Size(*) AC1 B2M GA2 HM3 HP4 RP5 SD6 TBP UBC YW7 Mean rank of Var(GM)

6 1 1 1 0 0 1 0 1 0 1 52.1

7 1 1 1 0 1 1 0 1 0 1 59.9

5 1 1 1 0 0 1 0 1 0 0 63.8

6 1 1 1 0 1 1 0 0 0 1 76.7

6 1 1 0 0 1 1 0 1 0 1 87.5

5 1 1 1 0 0 0 0 1 0 1 92.2

6 1 1 1 0 1 1 0 1 0 0 93.3

7 1 1 1 1 1 1 0 0 0 1 95.9

7 1 1 1 1 0 1 0 1 0 1 96.4

7 1 1 1 0 0 1 1 1 0 1 103.0

(*) in the column with gene name, 1 indicates that the corresponding gene is included in the subset and 0 that it is not included
1AC - ACTB; 2GA - GAPDH; 3HM - HMBS; 4HP - HPRT1; 5RP - RPL13A; 6SD - SDHA; 7YW - YWHAZ

Table 7 Neuroblastoma data: Variability of log geometric
means based on optimal gene subsets identified by
various methods

Set
Size

Method Optimal set Variance
logGM

Std Dev
logGM

2 Vand GAPDH, HPRT 0.327 0.572

2 Szabo GAPDH, SDHA 0.374 0.612

2 New GAPDH, YWHAZ 0.250 0.500

3 Old1 GAPDH, HPRT, SDHA 0.348 0.590

3 New ACTB, GAPDH, YWHAZ 0.255 0.505

4 Old1 GAPDH, HPRT, SDHA, UBC 0.361 0.601

4 New ACTB, B2M, GAPDH, TBP 0.231 0.480

5 Old1 GAPDH, HPRT, SDHA, UBC,
HMBS

0.358 0.598

5 New ACTB, B2M, GAPDH, HPRT1,
RPL13A

0.224 0.473

6 Old1 GAPDH, HPRT, SDHA, UBC,
HMBS, YWHAZ

0.319 0.565

6 New ACTB, GAPDH, B2M, HPRT1,
TBP, YWHAZ

0.227 0.477

1Same results using either the method of Vandesompele et al [4] or Szabo
et al [9]
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PPIB), 0.083 (geometric mean of TFRC, GAPDH, PPIB,
HPRT), 0.176 (geometric mean of TFRC, GAPDH,
PPIB, HPRT, ACTB). This implies the optimal subset of
4 genes, GAPDH, TFRC, PPIB, and HPRT. Finally, the
variability of empirical log geometric means based rela-
tive expression levels on was computed (Table 12) based
on only the subsets of genes selected. The smallest
variability of log geometric means was achieved again by
GAPDH and TFRC, which were selected as an optimal
subset of size 2 using the approach in [9] but not in [4].
However, the Szabo et al [9] approach picked the
4-gene subset as the overall best one. Thus, using the
proposed approach allows reducing the optimal number

of genes required for normalization by half while also
reducing the variability of the normalizing factor.

Simulation study
A small simulation study was conducted to evaluate the
performance of the proposed approach assuming varying
degrees of innate correlation among reference genes,
independent of the variance component corresponding
to the sample random effect. Samples of size 25, 40, or
80 of 5-dimensional vectors, representing log trans-
formed expression levels, were generated from the
5-variate normal distribution according to model (4).
Since the mean part of the model does not affect either
the new or previously proposed methods, without loss
of generality, it was assumed that the mean vector had

Table 8 Blood data: Top ranked by set size bootstrap 95% upper confidence limit (UCL) for the variance and standard
deviation of the log geometric mean (GM) based on log transformed relative expression levels

Set Size(*) ACTB GAPDH HPRT1 PPIB TFRC 95% UCL Var(GM) 95% UCL StdDev(GM)

1 0 1 0 0 0 1.19 1.09

2 0 1 0 0 1 1.25 1.12

3 0 1 1 0 1 1.57 1.25

4 0 1 1 1 1 1.77 1.33

5 1 1 1 1 1 2.06 1.43

(*) in the column with gene name, 1 indicates that the corresponding gene is included in the subset and 0 that it is not included.

Table 9 Blood data: Top ranked by set size bootstrap 95% upper confidence limit (UCL) for the variance and standard
deviation of the log geometric mean (GM) based on Ct numbers

Set Size(*) ACTB GAPDH HPRT1 PPIB TFRC 95% UCL Var(GM) 95% UCL StdDev(GM)

1 0 1 0 0 0 6.22 2.49

2 0 1 0 0 1 6.06 2.46

3 0 1 1 0 1 6.66 2.58

4 1 1 1 0 1 7.29 2.70

5 1 1 1 1 1 7.91 2.81

(*) in the column with gene name, 1 indicates that the corresponding gene is included in the subset and 0 that it is not included.

Table 10 Blood data: Ten gene subsets with the smallest
mean overall ranks of the variance of the log geometric
mean (GM) based on log transformed relative expression
levels

Set
Size(*)

ACTB GAPDH HPRT1 PPIB TFRC Mean rank
of Var(GM)

2 0 1 0 0 1 1.5

1 0 1 0 0 0 2.8

3 0 1 1 0 1 3.7

3 1 1 0 0 1 5.3

2 0 1 1 0 0 5.7

1 0 0 0 0 1 7.0

4 1 1 1 0 1 8.1

3 0 1 0 1 1 8.2

2 1 1 0 0 0 8.8

4 0 1 1 1 1 10.7

(*) in the column with gene name, 1 indicates that the corresponding gene is
included in the subset and 0 that it is not included.

Table 11 Blood data: Ten gene subsets with the smallest
mean overall ranks of the variance of the log geometric
mean (GM) based on Ct numbers

Set
Size(*)

ACTB GAPDH HPRT1 PPIB TFRC Mean rank
of Var(GM)

2 0 1 0 0 1 1.7

1 0 1 0 0 0 2.1

3 0 1 1 0 1 3.5

2 0 1 1 0 0 4.4

1 0 0 0 0 1 5.3

3 0 1 0 1 1 5.6

4 0 1 1 1 1 7.3

2 0 1 0 1 0 8.3

3 0 1 1 1 0 9.6

2 0 0 1 0 1 10.4

(*) in the column with gene name, 1 indicates that the corresponding gene is
included in the subset and 0 that it is not included.
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all components equal to zero (g = 0). The covariance
matrix V of the simulated 5-variate normal samples had
the structure V = s21J×J + R, where s2 is the variance
component for sample random effect and R is the cov-
ariance matrix of random effects of genes, and J = 5.
Table 13 describes the correlation structures and result-
ing matrices V used in five different simulation scenar-
ios. The values of s, the standard deviation for the
sample random effect, ranged from 0.02 to 0.16, while
correlation coefficients corresponding to the R matrices,
were 0, ±0.2, or ±0.4, representing zero, weak and
strong correlation respectively. The R matrices used
were defined by five standard deviations, corresponding
to the innate variances of the each gene and by the cor-
relation matrix shown. The values of the standard

deviations were chosen so that resulting elements of
matrices V were similar in magnitude to the estimates
from the real data examples. Table 13 provides the true
minimum variances of the subset means for each subset
size, computed using (6) and true assumed matrix V.
The values in bold correspond to the absolute minimum
variance of the mean for any possible subset size and
the size of that optimal subset. Table 13 also gives the
corresponding variances using the approach in Szabo et
al [9] that is, estimating V as a diagonal matrix and
assuming the sample effect to be fixed rather than ran-
dom. The corresponding absolute minimum variance of
the mean for any possible subset size is shown in bold
italic. Since the results using the method of Szabo et al
[9] were generally very consistent with the approach of

Figure 4 Blood data: 95% UCL vs. the average overall rank of the normalizing factors (expression levels). Each point represents one of
the possible 33 = 25-1 gene subsets. Different colors are used for the subsets with different numbers of genes included. The x-coordinate is the
average overall rank of the corresponding normalizing factor variance. The y-coordinate is the upper 95% confidence limit (95% UCL) for the
standard deviation of the log normalizing factor.

Table 12 Blood data: Variability of log geometric means based on optimal gene subsets identified by various methods

Set Size Method Optimal set Variance logGM Std Dev logGM

2 Szabo et al TFRC, GAPDH 0.98 0.99

2 Vandes. et al TFRC, HPRT 1.47 1.21

2 New TFRC, GAPDH 0.98 0.99

3 Szabo et al TFRC, GAPDH, PPIB 1.26 1.12

3 Vandes. et al TFRC, GAPDH, PPIB 1.62 1.27

3 New TFRC, GAPDH, HPRT 1.16 1.08

4 All methods GAPDH, PPIBA, TFRC, HPRT 1.34 1.16
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Vandesompele et al [4], in this simulation study, the
proposed approach was compared only to the approach
in Szabo et al [9].
The results of the simulation study are summarized in

terms of sensitivity to identifying the optimal subset with
the absolute minimum variance of the mean. Table 14
gives the percentage of simulated data sets, for which the
corresponding method (proposed criterion A (UCL), pro-
posed criterion B (Rank), and method in [9]) correctly
identified the optimal subset of genes. This percentage
may also be interpreted as the power of the correspond-
ing procedure to detect the optimal subset. For each
scenario and sample size (25, 40, or 80), 400 data sets
were simulated to have 95% confidence interval for
sensitivity of width <0.1 (±5%).
The results of our simulation study suggest that for

truly uncorrelated candidate reference genes, the pro-
posed approach may have lower power/sensitivity than
the method of Szabo et al [9]. This may be expected
since the true V has the structure as assumed in [9],
while our approach would estimate unnecessary extra
parameters in unstructured V. For equally weakly

Table 13 Design of the simulation study

Min Var of NF1

Scenario Std Dev Correlation Matrix of R Total Covariance Matrix V No Genes True Uncorr2

0.30 1 0 0 0 0 0.25 0.16 0.16 0.16 0.16 1 0.250 0.250

Uncorrelated R 0.35 0 1 0 0 0 0.16 0.28 0.16 0.16 0.16 2 0.213 0.133

Sample Random 0.80 0 0 1 0 0 0.16 0.16 0.80 0.16 0.16 3 0.255 0.148

Effect Var = 0.16 0.90 0 0 0 1 0 0.16 0.16 0.16 0.97 0.16 4 0.264 0.144

1.00 0 0 0 0 1 0.16 0.16 0.16 0.16 1.16 5 0.267 0.139

0.60 1 0.2 0.2 0.2 0.2 0.38 0.10 0.11 0.15 0.16 1 0.380 0.380

Corr Coef = 0.2 0.70 0.2 1 0.2 0.2 0.2 0.10 0.51 0.13 0.17 0.19 2 0.275 0.223

Sample Random 0.75 0.2 0.2 1 0.2 0.2 0.11 0.13 0.58 0.19 0.20 3 0.239 0.164

Effect Var = 0.02 1.10 0.2 0.2 0.2 1 0.2 0.15 0.17 0.19 1.23 0.28 4 0.275 0.169

1.20 0.2 0.2 0.2 0.2 1 0.16 0.19 0.20 0.28 1.46 5 0.301 0.167

0.42 1 -0.2 -0.2 0.2 0.2 0.28 0.06 0.06 0.15 0.15 1 0.276 0.276

Corr Coef = ±0.2 0.45 -0.2 1 -0.2 0.2 0.2 0.06 0.30 0.06 0.15 0.15 2 0.176 0.145

Sample Random 0.48 -0.2 -0.2 1 0.2 0.2 0.06 0.06 0.33 0.16 0.16 3 0.141 0.101

Effect Var = 0.1 0.60 0.2 0.2 0.2 1 0.2 0.15 0.15 0.16 0.46 0.17 4 0.166 0.086

0.60 0.2 0.2 0.2 0.2 1 0.15 0.15 0.16 0.17 0.46 5 0.175 0.073

0.30 1 -0.4 0.0 0.0 0.0 0.25 0.11 0.16 0.16 0.16 1 0.250 0.090

Corr Coef = ±0.4 0.40 -0.4 1 0.0 0.0 0.0 0.11 0.32 0.16 0.16 0.16 2 0.199 0.063

Sample Random 0.60 0.0 0.0 1 0.0 0.0 0.16 0.16 0.52 0.16 0.16 3 0.217 0.068

Effect Var = 0.16 0.70 0.0 0.0 0.0 1 0.4 0.16 0.16 0.16 0.65 0.38 4 0.223 0.069

0.80 0.0 0.0 0.0 0.4 1 0.16 0.16 0.16 0.38 0.80 5 0.244 0.070

0.40 1 0.4 0.4 0.4 0.4 0.26 0.18 0.21 0.23 0.24 1 0.260 0.260

Corr Coef = 0.4 0.50 0.4 1 0.4 0.4 0.4 0.18 0.35 0.24 0.26 0.28 2 0.243 0.153

Sample Random 0.70 0.4 0.4 1 0.4 0.4 0.21 0.24 0.59 0.32 0.35 3 0.274 0.133

Effect Var = 0.1 0.80 0.4 0.4 0.4 1 0.4 0.23 0.26 0.32 0.74 0.39 4 0.302 0.121

0.90 0.4 0.4 0.4 0.4 1 0.24 0.28 0.35 0.39 0.91 5 0.331 0.114
1NF - normalizing factor
2Assuming Szabo et al [9] model

Table 14 Results of the simulation study

Sensitivity to optimal subset

Scenario No of samples UCL1 Rank2 Szabo3

Uncorrelated R 25 43.00 41.75 60.25

Sample Random 40 53.50 53.25 73.50

Effect Var = 0.16 80 81.25 81.50 86.25

All Corr Coef = 0.2 25 34.25 36.50 38.75

Sample Random 40 53.25 55.25 46.25

Effect Var = 0.02 80 75.75 74.50 57.25

Corr Coef = ±0.2 25 48.50 55.00 0.00

Sample Random 40 68.00 72.75 0.25

Effect Var = 0.1 80 91.50 93.50 0.00

Corr Coef = ±0.4 25 36.50 31.50 8.50

Sample Random 40 49.25 42.75 7.25

Effect Var = 0.16 80 63.50 60.25 3.75

All Corr Coef = 0.4 25 37.5 40.8 23.3

Sample Random 40 49.8 51.3 21.0

Effect Var = 0.1 80 68.0 71.5 21.3
1Criterion (A) (minimum 95% upper confidence limit for standard deviation
of the normalizing factor)
2Criterion (C) (minimum average rank of the normalizing factor variance)
3Minimum standard deviation of the normalizing factor variance as in Szabo et al [9]
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positively correlated candidate reference genes, perfor-
mance of our and approach in [9] was similar for smal-
ler sample sizes (25-40), while the new proposed
approaches were better for N = 80. When the same
weak correlation was assumed positive for some pairs of
genes and negative for others, then the proposed
approach was clearly superior to the method in [9].
Similarly, our approach performed much better in the
scenario with some strongly positively, some strongly
negatively, and some uncorrelated pairs of candidate
reference genes. Finally, in the case of equally strongly
positively correlated candidate reference genes, we also
observed an advantage of the proposed approach.

Discussion
In this work, we developed an approach for selecting an
optimal set of reference genes for normalization in RT-
PCR. The key difference from previously proposed
methods is that assumption of independence among
candidate reference genes is relaxed, and, instead, the
estimated correlation among the genes is incorporated
into estimates of variability of the prospective normaliz-
ing factors. The proposed approach does not explicitly
estimate correlation among the genes, but implicitly the
correlation is incorporated into the estimate of the total
covariance matrix V. Then the variance of a log trans-
formed prospective normalizing factor is estimated by
substituting the estimated V into (6).
To overcome uncertainty in estimating a large number

of covariance parameters from usually small data sets,
we employ bootstrap to obtain robust upper confidence
bounds for the variance of the log geometric means of
multiple genes. These bounds allow comparing various
gene subsets as prospective normalizing factors, but also
may be used in sample size calculations while designing
an RT-PCR study. Our approach also allows certain
flexibility to choose a criterion for selecting the optimal
subset(s) of the reference genes unless one subset meets
all the criteria.
Here, our primary focus was on selecting reference

genes for normalizing target gene expressions from one
tissue as motivated by the study of guanylyl cyclase
C (GUCY2C) mRNA expression in blood. Our metho-
dology is easily extendable to multiple tissues or inter-
species comparisons by incorporating fixed effects for
between-tissue or between-species differences into the
mean sub-model Ab in (3), as long as one can assume
that variances and correlation among the genes do not
change between tissues or between species. If they do
change between tissues or between species, then select-
ing the same reference genes for different tissues or dif-
ferent species may not be appropriate, or careful
consideration may be required to set appropriate criteria

of optimal properties of the reference genes that may
behave differently in different tissues or species.
In the considered data examples, the use of the pro-

posed methodology yielded generally smaller optimal
subsets of the reference genes with smaller variability of
the normalizing factors. In direct comparisons, the nor-
malizing factor variances (based on the genes from the
selected subset only) were reduced by 27-32% when
using the proposed selection approach instead of the
methods [4] and [9]. Taken together, the smaller num-
ber of reference genes and smaller normalizing factors
could result in cost savings due to both reduced primer
and probe needs and potentially smaller numbers of
samples required for the experiment overall.

Conclusions
The proposed approach performs comprehensive and
robust evaluation of the variability of normalizing fac-
tors based on all possible subsets of candidate reference
genes rather than addressing the stability of individual
reference genes. The results of this evaluation provide
flexibility to choose more important criterion for select-
ing the optimal subset(s) of the reference genes unless
one subset meets all the criteria. This new approach
identifies gene subset(s) with smaller variability of nor-
malizing factors than current standard approaches when
there is some nontrivial innate correlation among the
candidate genes.

Additional file 1: SAS program file with the code implementing the
proposed algorithm.
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