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Abstract

Background: Major depression is a widely used diagnostic category but there is increasing dissatisfaction with its
performance. The diathesis-stress model is an alternative approach that does not require the (sometimes arbitrary)
imposition of categories onto the spectrum of depressive morbidity. However, application of this model has not
been well explored and its consistency with available epidemiologic data is uncertain.

Methods: Simulation provides an opportunity to explore these issues. In this study, a simulation model based on
an intuitive representation of diathesis-stress interaction was developed. Both diathesis and stress were represented
using continuous distributions, without categorization. A diagnostic threshold was then applied to the simulation
output to create nominal categories and to explore their consistency with available information.

Results: An apparently complex epidemiologic pattern emerged from the diathesis-stress interaction when
thresholds were applied: incidence was time dependent, recurrence depended on the number of past episodes,
baseline symptoms were associated with an increased risk of subsequent episodes and the remission rate declined
with increasing episode duration.

Conclusions: A diathesis-stress conceptualization coupled with application of a threshold-based diagnostic
definition may explain several of the apparent complexities of major depression epidemiology. Some of these
complexities may be artifacts of the nominal diagnostic approach. These observations should encourage an
empirical exploration of whether diathesis-stress interactions provide a more parsimonious framework for
understanding depression than current approaches.
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Background
Depressive symptoms can be measured using rating scales,
which provide an assessment of symptom severity on an
ordinal or continuous scale. However, such ratings do not
capture important aspects of the concept of a depressive
disorder, as this is currently understood. Disorder defini-
tions, and hence most available epidemiologic data, derive
from nominal classifications (e.g. major depression (MD)
as a named category rather than a scaled rating) that in-
corporate symptom severity but also thresholds for dur-
ation and severity of symptoms and require features such
as dysfunction, distress or danger [1]. Diagnostic catego-
ries typically play a larger role than symptom ratings in
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medical practice because they align more closely with
clinical decision-making. Since publication of third edition
of the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM-III) in 1980 [2], epidemiologic studies have
embraced this nominal framework, as have subsequent
editions of the manual [1] and the International Classifica-
tion of Disease [3]. This nominal framework implicitly
adopts a particular theoretical orientation towards the epi-
demiology: an incidence-prevalence-duration framework.
In this orientation, there is a “prevalence pool” of depressed
people within the population, incidence is an inflow into
this pool and the outflow from the pool is due to recovery,
remission or mortality. A central aspect of this way of
thinking is that the clinical course is characterized by
discrete and identifiable transitions between disease states.
This framework leads to many familiar epidemiologic con-
cepts (e.g. that the prevalence odds is the product of an
his is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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incidence rate and mean duration of illness) and is the basis
for most disease-modeling approaches. An example of its
implementation is the DisMod II program which was until
recently used by the Global Burden of Disease project [4].
Categorization of an ordinal or continuous variable into

nominal groups can create arbitrary distinctions and runs
the risk of obscuring clinically meaningful features. Per-
haps in recognition of this, the depression literature has
seen the emergence of a complex terminology such as:
partial remission [1], residual symptoms [5] and sub-
syndromal or sub-threshold episodes [6,7]. Epidemiologi-
cally, episodes of the latter type may be difficult to clearly
distinguish from non-pathological fluctuations in mood
status and adjustment disorders [8].
These difficulties are also evident in the small literature

of simulation studies of this condition. All such studies to
date have represented the epidemiology from a nominal
perspective, employing the general epidemiologic para-
digm described above [9-12]. Simulation studies have
made an important contribution to the literature about
MD epidemiology by indicating, starting with Giuffra and
Risch [9] that epidemiologic estimates of lifetime preva-
lence for MD (which have generally fallen between 10%
and 20%) may be underestimates due to recall bias [10,11].
This result has subsequently been confirmed empirically
[13,14]. However, the impact of these simulation studies
has perhaps been diminished by the complexity of their
modeling strategies, e.g. [15].
When viewed through the lens of the general epide-

miologic disease model described above, MD epidemi-
ology is indeed complex. For example, there is no simple
incidence rate. Incidence appears to decline over time
with age [16,17]. Also, there is no single recovery rate.
The epidemiologic data indicate that the slope of the cu-
mulative recovery curve for MD episodes is steeper in
the early weeks of an episode than in the later weeks
[18]. This has required the application of various strat-
egies for modeling such as Markov “tunnels” [19], or the
use of lognormal [18] or Weibull [12] distributions to
depict a time-varying probability of remission. Various
other complexities also emerge, such as the observation
that sub-threshold episodes or elevated symptoms occur
on a continuum with threshold-defined episodes [20]
and are also associated with an increased risk of subse-
quent major depressive episodes [21]. Finally, the occur-
rence of depressive episodes in the past predicts their
occurrence in the future such that respondents with a
large number of recurrences are considered candidates
for long-term treatment [22]. Representation of these
characteristics, either conceptually in clinical practice or
mathematically in a simulation model, involves consider-
ation of complex time-dependent patterns of incidence
and recovery and a multiplicity of MD-related health
states. However, an interesting possibility is that some of
the apparent complexity of MD epidemiology may arise
merely as an artifact of forcing a presumably continuous
phenomenon into nominal categories.
In order to explore this, it is necessary to initially adopt

a non-categorical perspective, treating relevant variables
as continuous ones, and then to apply a threshold-based
definition to the data. A leading candidate for such a
model is the diathesis-stress model, originally formulated
(with mixed success) as an interaction between a risk-
associated cognitive style and life events, see review by
Joiner and Wagner [23], and elsewhere in a social model
(including “vulnerability” and “provoking” factors) by
Brown and Harris [24]. The concept is now more often
applied (although usually without invocation of the “diath-
esis” and “stress” terminology, e.g. see [25] and [26]) with
reference to genetic inheritance, epigenetic modification
of gene expression and life events. A depressive diathesis
may arise, for example, from multiple genes and from ex-
posure to adversity during development [25]. Neither
polygenetic inheritance nor psychosocial adversity fit into
“yes” or “no” categories. Some of the depressive diathesis
may arise through epigenetic mechanisms due to the abil-
ity of early life adversity to reduce (through methylation)
expression of a glucocorticoid receptor gene promoter in
the hippocampus, producing a longstanding reduction to
glucocorticoid-mediated negative feedback inhibition of
stress responses [27-29]. Consistent with this idea, adults
having a history of childhood adversity show increased re-
activity in stressful circumstances and may therefore be at
higher risk of MD, see reviews by Taylor et al. [26,30].
The goal of this study was to explore whether a simple

diathesis-stress model could reproduce some of the com-
plex patterns typically seen in epidemiologic studies when
a nominal diagnostic definition was superimposed on the
(continuous) output. An affirmative finding would sup-
port, at least in theory, two aspects of the diathesis-stress
conception of depressive disorders: (1) its consistency with
some of the available epidemiologic data and (2) its parsi-
mony in the sense of its greater simplicity than the
incidence-prevalence-mortality framework.
Four aspects of major depression epidemiology that are

the focus of the study are: (1) that incidence diminishes
over time (with increasing age), (2) that recurrence risk
increases with a higher number of past episodes, (3) that
elevated symptom levels increase the risk of major depres-
sion and (4) that recovery rates decline as the duration of
episodes increase.

Methods
The simulation model used in this study was intended to
provide a simple representation of a presumed under-
lying diathesis-stress interaction producing continuous
depressive-symptom output, without attempting to spe-
cify whether the diathesis represents genetic, epigenetic,



Patten BMC Psychiatry 2013, 13:19 Page 3 of 9
http://www.biomedcentral.com/1471-244X/13/19
socially or cognitively determined vulnerability. The
model was developed in the freely available software
NetLogo [31]. In brief, simulated individuals (the model
“agents”) were assigned a diathesis value and their ex-
posure to stress was represented by movement of those
agents across an environment characterized by different
levels of stress. In some of the models presented below
(models 2 and 3), values for the stress variable were
assigned by random generation from a lognormal distri-
bution with a mean of zero and a user-assigned standard
deviation. This resulted in assignment of values for
diathesis and stress that were always positive and that
had an approximately bell-shaped distribution when the
standard deviation was small and was right skewed when
the standard deviation was large [32].
Depressive symptom levels were conceptualized as aris-

ing from prolonged activation of stress-response systems
of the agent. The model used three variables to depict this
process: stress activation, stress adaptation and stress bur-
den. The values of each variable were updated in each day
of the simulation as the agent moved across the environ-
ment, each day coming into contact with an area charac-
terized by a specified stress level. This is depicted
schematically in Figure 1, where the yellow polygon is the
agent moving over stress regions (shaded squares). In Fig-
ure 1 three severities of stress are depicted but this was
treated as a continuous variable in the modeling. The bur-
den of stress for a particular agent was determined both
by activation and adaptation. On each day activation was
an addition to the burden and adaptation as a subtraction
from the burden. The equations used to depict activation
and adaptation were:

Stress activation tð Þ ¼ stress tð Þ � diathesis ð1Þ
Stress adaptation tð Þ ¼ stress burden t�1ð Þ

� 1= 1þ adaption constant � diathesisð Þð Þ ð2Þ
Figure 1 Schematic depicting an individual (agent) moving
over patches. * see equation 2. ** see equation 1.
Equation 1 represents activation as the product of the
entity’s diathesis and the stress level encountered on each
day. Equation 2 represents adaptation as the proportion of
the total stress burden processed or eliminated in each
day. Whereas stress activation was proportional to the
diathesis, stress adaptation was inversely proportional. A
constant was added to the model in order to allow the
influence of diathesis to differ between adaptation and ac-
tivation. Intuitively, if a depressive diathesis means that
vulnerable individuals react more strongly to stressful
events (activation) then the diathesis may be expected to
primarily affect incidence (see review by Taylor [26]),
whereas if the diathesis manifests as a lengthening or per-
sistence of the stress response this may have a greater im-
pact on the duration of symptoms (see for example,
epigenetic evidence of impaired glucocorticoid feedback
resulting from early life events [28]). The denominator in
the right-hand side of equation 2 is formulated such that a
value of zero for the adaptation constant would translate
into a situation where adaptation to 100% of the stress
burden of the preceding day would occur. This constant is
labeled an “adaptation constant” in the formulas below
and in the models presented in the paper. The change in
burden was determined by the difference between stress
activation (equation 1) and adaptation (equation 2), as sum-
marized in equation 3 (see also Figure 1):

Stress burden tð Þ ¼ stress burden t�1ð Þ
þ stressactivation tð Þ
� stressadaptation tð Þ ð3Þ

Since DSM-IV and ICD-10 definitions of depressive
episodes are based on the severity and persistence of
symptoms over minimum two week intervals, depressive
symptom levels were simulated as a moving average of
the current and past 13 days of stress burden, as
described above. This is summarized in equation 4:

Depressive symptom levels
¼ mean stress burden t � 13 ¼> tð Þð Þ ð4Þ

Finally, the simulation model included a threshold
value and a remission stringency value. Entities were
classified as entering an episode whenever their symp-
toms exceeded the threshold value. A depressive episode
is clinically usually not considered to be over until symp-
toms are well below the diagnostic threshold (the con-
cept of remission) [33]. Remission stringency specifies
the extent of symptomatic improvement required before
the episode can be considered over. For example, if the
remission stringency value is 0.5 symptoms must fall to
less than 50% of the diagnostic threshold value before
the episode is considered over. The relationship between
these thresholds and episode duration is presented sche-
matically in Figure 2. It should be emphasized that the
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threshold and remission stringency variables are not
intrinsic to the diathesis-stress interaction that the
model represents. Rather, these are variables used to
process the output data as if it were epidemiologic data
with analogues of threshold and remission-based nom-
inal definitions applied to it. Additional file 1 presents a
more structured description of the model using a table
format adapted from Railsback and Grimm [34].
The amount of time that an agent spends with symp-

toms exceeding the diagnostic threshold before dropping
below the remission threshold was the model’s represen-
tation of the duration of a nominally classified episode.
To illustrate the model, an applet is available through
this reference [35]. The model is labeled Model 1. As
the entities pass through the stressful intervals depicted
by the bars their level of symptoms increases and then
subsequently decreases after they pass through the bars
into a low stress zone. A screen capture of the applet
output is presented in Figure 3.
A second version of this model (Model 2) provides

output at the level of an individual agent, simulating the
experience of this agent over 2 years (730 days). Again,
this is a Java applet and can be examined using a web
browser using a link provided in the reference list [36].
In this model, the distribution of the stress variable is
assigned randomly to the environment over which the
agent passes. The parameter values for the stress distri-
bution can be changed by the user. Note that the button
for the stress variable is labeled “stress_sd” because the
distribution of stress is represented using the logarithm
of a normal distribution with a mean of zero and this
value for the standard deviation of the normal distribu-
tion. Note that when the model is initialized, the place-
ment of the agent on the y-axis of the output window is
random, so that the pattern of exposure to stress is not
the same for each simulated agent even if the model
parameters are not changed. Running the model several
times using the same set parameters may result in epi-
sodes occurring in some simulations but not others.
Model 3 builds from the previous ones by randomly

assigning diathesis values to each agent, simulating the ex-
perience of a series of agents (the number of which can be
Figure 2 Typical output from model 2* (screen capture). * model para
threshold = 15, remission stringency = 0.5. s = start of episode. e = end of
changed) and calculating output parameters: the incidence
proportion (over the specified interval), the mean first
episode duration and the mean episode count over the
specified simulation interval. This model demonstrates
how inter-individual variation in diathesis can be added to
the prior model in order to simulate a population sample.
Model 3 can be accessed through this reference [37].
The model that was used to produce the simulated out-

put for data analysis in this study is attached as Additional
file 2. This model is the same as Model 3, above, except
that the simulation interval is set by default to 10 years
(3652 days), the output window on the interface is
expanded to accommodate this, and some additional out-
come variables are recorded by the model in a data file.
For example, the model output records the number of epi-
sodes occurring in the first nine years of the simulation in
order to evaluate the emergence one of the complexities
under investigation: whether the number of episodes in
the first nine years would predict whether an episode
would occur in the 10th year. A set of parameters was cali-
brated by trial and error to produce roughly the expected
pattern of 10 year incidence (about 13%) [14], mean epi-
sode counts over 10 years (between 2 and 3 episodes for
each agent having an episode) [12] and a mean first epi-
sode duration of about 11 months. This one-year episode
duration may seem long for MD, e.g. see [38], but the
mean duration of MD episodes have been found to be
strongly influenced by a small number of very long epi-
sodes such that the distribution of episode durations from
the simulation model does follow the familiar pattern, e.g.
see [18], with this parameterization. The settings used in
the simulation were 0.20 for the diathesis standard devi-
ation, 0.75 for the stress standard deviation, 15 for the
threshold value, 0.5 for the remission stringency and 3.0
for the adaptation constant. A trial simulation of 100,000
individuals with this model resulted in: a 15% cumulative
incidence, mean episode count (among those with and
episode) of 2.8 and a 314 day mean episode duration.
These parameters were then used to simulate 100,000

observations, creating a dataset with which to evaluate the
specified epidemiologic patterns. This dataset, in the form
of a comma separated values file (Additional file 3), was
meters: diathesis = 1.4, stress_sd = 0.75, duration constant = 3,
episode.



Figure 3 A screen capture from model 1*, near the end of a simulation. * See http://people.ucalgary.ca/~patten/model_1.html.
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imported into the statistical software Stata [39] for ana-
lysis. Additional file 4 includes the same dataset in Stata
format. A Stata “do” file in Additional file 5 was used to
generate the results of the study, as reported below.
Additional information on characteristics of the model

may be found in Additional file 6. This document presents
a series of simulations, examining the effects of altering
model parameters on two of the epidemiologic outputs:
incidence and mean duration of the first episode.

Results
The first question addressed was whether simulated inci-
dence would decline over time. Figure 4 presents a
Kaplan-Meier curve for the onset of episodes. This ana-
lysis excludes simulated individuals already depressed at
Figure 4 Incidence* over 10 years of a 3652 day simulation run. * inc
baseline (day 14, the first day when the moving average
could be calculated). The slope of the curve flattens
from left to right, indicating declining incidence.
The second question to be addressed was whether re-

currence risk increases with a larger number of past epi-
sodes. This was addressed by tabulating episode incidence
in the final year of the 10 year simulation interval accor-
ding to how many episodes had been experienced during
the first nine years. There is a dramatic association be-
tween the number of episodes in the earlier interval and
the risk of having one in the final year of the simulation,
see Figure 5.
The third question was whether depressive symptoms

at baseline or sub-threshold episodes at a baseline time
point would predict subsequent incidence. To assess this,
idence is the slope of the Kaplan-Meier curve.



Figure 5 Recurrence in year 10, by number of episodes in years 1–9.
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baseline scores were calculated at the first possible time
(day 14 in the simulation) and Kaplan-Meier curves were
generated for both groups. Respondents exceeding the
diagnostic threshold value at the baseline time point (de-
pressive symptoms at baseline were calculated at day 14)
were excluded from this analysis. Score greater than 6
(approximately half the diagnostic threshold value in the
simulations presented) was taken to indicate elevated
symptoms. Those with higher baseline symptoms had a
much higher subsequent risk, see Figure 6.
The fourth question of interest was whether the prob-

ability of recovery would diminish with increasing epi-
sode duration. Figure 7 shows the cumulative probability
of recovery among first episodes as a function of time.
The rate of recovery is high in the early months and
then diminishes subsequently, as is typically reported for
Figure 6 Incidence over 10 years, by elevated* depressive
symptoms at baseline. * scores > 6 (approximately 50% of the
diagnostic threshold) were considered elevated.
major depression [18]. A fairly large proportion (13%) of
the simulated cohort had not recovered after one year.

Discussion
The general idea of a diathesis-stress model is intuitively
appealing and not so complex as to be inaccessible to in-
tuition. The simple formulas that comprise this simulation
model merely reflect a simplified, intuitive representation
of a diathesis-stress interaction. What these models de-
monstrate is that this simple and basic representation of
an intuitive idea produces resemblances of epidemiologic
data concerning depressive disorders. As such, the impor-
tance of this study is its tentative identification of the
diathesis-stress model as a promising alternative frame-
work for understanding these disorders. Given mounting
awareness of the limitations of the current approach to
diagnosis [40,41] such tentative exploration of alternative
perspectives seem warranted. These results should en-
courage further exploration of the diathesis-stress relation-
ships that may exist in depressed patients.
Major depression has been viewed as an episodic condi-

tion with a complex epidemiology characterized by age,
time and state-dependent rates of transition, with afflicted
persons moving in and out of episodes according to these
complicated dynamics. Through the lens of a diathesis-
stress approach it is also possible to regard this condition
as representing interplay between a personal vulnerability
(diathesis) to the effects of stress and exposure to stressful
life events. Diathesis-stress interactions are expected to re-
sult in fluctuating levels of symptoms as individuals with
various degrees of vulnerability encounter various levels of
stress in their lives. These models show that application of
a threshold to a fluctuating level of symptoms can produce
the appearance of an episodic disease course, at least in a



Figure 7 Simulated cumulative recovery from MD episodes, by month.
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subset of the population whose diathesis-stress interac-
tions leave them neither always below (never depressed)
nor always above (chronic depression) diagnostic thresh-
olds. Whereas major depression has been viewed as an
inherently episodic condition, the results presented here
are consistent with the possibility that diathesis-stress
dynamics may be more fundamentally important to the
depressive disorders.
The tendency of the number of prior episodes to pre-

dict subsequent recurrence (see question 2, above) might
be taken as evidence of kindling [42] or “scar” [43-46]
related phenomena, but the simulations presented here
suggest another possibility: that this and other features
may occur as an artifact of applying a threshold-based
definition to a fundamentally continuous underlying
process. Of note, the use of the term “scar” has recently
been invoked to describe heightened depressive diatheses
arising from early life adversity [47], a usage differing from
the traditional concept of a “scar effect” (an effect of a
depressive episode that persists after remission is
obtained). This non-traditional usage fits nicely with the
conceptualization modeled here. At a physiological level,
the diathesis depicted in this study using a probability dis-
tribution might partially represent “limbic scars” arising
from early life adversity, manifest along a continuum.
Among other possible explanations, relevant changes may
be related to polygenetic risk [25] or to adversity-induced
methylation of promoter regions for hippocampal expres-
sion of glucocorticoid receptors – leading to increased
stress sensitivity and diminished stress adaptation [48].
The model presented here is not intended to accur-

ately reflect any real-world phenomena or to be used as
a decision-support or prediction tool. The model has a
conceptual rather than empirical basis. Furthermore,
even conceptually, the model does not attempt to ac-
count for several potentially important factors. For
example, whereas stress has been modeled as interacting
passively with a diathesis, in reality people learn from
their experiences and can also learn skills to cope with
stressful events. The probability distributions selected
for use in the model are arbitrary and were selected
merely because they seemed to “make sense” intuitively.
Conceivably, different patterns of exposure to stress
could, in themselves, produce an episodic pattern, even
without individual variation in vulnerability (diathesis).
Despite these concerns, these results encourage the idea
that empirical confirmation of diathesis-stress interac-
tions (a rapidly developing area within the epigenetics
literature [48]) may lead to simpler and more useful
ways of understanding these conditions than the current
approach has provided.
There are additional limitations to this study. Episode

duration was examined only for the first episode, as this
was the simplest to record from the model. In principle,
episode duration (rather than specifically first episode
durations) was the targeted output, so the strategy that
was adopted in capturing the output is a limitation in
this respect. Also, some of the agent’s variables could
have been treated as global variables in the models since
each models only a single individual at a time. More
sophisticated agent-based simulation approaches, better
informed by the rapidly developing biological literature,
will play a role in advancing knowledge about these
disorders.

Conclusions
Whereas major depression is usually characterized as an
episodic condition with a very complex epidemiology, it
may instead (at least in some cases) represent a much
simpler pattern of environmental interaction with heigh-
tened vulnerability to stress. Some of the complexity
associated with the epidemiology of this condition may
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arise as an artifact of applying threshold-based diagnos-
tic definitions to an inherently dimensional underlying
process. The diathesis-stress concept is a strong candi-
date framework to supersede the currently dominant
threshold-based nominal approach.

Additional files

Additional file 1: Description of the Simulation Model.

Additional file 2: The model used to produce simulated output for
the reported data analyses.

Additional file 3: Simulation output, in comma-separated format.

Additional file 4: Simulation output, in comma-separated format.

Additional file 5: The Stata ‘do’ file used to produce the reported
estimates from the simulation output.

Additional file 6: Model output: Effect of model parameters on
incidence and first episode duration.
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