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Abstract

Additive manufacturing (AM), widely known as 3D printing, is a direct digital
manufacturing process, where a component can be produced layer by layer from 3D
digital data with no or minimal use of machining, molding, or casting. AM has
developed rapidly in the last 10 years and has demonstrated significant potential in
cost reduction of performance-critical components. This can be realized through
improved design freedom, reduced material waste, and reduced post processing steps.
Modeling AM processes not only provides important insight in competing physical
phenomena that lead to final material properties and product quality but also provides
the means to exploit the design space towards functional products and materials. The
length- and timescales required to model AM processes and to predict the final
workpiece characteristics are very challenging. Models must span length scales
resolving powder particle diameters, the build chamber dimensions, and several
hundreds or thousands of meters of heat source trajectories. Depending on the scan
speed, the heat source interaction time with feedstock can be as short as a few
microseconds, whereas the build time can span several hours or days depending on
the size of the workpiece and the AM process used. Models also have to deal with
multiple physical aspects such as heat transfer and phase changes as well as the
evolution of the material properties and residual stresses throughout the build time.
The modeling task is therefore a multi-scale, multi-physics endeavor calling for a
complex interaction of multiple algorithms. This paper discusses models required to
span the scope of AM processes with a particular focus towards predicting as-built
material characteristics and residual stresses of the final build. Verification and validation
examples are presented, the over-spanning goal is to provide an overview of currently
available modeling tools and how they can contribute to maturing additive
manufacturing.

Keywords: Metal additive manufacturing, Powder bed, Blown powder, Wire feed,
Process modeling, As-built porosity, Residual stress, Distortion, Multi-scale modeling,
Multi-physics modeling, ICME

Review
Introduction

Metal additive manufacturing (AM) utilizes several processes such as powder bed pro-

cesses (ALM/SLM/DMLS/DMLM), blown powder (DLMD/LMD/EMD/LENS) and

wire feed processes (WAAM). Whereas the processes vary widely in their details, the

common denominator for all ad4ditive-manufacturing processes is the ability to nearly

“net-shape” manufacture complex products:
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1. Powder bed process: Thin layers (micrometers) of metal particles are spread on a

processing table. A laser or an electron beam melts the metallic powder in certain

areas of the powder bed. These areas then solidify to become a section of the final

build. An additional powder layer is then added, and the process is repeated. At the

end of the build process, the un-melted powder is removed to reveal the workpiece

created. Housholder’s patent, dated 1981, is very similar to today’s powder bed ma-

chines [1].

2. Blown powder process is based on providing the powder feedstock through a

nozzle focused to the area being built. The nozzle used is often coaxial, where

the heat source (laser or electron beam) is focused through the center of the

nozzle to the substrate. The powder is carried by a shield gas through an outer

concentric ring and is directed to the general area, where the heat source is

applied. The nozzle is mounted on a multi-axis robot that moves as the work-

piece is being created [2].

3. Wire feed systems are based on systems that are very similar to traditional welding,

where a heat source is used to melt a wire adding material in regions to be built.

The heat source might be an arc discharge, laser, or an electron beam. The wire-

feeding system is mounted on a multi-axis robot that moves as the workpiece is be-

ing created. First reports on this technology date as far back as 1926 [3].

The design freedom offered by the AM processes is not yet fully utilized because

current design standards and procedures are aimed at harnessing the strengths and

limitations of traditional manufacturing routes. A new design paradigm taking ad-

vantage of AM’s unique possibility to design functional products is enabled via

physics-based modeling and optimization. Topology optimization is based on asses-

sing functional requirements, such as operation loads, and constraints to obtain a

design that fulfils product specifications. In due course of the optimization calcula-

tions, certain assumptions are made about the material properties such as material

strength, porosity, or residual stresses accumulated during the build process [4].

A very large amount of experimental research suggests that material properties are

dependent on feedstock characteristics and process parameters [5–8]. Choren et al.

attempted to gather correlations describing Young’s modulus and porosities for

additive-manufacturing processes as a foundation for designers and process engineers.

Their conclusion was that predictive equations do not exist yet [9]. Given the large

number of process parameters [10] and their complex interactions, extensive trial and

error research is needed to ensure the faultless production of CAD models via AM.

Physics-based modeling has the potential to shed light into how competing

process parameters interact providing the basis for process optimization. Models

can predict the as-built properties and eventually support rapid qualification of

topologically optimized functional components. Length- and timescale consider-

ations make it necessary to split models into micro-, meso-, and macroscale

models [11–13]—Fig. 1.

1. Micromodels address the heat source feedstock interaction, the heat absorption,

and the phase changes in a domain comparable in size to the melt pool and the

heat-affected zone. The micromodels provide information about the melt pool size,
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the thermal cycle, and about the material consolidation quality and enable the iden-

tification of the most suitable process window.

2. Macromodels utilize the determined melt pool dimensions and the thermal

cycle to calculate the as-built residual stresses in models comparable in size to

the workpiece being manufactured. The feedstock details and thermodynamic

phase change are not resolved. The evolution of the metallurgical phases and

the corresponding evolution of material properties are accounted for as the

thermal history of the workpiece is calculated (see mesoscale below). Clamping

conditions as well as deposition strategies are prescribed as boundary conditions

to predict residual stresses and the final workpiece shape.

3. Mesoscale models are dedicated to the calculation and provision of composition-

and temperature-dependent metallurgical properties describing the thermo-

mechanical behavior of the material. This information is provided to micro- and

macromodels as required during their respective calculations. Models resolving the

evolution of grains and microstructures belong to the micromodeling category but

can be coupled to both micro- and macromodels.

The following sections discuss algorithmic details and options for each of the

model scales introduced briefly above. The final goal is to establish predictive tools

as components of an integrated computational materials engineering platform

(ICME) ensuring successful delivery of additive-manufacturing assessment tools.

Computational module verification and validation examples are provided. The ar-

rangement of sections is by length scale rather than by additive-manufacturing

process. The justification lies in the assumption that the physics governing the be-

havior of any of the processes considered is identical. The relative weight of phe-

nomena considered may vary from one process to the other, but the fundamental

equations should capture these weights either via corresponding boundary condi-

tions or user intervention. The paper is then concluded by assessing the current

state of ICME for AM and an outlook on future challenges yet to be addressed.

Fig. 1 AM modeling length scales
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Micromodeling

Micromodels resolve the melt pool physics including heat source interaction with the

feedstock and substrate, heat transfer, phase change, and surface tension forces as well

as the effect of thermal gradients leading to Marangoni forces.

The models are based on computational fluid dynamics algorithms to solve the Navier-

Stokes equations [14–17]. The momentum equations are extended using source terms to

account for gravitational body forces, recoil pressure, and surface tension. The energy equa-

tion accounting for conduction (diffusion term) and convection is complemented with

source terms accounting for the latent heat released or required during solidification/melt-

ing and evaporation/condensation as well as radiation (Eqs. (1)–(5)).

Mass conservation

∂ρ
∂t

þ ∇⋅ρ v
→¼ 0 ð1Þ

where ρ is the fluid mixture density, t is time, and v→ is the mass-averaged velocity

vector.

Momentum conservation

∂ρ v→

∂t
þ ∇⋅ρ v

→
v
→¼ −∇pþ ∇⋅τ−

C 1−f Lð Þ2
f 3L þ 10−10

v
→

þ σκ n→ þ dσ
dT

∇T− n→ n→ ⋅∇T
� �� �2

4
3
5⋅ n→ þ pR⋅ n

→ þρ g
→

ð2Þ

where p is the hydrodynamic pressure, τ the deviatoric shear stress tensor—calculated

using the mixture-effective dynamic viscosity, C is a large constant, fL is the liquid frac-

tion, σ the surface tension, κ the surface curvature, n→ the surface normal, T the

temperature, pR is the recoil pressure, and g
→

the gravity vector. The third term on the

right-hand side describes momentum losses in the mushy zone, which is considered to

be a porous medium. The fourth term represents the surface tension forces at the mol-

ten material surface and the Marangoni effects resulting from temperature-dependent

surface tension.

Energy conservation

∂ρh
∂t

þ ∇⋅ρ v
→
h ¼ ∇⋅ λ∇T þ

X
i

hi j
→

i

 !
þ ∂p

∂t
þ τ : ∇ v

→ −
∂ρf LLf
∂t

−∇ ρ v
→
f LLf

� �
−
ρ∂ 1−f vð ÞLv

∂t
þ SR⋅ n

→
ð3Þ

where h is the total enthalpy and λ is the mixture thermal conductivity. hi is the specific

enthalpy of species i, j
→

i
is the species mass flux, and Lf and Lv are the latent heat of fu-

sion and evaporation, respectively. fL and fv are the liquid and vapor fraction, respect-

ively. Further source terms SR representing radiation are needed for the energy

equation. They will be addressed further below when discussing the particularities of

the different AM processes. The pressure gradient term is important when considering
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the trapped gases in consolidated material. The viscous dissipation term is negligible

for the AM process.

Species conservation

∂ρY i

∂t
þ ∇⋅ρ v→ Y i ¼ ∇⋅ j

→

i
; i ¼ 1;…;N sp ð4Þ

where Yi is the species mass fraction. In the build chamber, vapor emitted during the build

process is tracked using the species conservation equation to provide information on

whether the gases are correctly extracted or whether they obscure the heat source. Species

conservation could also be used to track alloy elements in the evaporating melt pool and

the solid substrate; results from such an implementation have not been published yet.

The above equations are complimented by a scalar equation to track the free surface

of the molten metal. The scalar is usually chosen to be a fluid volume fraction of one

of the material states, such as that of the liquid state (volume of fluid—VOF):

∂αL
∂t

þ ∇⋅αL v→¼ mL

ρL
−
mV

ρL
ð5Þ

where αL is the liquid volume fraction and mL, mV are the liquid and vapor mass

sources due to phase change, respectively. The common formulation of free-surface

tracking algorithms supports tracking of one or two material states, such as liquid and

gas [18–20]. Vogel et al. and N’Dri et al. extended the formulation to support three ma-

terial states: solid, liquid, and gas/vapor [12, 13].

Two numerical approaches are pursued to solve conservation Eqs. (1)–(5): Lattice

Boltzmann methods [21, 22] and finite-volume algorithms [23–25].

Power bed micromodeling

Using equivalent properties for the powder layer enables quick simulations and analysis

of how different parameters interact to predict the melt pool characteristics and to de-

termine the thermal history of the deposited material, Dai and Shaw pursued such

models assuming powder layer thicknesses of 0.5 mm [26]. The powder conductivity

was calculated as a function of bed packing density using a correlation proposed by Sih

and Barlow [27]. The laser energy was modeled as an isothermal heat source applied

on the surface being processed. Residual stresses were calculated using the thermal his-

tories obtained. Fischer et al. investigated the thermal behavior of the powder estimat-

ing the irradiance penetration depth and loose powder conductivity [28]. Roberts et al.

utilized absorption estimates to model the material thermal history using temperature-

dependent powder properties in an element birth and death model [29]. N’Dri et al.

assessed the reliability of equivalent powder property models by performing an uncer-

tainty quantification study. They showed that the results are very sensitive to the accur-

acy of absorption and loose powder conductivity [13]. In spite of the efficiency of these

models, their reliance on accurate equivalent property approximations render them

non-predictive.

Results obtained from resolved particle models do not depend on powder property

correlations. Instead, the resolution of the powder particles enables the prediction of
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radiation absorption and penetration depth as well as the overall powder conductivity

change as the powder starts to melt [13, 19].

Figure 2 shows a powder bed consisting of uniform spherical particles arranged in a

BCC structure. The nickel super alloy powder has an unconsolidated powder layer

thickness of approximately 50 μm, and the particles’ diameter is 22 μm. The laser

power is 197 W, and the scan speed is 1 m/s. The amount of heat absorbed is deter-

mined via the radiation model [30]. At the beginning of the process, the temperature of

the upper particles is close to the evaporation temperature. As more liquid is generated,

it flows between solid particles via capillary forces. Once it reaches the baseplate, a dir-

ect bridge between the hot surface and the base material is established decreasing the

overall melt temperature slightly. The surface waviness is due to the powder bed shape

and Rayleigh flows. The heat does not diffuse sidewards due to the limited contact

areas between loose powder particles. Gas between the powder particles (not shown in

this sequence) is modeled and interacts with the molten material.

Attar et al. [19, 31] have pursued resolved powder bed models using Lattice Boltzmann

methods. In their model, the gas phase was not accounted for, limiting the ability to

Fig. 2 Resolved powder model: temperature on melt pool surface [13]
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capture the effect of gas entrapment in consolidated material. King et al. [20] pursued a

finite-volume/finite-element implementation that also neglects the gas phase. The import-

ance of gas modeling and how it relates to the prediction of consolidated material density

is discussed in more detail below.

Very little validation studies have been reported due to the extreme harsh conditions

under which microprocesses occur. N’Dri et al. compared track widths predicted by

their micromodels with those measured (Fig. 3). The numerical study accounted for

two adjacent tracks. The width of one track was found to be 95 μm. The corresponding

built specimen showed track widths of 97 μm. Experimental efforts are underway to

record melt pool evolution and measure the temperatures. New experimental insights

will enable quantitative validation of the micromodels.

The powder bed packing density and the distribution of particles is expected to be a

first-order parameter affecting the material behavior and the process evolution. Attar

and Körner et al. used rain models [32] to obtain randomly arranged particle distribu-

tions. They also removed single particles from the powder bed to manipulate the over-

all packing density [19, 33]. King et al. used Gaussian distribution of the particles when

distributing them in a numerical powder bed [20]. A more precise approach taking the

dynamics of the powder-spreading process into account is based on discrete element

models [34].

Figure 4 shows a comparison between the powder particle distribution as predicted

by a rain model and as a result of modeling the coating process. It can be readily seen

that for the same particle size distribution and the same amount of particles placed on

the processing table there is a significant difference in the powder bed characteristics,

especially the resulting packing density. Whereas the rain model predicts an almost

uniform packing density of approximately 50 %, the model taking the coating process

into account shows a packing density as high as 68 % with large deviations depending

on how the particles lock and obscure a certain region during the coating process. At

one particular point, the coating model predicts a minimum packing density of 36 %.

It is therefore considered important to resolve the coating process using a discrete

element method (DEM). DEM is a Lagrangian tracking algorithm where each individ-

ual particle is resolved and tracked throughout the simulation time. The powder size

distribution is discretized into size bins. The volume fraction distribution of all bins

corresponds to that of the real powder. The powder particles are assumed to be spher-

ical. Mechanical properties (elasticity and damping coefficients) are defined to calculate

Fig. 3 Comparison of numerically predicted track width with experimental measurement [13]
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forces acting on each powder particle; up to 10 different materials can be accounted

for. A sufficiently large number of particles are tracked to enable reliable statistical ana-

lysis of the results. The coating arm is assumed to be a rigid body the velocity of which

is described as a boundary condition. Once the particles are created, the coating arm is

set into motion spreading the particles onto the processing table [35].

Figure 5 shows the evolution of the calculated powder packing density for multiple

layers. Here, the powder size distribution ranges from 10 to 70 μm in diameter. Several

layers of powder are spread one after the other. The processing table displacement is

25 μm per layer. In between layers, the powder bed is not processed by a heat source;

the results are therefore representative for a region where the heat source is not active.

Fig. 4 Comparison of powder particle distribution resulting from a rain model (a) and from a coating
simulation (b)
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It can be seen that very low packing densities of approximately 20 % with large devia-

tions are predicted for the first few layers. These results are expected to be representa-

tive for powder beds on solidified sections of the build. This is attributed to the

interaction between large particles and the small gap between the coating arm and the

processing table. The large particles block the gap limiting the process ability to deposit

the powder in a uniform manner.

After several layers of loose powder particles, more space is available for larger parti-

cles that packing densities of up to 50 % with low deviations are predicted.

Radiation plays an important role in the heating of powder particles. McVey et al. de-

duced an equation for the absorbed energy assuming that all the incident energy is

absorbed by the powder layer. Reflectance measurements were performed for multiple

powders and different lasers to determine the absorbed energy as a function of powder

layer thickness. The attenuation coefficient required for the deduced equation was pro-

vided for the measurements performed [36]. Boley et al. performed ray-tracing calcula-

tion on idealized as well as random powder beds obtained from rain models [37]. It is

most interesting to note that the amount of absorbed energy is dependent on the pow-

der distribution on the processing table. A high packing density powder layer was also

studied yielding very high absorption.

For micromodels, radiation source terms are added to the energy equation (Eq. (3)—last

term on the right-hand side). N’Dri et al. [13] and Mindt et al. [38] used a finite-volume

formulation for the discrete ordinate radiation model [30]. The model was extended to

track the position of a molten surface. Figure 6 shows the temperatures predicted by the

micromodel for a nickel-based alloy, 200 W and 1 m/s scan speed. The peak temperature

when allowing for evaporation is predicted to be approximately 2200 K. The rapid evapor-

ation gives rise to a recoil pressure that contributes to large local forces acting on the free

surface [17]. Qiu et al. showed that the recoil pressure is a possible explanation for the

sparks observed during powder bed processes [39]. Manual-distribution powder beds have

been studied numerically indicating ejection velocities of up to 15 m/s.

Figure 7 shows the consolidated material structure for the melt pool of Fig. 6 (trans-

parent melt pool surface). The spheres remaining in the molten track depict the surface

of gas bubbles entrapped in the melt. Many of the bubbles are able to leave the liquid

Fig. 5 Evolution of particle packing density for multiple layers of unprocessed powder
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during the preliminary stages of the melt process. Nevertheless, at the time point of this

image, material on the left side of the image is solidifying capturing some gas bubbles

that will not escape.

A recent validation study is summarized in Fig. 8 where the predicted material

structure and porosity is compared with micrographs for multiple operating condi-

tions [40]. It can be seen that slower scan speeds generally lead to high material

densities. Higher energy densities are generally needed for larger hatch spacing and

thick powder layers.

Figure 9 compares the surface roughness for two build scenarios: The upper

image corresponds to a case where the energy density is low leading to variations

in surface height of up to 60 μm at the edge of the processed hatch and 25 μm

around the center of the studied domain. In comparison, the lower image shows

the resulting roughness at a higher energy density, where the increased fluidity of

the melt and the high surface tension lead to balling of the melt and roughness

values in the order of 110 μm. Further studies are needed to identify correlations

between energy density and surface roughness.

Fig. 6 Melt pool temperature for nickel alloy, 200-W laser at 1 m/s scan speed

Fig. 7 Gas bubbles trapped in consolidated material during the processing of Ni super alloy contributing to
the overall build porosity
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Fig. 8 Comparison of predicted porosity with micrographs for different processing parameters [40]

Fig. 9 Surface roughness of processed powder: top: low energy; bottom: high-energy scenario
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Whereas results presented in Figs. 2, 3, 4, 5, 6, 7, 8, and 9 are representative for

powder bed machines using a continuous laser active along a line as used in

hatching or island scanning strategies, Fig. 10 shows a sequence of melt pool im-

ages for a machine utilizing a modulated laser. The laser “jumps” from one point

to the other remaining stationary during an exposure time to melt the powder bed.

The upper row shows the top view of the melt pool evolution, which gives the im-

pression of a continuous melt pool and is not much different to that of a continu-

ous laser moving along a straight trajectory. The lower row shows the melt pool

shape of the corresponding points in time as seen from below the substrate sur-

face. It can be seen that the laser modulation and the exposure time leads to sin-

gular deep melt pools. As the melt pools grow in diameter during the exposure

time, they join into one solid build, which is what is seen in the top view. The

depth of the joined melt pools compares to that obtained using a continuous laser;

the additional deep conical melt pools might imply additional anchorage for the

new layer to the previous layers.

Blown powder micromodeling

In order for micromodels to resolve the melt pool of blown powder processes, the feed

nozzle and powder particle trajectories must be resolved in detail. The gas flow is re-

solved using Eulerian Eqs. (1)–(5). The powder flow through the nozzle is calculated

using Lagrangian tracking [41]. As the particles might cross the laser in their trajectory,

they may cause laser scatter and attenuation. The Lagrangian equations are coupled

with the Eulerian equation system via source terms in continuity, momentum, and

energy equations.

The equation of motion for the powder particles can be written as follows:

mP
∂ υ

→

∂t
¼ CDρ V

→
− υ

→
� �

V
→

− υ
→

��� ���AP

2
þmP g

→ þSm ð6Þ

Fig. 10 Melt pool characteristics and evolution with time for a modulated laser—the upper row shows a
top view of the melt pools’ evolution. The lower row shows the corresponding melt pool conical shapes
corresponding to the exposure time of the modulated laser
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where mP is the particle mass; v
→

is the particle velocity; CD is the drag coefficient; ρ

and V
→

are the density and velocity of the surrounding gas, respectively; and AP is the

particle frontal area. For a spherical particle, AP = πd2/4 where d is the particle diam-

eter. The gravity vector is represented by g
→
. Sm is a mass source to represent the nozzle

inlet for example.

The particle drag coefficient, CD, is a function of the local Reynolds number, which is

evaluated as follows:

Re ¼
ρ V

→
− υ

→
��� ���d

μ
ð7Þ

where μ is the dynamic viscosity of the gas. The simplest drag relationship is CD = Re/

24; further extensions to this correlation are needed for drag in turbulent flows.

The particle locations are determined from the velocities by numerically integrating

the velocity-defining equation:

d r
→

dt
¼υ

→ ð8Þ

where r
→

is the particle position vector. Assuming that particles heated and melted by

the laser do not undergo significant change in size nor do they evaporate, the particle

energy equation is written as follows:

mPCP−P
dTP

dt
¼ πd2

pλNu TP−Tg
� �

−mpmΔHm þ SR ð9Þ

where TP is the particle temperature; CP − P is the particle specific heat; and λ and Tg

are the thermal conductivity and temperature of the gas, respectively. The Nusselt

number Nu is obtained from the Ranz-Marshall correlation [42], mpm is the particle

molten mass, and ΔHm is the melting latent heat. SR is a source term describing the en-

ergy absorbed by the particles as they traverse the laser:

SR ¼ πd2
P

4
ηPI−σ�Pπd

2
P T 4

P−T
4
∞

� � ð10Þ

where I is the laser intensity, ηP is the particle absorption coefficient, σ is the Stephan-

Boltzmann constant, ϵP is the particle emissivity, and T∞ is the far field temperature.

The first term in the right-hand side describes the particle heating due to the laser en-

ergy absorbed, and the second term describes the energy loss due to radiation. The sec-

ond term in Eq. (10) is added as a “volumetric” source term to the radiation model:

∇⋅
1
β
∇G

� �
þ 12ησT 4−3ηG ¼ σ�Pπd

2
P T 4

P−T
4
∞

� � ð11Þ

with the boundary condition

−
2
3
⋅
2−�
�

n→ ⋅∇G ¼ β 4ησT 4−ηG
� � ð12Þ

where G is irradiance, β = η + σS is the spectral extinction factor, σS. is the scattering co-

efficient, n→ is the boundary normal vector, and ϵ is the emissivity of the boundary

Megahed et al. Integrating Materials and Manufacturing Innovation  (2016) 5:4 Page 13 of 33



surface. The laser attenuation is calculated by assessing the particle front surface area

in a computational cell between the laser source and the substrate.

Iatt ¼ I 1−
NPπd

2
P

4Acell

� �
ð13Þ

where Iatt the laser intensity after crossing a cloud of particles, NP is the number of par-

ticles in a given cell, and Acell is the cell face area.

When particles reach the substrate or the melt pool, they undergo a filtering process

based on the thermodynamic state of collision partners. If the particles or the substrate

are partially molten, then the particles are eliminated from the Lagrangian system and

added as a mass source to the Eulerian representation of the melt pool. If both the sub-

strate and the particles are still solid, then the particles bounce off the surface based on

a restitution coefficient and the tracking algorithm continues to account for their travel

throughout the computational domain. Table 1 summarizes the combinations consid-

ered when deciding what is to happen when a particle collides with the substrate or the

melt pool.

Multiple parameters of blown powder processes were studied in an isolated manner

[43–46]. Ibarra-Medina performed detailed nozzle analysis showing the particle distri-

bution for different distances between the nozzle opening and the substrate (Fig. 11)

and validating the particle heat up during their trajectories towards the substrate [47].

Figure 11 shows how the particle jet shape changes at the substrate with distance. At

the design focal distance, the jet shows an optimal concentration of particles where the

heat source is active. Moving the substrate closer to or away from the nozzle mouth

leads to ring or cross-distributions, respectively, that affects the final melt bead depos-

ited and the overall powder-capturing efficiency of the process. Figure 12 shows the in-

fluence of carrier and shield gas flow rates on the powder distribution at the design

substrate–nozzle distance. As the gas flow rates increase, the spot size increases, which

might be desired to achieve wider beads. Increasing the gas flow rates further leads to

increased number of particles reflecting from the substrate surface (right-most image).

These particles are not captured in the melt pool and decrease the particle overall

process capture efficiency.

Beads are deposited with overlaps to ensure a dense build and to avoid large varia-

tions in bead height. Figure 13 compares numerically predicted stainless steel bead

shapes. The powder flow rate is 0.28 g/s, laser power is 730 W, and the nozzle head

scan speed is 10 mm/s [12, 47]. Numerical results for different overlap percentages are

compared with experimental profiles showing very good agreement.

Table 1 Parcel behavior after hitting the substrate or melt pool

Particle state Substrate state Parcel behavior

Solid Solid Reflect using restitution factor

Solid Molten Convert particle into mass source term for VOF (Eq. 5)

Molten Solid Stick to surface/convert into mass source term for VOF (Eq. 5)

Molten Molten Convert particle into mass source term for VOF (Eq. 5)

VOF volume of fluid
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Process scanning/mapping

High-fidelity micromodels are generally computationally intensive. In spite of the dem-

onstrated accuracy in predicting porosities and providing input to residual stress

models discussed below, it is desirable to pursue much quicker tools that might be

founded on simplifying assumptions or empirical correlations to pre-scan the process

window decreasing the computational cost required to characterize the powder and the

machine combination being used.

Fig. 11 Coaxial nozzle geometry and grid (upper left), particle trajectories and velocity magnitude (upper
right) and particle jet cross section at different distances from the nozzle mouth [47]

Fig. 12 Particle jet diameter and particles losses change with feed gas flow: Left: with the lowest shield gas
flow rate shows highest jet concentration and least amount of loss. Middle: average flow rate with slightly
higher particle loss rate. Right: highest shield gas flow rate leads to much larger jet diameter and significant
increase in particles loss
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Kamath et al. performed a full fractional design of experiments using the Eagar-Tsai

model to determine the melt pool dimensions for powder bed process and stainless

steel specimens [48]. The analysis allowed the identification of the significant process

parameters affecting the melt pool width and depth: scan speed and laser power. The

process window was further refined via single track and pillar experiments to obtain

high-density builds.

Körner et al. considered several dimensionless numbers to characterize powder bed

processes [31]. They were able to identify an optimal scan speed that would balance the

amount of energy input with the diffusion through the powder layer. Megahed ex-

tended this model assessing the build density by comparing the global energy density

with micrographs and corresponding porosity measurements. The model was further

extended to include an assessment of the build rate as a function of scan speed, laser

diameter, and powder layer thickness. The input to the algebraic equations includes the

machine capabilities and defines the bounds of an optimization problem with two cost

functions: maximize density and maximize build rate. Figure 14 shows an example re-

sult of the optimization scheme showing that the build rate is inversely proportional to

the density. Following the build rate curve in clockwise direction indicates an increase

in build rate. At the same time, the build porosity decreases until it is no longer accept-

able, indicated by the red triangle. The threshold of acceptable porosities is arbitrarily

chosen based on product quality requirements. Corresponding micrographs show the

build quality for some of the build parameters assessed. By choosing a certain porosity

to be acceptable, the process parameters delivering the highest possible build rate can

be determined from the corresponding parameter curves. It is interesting to note that

the processing table displacement and heat source scanning speed also show an in-

versely proportional relationship. A large displacement requires a reduction of the scan

Fig. 13 Bead shape validation for different track overlaps [47]
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speed to ensure high densities. The dimensionless analysis was very efficient in provid-

ing guidance to choose process parameters enabling production of dense material at a

high build rate. Micromodels were used to confirm the results.

Weerasinghe and Steen created process maps based on blown powder experimental

data [49]. Beuth and Klingbeil utilized normalized dimensions and process parameters

to numerically create process maps for thin bodies using blown powder processes [50].

The procedure has since been extended for large bodies and corner effects as well as

powder bed processes.

It is, however, important to remember that the speed of these pre-screening tools

comes at the cost of lower physics fidelity. It is mandatory to verify and confirm the re-

liability of these tools for the materials and process parameters under consideration [9].

Macromodeling

Macromodels are dedicated to the modeling of the whole workpiece predicting residual

stresses and distortions during and after the build process. Stresses and strains are

mainly induced by thermal loads. The effects of phase changes on thermo-mechanical

properties can be neglected as a first approach. The large amount of heat supplied to

the part at the upper build layers is transferred to the rest of the workpiece by conduc-

tion resulting in a global thermal expansion of the product. During both stages of so-

lidification and cooling, the plastic strains caused by the thermal expansion and by the

constraints of clamping devices will lead to residual stresses. After clamp release, the

workpiece reaches its final shape.

Fig. 14 Radar diagram for powder bed process optimization: The red triangle shows areas of high porosity
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Whereas the physics governing micromodels depend significantly on the process de-

tails, macromodels are mainly driven by thermal loads (or the thermal cycle). This en-

ables a simplification of the physics models allowing a coarser discretization and finally

facilitating the computation of complete industrial workpieces. Finite-element methods

based on a Lagrangian formulation are usually used for macromodeling [51–54].

Whereas the validity of Eulerian approaches for welding is limited, the high scan speed

of AM sources reduces the impact of the free-edge effects on the final results. Ding

et al. demonstrated that a steady-state Eulerian thermal analysis of wire arc additive

manufacturing (WAAM) was less computationally costly with a gain of 80 % in speed as

compared to a Lagrangian framework [55]. Nevertheless, difficulties adapting Eulerian

methods to complex geometries are a limitation of this approach.

The additive-manufacturing macroscale simulation can be divided into two main

stages: the heat transfer analysis and the mechanical analysis. They are computed separ-

ately, presenting a one-way coupling of the thermo-mechanical computation. The tran-

sient temperature field is stored at every time step and is then applied as a thermal

load in the quasi-static thermo-mechanical analysis [56–58]. As shown in Fig. 15, dur-

ing the deposition of a layer on a T-Wall using blown powder process, the thermal dis-

tributions computed at the initial, intermediate, and final states are used as input data

for computing the intermediate and final stress states. The thermal model remains geo-

metrically fixed during the whole thermal analysis whereas the mechanical model dis-

torts as the calculations progress in time. Such an approach is permissible in the case

of a relatively small structure deformation [58]. The successive computations are

repeated as many times as melt beads need to be deposited to create the workpiece.

Thermo-metallurgical analysis

Energy equation

The thermal analysis is both non-linear and transient. The non-linearity originates from

the temperature dependence of the material properties, while the transience originates

from the time variation of thermal boundary conditions (i.e., imposed temperature or

heat flux).

Fig. 15 One-way coupling between thermal and mechanical analyses
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The energy equation discussed above (Eq. (3)) is reduced to a pure diffusion equation

as shown in Eq. (14) with corresponding sources and boundary conditions simplifying

the overall thermal analysis.

ρ
dh
dt

¼ ∇⋅ λ∇Tð Þ þ QV

qS ¼ ∂T=∂ n
→

ð14Þ

with ρ, h, λ, T, QV representing the density, the enthalpy, the conductivity, the

temperature, and the volumetric heat source, respectively. qS corresponds to the heat

flux or Neumann condition applied on the surface (of normal n→) of the computational

domain. The latent heat of fusion effect on the thermal distribution is taken into ac-

count by defining an equivalent specific heat CP − eq which increases significantly at the

fusion point. Enthalpy and specific heat are linked by the equation

h ¼
ZT
T 0

CP Tð ÞdT þ f LLf ð15Þ

where fL,CP, Lf are the liquid fraction, the specific heat, and the latent heat, respectively.

An equivalent specific heat can be pre-processed using the equation

CP−eq ¼ dh
dT

ð16Þ

Equation (14) can be reformulated to provide the material temperature directly:

ρCP−eq
dT
dt

¼ ∇⋅ λ∇Tð Þ þ QV

qS ¼ ∂T=∂ n
→

ð17Þ

Equation (17) is solved for the whole domain composed of first-order elements. An

implicit temporal discretization and a quasi-Newton method are usually used for solv-

ing the non-linear problem [58, 59]. A symmetrical direct method may be applied for

the linear system resolution [60]. The time step is adjusted automatically according to

convergence criteria.

Metallurgical phase transformations and material properties

The thermal model can be coupled with metallurgical phase calculations, becoming a

thermo-metallurgical model. The temperature and the material transformation properties

are provided as input data to compute the metallurgical transformations at Gaussian

points. Papadakis et al. used the metallurgical transformations model implemented in

Sysweld [61] to reproduce Johnson-Mehl-Avrami-type kinetics [62] to obtain the evolu-

tion of each phase with time and the corresponding temperature distribution [58]. Trans-

formation phase laws are defined for both heating and cooling stages and they are

material/alloy dependent. The scarcity of thermo-metallurgical properties in the literature

often obliges researchers to disregard the phase dependency of the thermal properties.

Conductivity, density, and specific heat are temperature dependent and are assumed con-

stant above 800 °C for most materials (IN718 [58], Ti-6Al-4V [63]) or are obtained from a
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library such as JMatPro® for the metallurgical composition (X4CrNiCuNb 16-4 hardening

stainless steel [64] or 316L stainless steel [54]).

Metal deposition modeling

Depending on the finite-element framework chosen (Eulerian or Lagrangian), the repre-

sentation of metal deposition is different—these methods were developed and matured

for weld modeling. When the transient thermo-mechanical simulations are carried out

within an Eulerian approach, interface-tracking methods such as volume of fluid or level

set are used. Desmaison et al. developed a full transient thermo-mechanical model for

multi-pass hybrid welding [65], a process easily comparable to wire feed additive manufac-

turing. In spite of advanced numerical tools (adaptive remeshing, Hamilton-Jacobi reso-

lution algorithm among others), the finest of inherent numerical parameters make the

approach too complex for the modeling of large and complex AM. In comparison, the La-

grangian framework enables easy handling of an activation/deactivation element technique,

named differently by the authors according to the FE codes used: activation element method

with Sysweld® [58] or MSC Marc® [64], element birth technique with Abaqus® [55], and

quiet or inactive element method with Cubic® [56]. All these methods can be classified into

two categories, the “quiet” and the “inactive” element methods [59].

The “quiet” element method is based on the initial existence of all the elements in the

model. The properties of “quiet” elements differ from those of “active” elements—scaling

factors are multiplied to the conductivity and the specific heat. The “inactive” element

method removes elements representing metal to be deposited from the computation up

to their activation. Michaleris compared both these techniques in terms of accuracy and

computational time [59] for thermal analysis only. He concluded his work by proposing a

hybrid “quiet”/“inactive” element method where elements of the current deposited layer

would be switched to “quiet” and the ones of further layer depositions switched to “in-

active.”Whatever the method chosen, accuracy of the thermal and residual stress distribu-

tions is fulfilled and computational time is saved. It is moreover possible to increase the

gain of CPU time saving by implementing an adaptive coarsening method [51, 63].

Thermal boundary conditions

Thermal boundary conditions account for both the heat source modeling and heat transfer

within and from the workpiece. As macroscale thermal models do not reflect all the physics

of the process, equivalent heat sources are defined according to the AM process considered.

Martukanitz et al. modeled a laser employed for powder bed fusion as a spot whereas a laser

used for direct metal deposition was represented as a defocused beam. Similarly, electron

beams are characterized by a Gaussian distributed source [51]. Hence, a very common ap-

proach is the definition of a Gaussian or Goldak [66] heat source scaled by an appropriate

absorption efficiency factor η representing process optical losses [26, 29, 56, 67–69]. In spite

of the much simpler energy equation considered (compare Eqs. (3) and (17)), the computa-

tional effort tracking the heat source trajectory throughout the build can be significant. Ana-

lytical solutions are suggested as an efficient alternative for simple geometries [70, 71].

King et al. defined the thermal cycle using the Gusarov thermal profile [72] to per-

form coupled thermo-mechanical analysis. In spite of the fact that the Gusarov model

is limited to a scan speed of 0.1–0.2 m/s, the residual stresses obtained are in the order

of several hundred megapascals and compare well with experimental observations [20].
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The moving heat source and workpiece geometric complexities are best addressed

using adaptive locally refined grids. Fine accurate resolution is defined around the heat

source while coarser grids are used elsewhere retaining the overall computational effort

within reasonable limits (Fig. 16). The fine grid (local) resolves the heat source and ex-

change accurately. The coarse grids (global) distribute the energy in the build geometry

prior to performing the thermo-mechanical analysis. Hence, the numerical evaluation

of the residual stress is faster [52–54, 64].

Other authors decomposed the thermal analysis of the whole process into two or

three models of ascending scales (heat source, hatch, and macroscales). Literature refers

to these model length scales as micro-, meso-, and macromodels. These names were

not adopted in this paper because the length scale names are used here to represent

different levels of physics fidelity. Keller et al. developed two transient thermal models

for selective laser melting (SLM) modeling: the first one in order to calibrate the heat

input modeled as a Goldak heat source and the second one for consideration of the

trajectory of the laser spot (the Goldak source is replaced by the estimated energy dis-

tribution in a cubic element) [54, 64]. The same strategy is followed by Li et al. The au-

thors defined a heat source scale model to extract a thermal load from a laser Gaussian

source heating the powder. This thermal load is then applied on a mesoscale hatch

layer for a transient thermo-mechanical analysis [52]. A macroscale model can also be

used for lumping methodology when several layers are numerically deposited at the

same time [12, 13, 53].

All scales used in the thermal model do not include all the physics related to the

process. Uncertainty quantification studies indicated that the results are very sensitive

to the input parameters, such as homogenized powder properties and heat source de-

scription [13]. Vogel et al. [12] and N’Dri et al. [13] obtained the input thermal cycle

from micromodel results for both blown powder and powder bed processes. A tool has

been developed to extract the thermal history from micromodels and to define an

equivalent heat source (e.g., Goldak volumetric or Gaussian surface sources). The

boundary condition utilized to describe the heat source in the macromodel might be a

Dirichlet (temperature history) or a Neumann (heat flux history) boundary condition.

Corresponding spatial and temporal interpolation is necessary because of the difference

in micro- and macromodel grids. This approach is the most accurate description of en-

ergy input—as it accounts for the process details and the predicted material porosity. It

does, however, require a sufficiently fine mesh to resolve thermal gradients around the

melt pool. Time step sizes must also fit with the element size and the heat source scan-

ning velocity. As the build simulation progresses (and the model size increases), the high

Fig. 16 Grid overlay technology (left). Example thermal field for hatch trajectory
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resolution should be reduced by applying equivalent (averaged) thermal cycles for larger

deposits. Average thermal cycles are extracted at the middle cross section of the deposited

material. They are then used in subsequent time steps to accelerate the computation. By

applying the averaged thermal cycles, whole layers can be processed in one time step. This

“lumping” methodology was validated for bars and plate workpieces [13].

The main heat transfer mechanisms from the workpiece to the surrounding environ-

ment are radiation and convection. The radiation is applied to all free surfaces, includ-

ing those of the newly deposited material, and used the Stefan-Boltzmann law:

qR ¼ �σ T 4
S−T

4
∞

� � ð18Þ

Where qR is a Neumann condition part of the term qS in the energy Eq. (17), ϵ the

emissivity, σ the Stefan-Boltzmann constant, and TS and T∞ are the surface

temperature and the far field temperature. The emissivity value will depend both on

the process and the material and can be characterized both experimentally and numer-

ically [56].

In welding process modeling, heat transfer via convection plays an insignificant

role, since the material deposition volume is small in comparison to the volume of

the existing part: heat transfer is driven by conduction inside the bulk material

while the effect of the shielding gas flow is negligible. For AM, convection cannot

be neglected. Excluding electron beam processes that take place in a vacuum envir-

onment, the volume of deposited material can exceed the initial volume of the

build and the effects of the surrounding environment on the heat exchange must

be taken into account. Shield gas and in the case of blown powder processes the

powder carrier gas are utilized in the process chamber to extract vapors that might

contaminate the optical components and to deliver the feedstock. The gas flow

characteristics can lead to significant flow velocities across the workpiece. The con-

vection heat loss,

qC ¼ h TS−T∞ð Þ ð19Þ

is added to qS in Eq. (17), where h is the heat transfer coefficient. Its value will depend

on many factors such as surface orientation, existence, or absence of forced convection,

surface roughness, and solid and gas properties [57, 59]. In powder bed processes, heat

transfer from the workpiece sides is limited by the low powder conductivity. Sih and

Barlow quantified powder conductivity for high temperatures reporting values ranging

from 0.2 to 0.6 W/m2K for Al2O3 [27]. Instead of defining the measured equivalent

powder conductivity directly, it is possible to reduce the solid powder conductivity by

applying a reduction factor (around 1/100) to the bulk material conductivity as in [64].

This approach is very similar to the one used in active/quiet element modeling as de-

scribed in [59].

The surface of the workpiece will be affected by the shield gas flow. Heigl

et al. used heat transfer coefficients ranging from 10 to 25 W/m2K for blown

powder processes. The variation is dependent on the distance from the nozzle

[57]. Michaleris used 10 W/m2K for free surfaces and 210 W/m2K in the vicinity

of the nozzle [73]. The heat transfer rates are lower for powder bed processes;

heat transfer to unprocessed powder is often assumed to be negligible, and the
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convection heat transfer coefficient at the top surface is taken to be 0.005 W/

m2K [64] or 50 W/m2K [54, 58, 74].

Mechanical analysis

The mechanical analysis may be considered as weakly coupled to the thermo-

metallurgical analysis since it is only thermal history dependent [56]. The temperature

and the phase proportions of the previous analysis are only needed to compute the

thermal expansion in the whole domain and to define the thermo-mechanical proper-

ties. The mesh still remains the same, and the elements are also of the same order.

Moreover, the model is set up in the Lagrangian framework, which is more convenient

for distortion modeling of large parts.

The mechanical analysis is also non-linear (because of the non-linearity of the material

behavior) but considered as a quasi-static incremental analysis [56, 57, 63]. The governing

stress equation can be expressed as [63, 75] follows:

∇⋅σ þ f
→

int
¼ 0 ð20Þ

where σ is the stress tensor associated to the material behavior law and f
→

int
is the in-

ternal forces. Considering an elasto-plastic behavior for the material, strain and stress

tensors are linked by the equation

σ ¼ C�e ð21Þ

where C is the fourth-order material stiffness tensor and the total strain tensor ϵ is

decomposed into three components: the elastic strain ϵe, the plastic strain ϵp, and the

thermal strain ϵth:

�¼ �e þ �p þ �th ð22Þ

with

�e ¼ 1þ ν

E
σ−

ν

E
tr σð ÞI

�p ¼ g σYð Þ

�th ¼ α θ−θ0ð Þ

ð23Þ

where E, ν are the Young’s modulus and Poisson’s coefficient, respectively; g(σY) is a

function associated to the material behavior; σY is the yield stress; and α, θ, θ0 are the

thermal expansion coefficient, the nodal temperature, and the initial temperature, re-

spectively. The presence of the thermal strain tensor in the Eq. (22) ensures correct dis-

tortion calculation during the material deposition (melting) stage as well as the thermal

shrinkage during the global cooling of the workpiece. For a pure plastic behavior with

isotropic strain hardening [56, 57, 63], the plastic strain ϵp is computed by enforcing

the von Mises yield criterion and the Prandtl-Reuss flow rule:
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f ¼ σVM−σY �q;T
� �

≤0
:�p ¼ :�qa

a ¼ ∂f
∂t

0
@

1
A

T

ð24Þ

where f is the yield function, σVM is von Mises’ stress

σVM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
σ′ijσ′ij

r
ð25Þ

and :�q the equivalent plastic strain rate and a the flow vector. If a kinematic strain

hardening is also taken into account, the von Mises yield criterion is replaced by the

Prager linear kinematic strain-hardening model:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

σ′ij−χ′ij
� �

σ′ij−χ′ij
� �r

−σY �q;TÞ≤0
� ð26Þ

σ′ij and χ′ij are the components i, j of the deviator stress and kinematic tensors, respect-

ively, with

σ′ ¼ σ−
1
3
tr σð ÞI

χ ij ¼
2
3
p �

p
ij

ð27Þ

where p is the strain-hardening slope p = ∂σVM/∂ϵ
q. The mechanical properties as α, σY,

and E are temperature dependent. If the yield stress σY(T) is independent of the equivalent

plastic strain ϵq, the behavior is pure plastic, while it is isotropic strain hardening if σY(T, ϵ
q)

and kinematic strain hardening if p(T) is defined. The Poisson’s ratio is always constant.

Annealing effects

The annealing effects are not considered in shrinkage models. They should to be con-

sidered since the previously deposited layers are subsequently re-melted and reheated

during the new layer deposition. Above a certain relaxation temperature Trelax each

strain component of Eq. (22) is reset to zero. The relaxation temperature has been

studied for Ti-6Al-4V electron beam additive manufacturing by Denlinger et al. [56].

By comparing numerical and experimental data, the authors found that the relaxation

temperature needs to be adapted for AM process modeling in order to not overesti-

mate the residual stresses and distortions.

Figure 17 shows the residual stress distribution in a wall created using Ti-6Al-4V and

the blown powder process. The numerical results are compared with those obtained

using neutron diffraction along the geometric center line [76] showing good agreement

confirming the thermal-mechanical properties, the mechanical model, and the stress re-

laxation calculations.

Mechanical boundary conditions

Only nodal constraints are taken into account. All the nodes of the substrate lower sur-

face are usually rigidly constrained [54, 58, 64], but some spring constraints may be
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applied to model the elasticity of the clamps [63]. The final distortion of the AM work-

piece is obtained once the domain is fully cooled and the clamps are released. An add-

itional step is needed to simulate the removal of the support or the removal of the

baseplate from the final product [58, 64]. This operation is often modeled by applying

an additional thermal load to the lower layers of the workpiece or by deactivating the

baseplate elements.

Applied plastic strain method

In welding process modeling, the concept of applied plastic inherent strain has originally

been proposed by Ueda et al. [77]. It has then been largely used in order to reduce the com-

putational time of the mechanical analysis in welding distortion prediction [73, 78, 79].

The principle steps can be summarized as follows [78]:

1. High-resolution model of the transient thermo-mechanical analysis—this is usually

performed on a smaller specimen of the workpiece.

2. Calculation of the plastic strain tensor components and the equivalent plastic strain

once the whole domain has cooled down to the ambient temperature.

3. Transfer of the plastic strains obtained on the high-resolution model to the

complete workpiece.

4. Elastic computation with the macromodel to estimate the final distortions.

The main advantage of this method is the drastic reduction of computational time re-

quired for the mechanical analysis. Only a linear elastic solution is required for each time

step. This method is not compatible with the local/global approach (see the “Thermal

boundary conditions” section) since a very fine and accurate model is needed to deter-

mine the plastic strains. A thermal load applied on a coarse mesh would not be sufficient

for this approach. Consequently, large modeling efforts have to be accounted for during

the initial transient thermo-mechanical analysis and for developing an efficient field

Fig. 17 Residual stresses of Ti64 wall and comparison with neutron diffraction measurements along
geometry center line
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transfer tool. Moreover, it is compulsory to wait for the complete cooling of the domain

before extracting the plastic strains; otherwise, the results will be inaccurate.

Since this technique has been largely validated for welding modeling [73], it has been

adopted for AM and powder bed processes [52, 54, 64]. Keller et al. applied this

method for the modeling of a cantilever build process and could analyze the effects of

the laser scan strategy on the final distortions of the workpiece. Numerical results are

in good agreements with the experiment. They also discuss a new accelerated mechan-

ical simulation based on the assumption that thermal strains only affect the topmost

layer allowing a reduction of distortion prediction computational effort to a few hours.

Most of the efforts are made to obtain the thermal field [54, 80].

Figure 18 shows a comparison of the numerically calculated final plate distortion with

experimental measurements. The plates are produced using powder bed process. IN718

+ is processed using a 200-W laser and scan speed 1 m/s, and all layers are processed

using the same hatching trajectory. Two deposition strategies were studied: In the first

approach, each layer is rotated relative to the previous one by 90o; in the second, each

layer is rotated by 67o. The numerical results are accurate within 3 % [13].

Thermodynamics and properties

The metrics required to assess metallurgical properties are process peak temperature,

heating, and cooling rates. Figure 19 shows a typical thermal history for powder bed

processes as predicted by the micromodel. The cooling rate reaches 1.5 million degrees

per second and is in agreement with thermographic images and temperature histories

reported by Lane et al. [81]. The cooling rate is much higher than those measured for

the traditional manufacturing process. Most sited literature focuses on experimental

characterization of phase distributions and grain structures. For example, Murr et al.

compare the microstructures of laser and electron beam systems. The difference in cool-

ing rates was found to lead to directional differences in grain structures of some of the

materials tested. They did not necessarily correlate to measured hardness [6]. Körner

et al. coupled 2D grain growth models with micromodels [82]. The numerical results

demonstrated the effect of hatching on the resulting microstructure of Ti-6Al-4V. The

implications of the cooling rates were not discussed.

Fig. 18 Plate validation case demonstrating the ability of macromodels to capture the influence powder
bed deposition strategy [13]
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The cooling rate in blown powder processes, typically in the order of 104 K/m, is much

lower than that in powder beds. Vogel et al. [12] utilized Leblond model and Koistinen-

Marburger equation to determine phase proportions of M2 high-speed steel at the end of

blown powder processes. The results were validated using XRD measurements. Mokadem

et al. utilized the cellular automata finite element (CAFE) [83] to calculate the microstruc-

ture of Ti-6Al-4V deposited via a transverse blown powder stream [84]. The results of

Figs. 17 and 18 provide implicit validation of thermo-mechanical data for Ti-6Al-4V

(blown powder) and IN718+ (powder bed tuned properties), respectively.

Modeling readiness for real-life AM

The readiness of a technology for industrial use is best measured by the Technology

Readiness Level (TRL) (Fig. 20). The TRL scale was originally developed by NASA in

the 1980s and has since been implemented and modified for multiple applications and

technologies including the assessment of software solutions [85, 86]. ICME verification

and validation procedures are also standardized to achieve high TRL levels [87].

As discussed above, micromodels have been validated to predict porosities and melt

pool dimensions reliably for different materials, different AM processes and different

commercial machines. The models have not yet been used on a sufficiently wide scale

to claim wide industrial use. A simplified assessment would place micromodels at TRL

4 to 5. Macromodels have been demonstrated based on bulk material properties that

originate from available databases. The majority of the studies reported in the literature

calibrate the thermal cycle or strains via experiments. Geometries studied are usually

laboratory demonstrators, and limited focus was placed on physics-based design of de-

position strategy and of support structures. The macromodel TRL is generally esti-

mated to be around 3 to 4, where the lower readiness level corresponds to powder bed

processes and higher values correspond to blown powder and wire feed systems.

In order for AM modeling to be deployed in an industrial environment, TRL 6 and be-

yond must be achieved via coupling of the different length scales and physics into an

Fig. 19 Example of the powder bed thermal cycle
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integrated computational materials engineering (ICME) platform (Fig. 21). Design for

additive manufacturing is achieved using physics-based modeling—topology optimization

[88–90]—and is therefore an integral component of ICME. The common practice of separ-

ating functional requirements from manufacturing constraints (e.g., minimum wall thick-

ness or overall component size) is certainly not desirable and is one example of the many

couplings yet to be supported by ICME.

Material databases play a central role in ICME. Additively manufactured material

properties and manufacturing constraints are process specific—see, for example, fatigue

performance of additively manufactured Ti-6Al-4V [91]. Figure 21 postulates that two

schema will be used: One describes the material properties and the other gathers

process data. The required strong link between these databases implies the possibility

of unifying them into one system such as that proposed by [92].

The databases will gather information from multiple sources: Experimental characterization

of material properties is an obvious source that is currently state of the art. Atomistic models

can be used to characterize feedstocks and to set targets for properties to be achieved during

Fig. 21 ICME for additive manufacturing

Fig. 20 TRL levels for hardware and software [86]
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the manufacturing process. Micromodels can be used to characterize the processes and process

finger prints for different geometric features, scanning strategies, and intentionally inserted

defects (e.g., powder contamination) in order to provide a better understanding of process

implications and eventually to enable knowledge based in-process monitoring and control.

The optimized design, the material, and the process data all contribute to macromodels

and the accurate prediction of as-built distortion and residual stresses. The large-scale

models might communicate thermal boundary conditions back to the lower scale models,

but the main goal is to compare the final geometry shape and characteristics with accept-

ance criteria. If the distortion, for example, is too high, an alternative build direction or

scan strategy would require a repetition of the macromodeling process. If, however, the

distortions during the build are too high, then process parameters or even the material

choice might be revised requiring a repetition of the topology optimization step.

Managing uncertainty is important when comparing the product compliance with accept-

ance criteria and for downstream decisions such as certification or supplier qualification.

The uncertainty of material properties, feedstock tolerances, and process variability has to

be propagated throughout the systems and linked to the final result. More tools might be

also considered for integration, for example, to calculate projected production cost. AM

ICME results can then be uploaded to the enterprise and production management systems

as required by the institution’s business process.

This paper focused on micro- and macromodels only. Coupling approaches to increase

macromodel independence from experimental calibration were suggested. Vogel et al. [12]

and N’Dri et al. [13] reported research towards integrating micro- and macromodels with

uncertainty quantification. Körner et al. attempted coupling micromodels with grain growth

simulations [82]. Allaire et al. demonstrated how casting constraints can be accounted for to

obtain topological optimized designs that fulfil both functional and manufacturing require-

ments [93]. The DARPA Open Manufacturing program demonstrated a framework integrat-

ing modeling tools with in-process monitoring sensors towards rapid qualification of AM

processes (Peralta AD, Enright M, Megahed M, Gong J, Roybal M, Craig J (2016) Towards

rapid qualification of powder bed laser additively manufactured parts. IMMI. Under Review).

In spite of significant progress developing and validating AM modeling tools, inte-

grating tools into an ICME platform as suggested in Fig. 21 is yet to be demonstrated.

Conclusions
Modeling additive-manufacturing processes is a very challenging enterprise. The large

differences in length- and timescales necessitate a subdivision of spatial and temporal

resolutions into micro-, meso-, and macroscale models. The names chosen in this compil-

ation also distinguish large differences in the physics considered in each of the model

categories. Micromodels resolve fine details of heat source feedstock interaction and how

the melt pool evolves requiring the highest physics fidelity. Results obtained are homoge-

nized or projected to macromodels to predict the overall build characteristics including

residual stresses and distortions. Mesoscale models describing the material properties are

queried by other models to obtain the required information about material behavior.

The same micromodeling tools were used to compare the performance of both con-

tinuous and modulated laser behaviors of different powder bed machines as well as

blown powder processes. Materials studied include SS316L, IN718+, and Ti-6Al-4V.

The verification and validation examples presented demonstrate the generality of the
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algorithms described and the ability to capture the thermal cycle and porosity defects.

This information can be utilized to characterize process parameters towards better

identification of the optimal process window. Macromodels were also applied to a wide

range of processes and materials. Validation was presented for successful builds. The

tools utilized in our studies demonstrated the ability to capture the influence of depos-

ition strategy on the final build distortion accurately.

Nevertheless, multiple topics of interest to designers and process engineers such

as predicting the required compensation of build shrinkage and optimization of de-

position strategy are yet to be addressed. The optimization schemes and physics

behind these tasks are generally known; the challenge remains mainly related to

the computational effort involved. When performing parameter studies, large

amounts of data are generated that users are not only confronted by the input/out-

put effort involved but also by the need to analyze large amounts of information.

Management of big data—also in combination with uncertainty quantification and

optimization studies—is a major task, where solutions are yet to be established.

Standardization of databases as well as modeling information should facilitate the

later reference of data available.

As ICME components mature, integration effort increases in importance. The need

for standardized benchmarks and reference results will be mandatory to qualify and

certify additive-manufacturing ICME tools. Parallel to improving robustness and com-

putational performance, it is expected that future research and development will be fo-

cused on establishing suitable modeling standards and benchmarks.
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