
Annali di Matematica (2017) 196:155–164
DOI 10.1007/s10231-016-0567-6

On hyperbolic systems with time-dependent Hölder
characteristics

Claudia Garetto1 · Michael Ruzhansky2

Received: 15 December 2015 / Accepted: 12 March 2016 / Published online: 12 April 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In this paper, we study the well-posedness of weakly hyperbolic systems with
time-dependent coefficients.We assume that the eigenvalues are low regular, in the sense that
they are Hölder with respect to t . In the past, these kinds of systems have been investigated
by Yuzawa (J Differ Equ 219(2):363–374, 2005) and Kajitani and Yuzawa (Ann Sc Norm
Super Pisa Cl Sci (5) 5(4):465–482, 2006) by employing semigroup techniques (Tanabe–
Sobolevski method). Here, under a certain uniform property of the eigenvalues, we improve
the Gevrey well-posedness result of Yuzawa (2005) and we obtain well-posedness in spaces
of ultradistributions as well. Our main idea is a reduction of the system to block Sylvester
form and then the formulation of suitable energy estimates inspired by the treatment of scalar
equations in Garetto and Ruzhansky (J Differ Equ 253(5):1317–1340, 2012).
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156 C. Garetto, M. Ruzhansky

1 Introduction

We want to study the Cauchy problem for first-order hyperbolic systems of the type

Dtu − A(t, Dx )u − B(t)u = 0, x ∈ R
n, t ∈ [0, T ],

u|t=0 = g0,
(1)

where A and B are m × m matrices of first-order and zero- order differential operators,
respectively, with t-dependent coefficients, and u and g0 are column vectors with m entries.
We work under the assumptions that the systemmatrix is of sizem×m with real eigenvalues
and that the coefficients are of class Cm−1 with respect to t . It follows that at the points of
highest multiplicity the eigenvalues are of Hölder class (m−1)/m. We will therefore assume
that the matrix A(t, ξ) has m real eigenvalues λ j (t, ξ) of Hölder class Cα , 0 < α ≤ 1 with
respect to t . Note that it is not restrictive to assume that the eigenvalues λ j , j = 1, . . . ,m,
are ordered because we can always reorder them to satisfy this (ordering) assumption, and
the Hölder continuity is preserved by such reordering. If α = 1, it is sufficient to assume that
λ j , j = 1, . . . ,m, are Lipschitz.

In analogy with scalar equations in [3,7], we work under the hypothesis of the following
uniform property: There exists a constant c > 0 such that

|λi (t, ξ) − λ j (t, ξ)| ≤ c|λk(t, ξ) − λk−1(t, ξ)|, (2)

for all 1 ≤ i, j, k ≤ m, t ∈ [0, T ] and ξ ∈ R
n .

Assumptions of Hölder regularity of this type and the uniform condition (2) are rather
natural (see Colombini and Kinoshita [3] and the authors’ paper [7] for a discussion and
examples). In particular, Colombini andKinoshita [3] treated the scalar version of the Cauchy
problem (1) with n = 1, and the authors extended it to the multidimensional case n ≥ 1 in
[7], also improving some Gevrey indices.

The research of this paper continues investigations of properties of solutions to Cauchy
problems for hyperbolic equations with multiplicities. The case of time-dependent coeffi-
cients already presents a number of challenging problems, most importantly in view of the
fact that already the scalar wave equation

∂2t v − a(t)�v = 0, v(0) = v0, ∂tv(0) = v1, (3)

in dimension n = 1 may not be well-posed even for smooth data v0, v1 ∈ C∞. More
precisely, if a ∈ Cα is Hölder with 0 < α < 1, even in the strictly hyperbolic case a > 0
the Cauchy problem (3) may have nonunique solutions (see Colombini et al. [2]), and in the
weakly hyperbolic case a ≥ 0 even if a is smooth a ∈ C∞, the Cauchy problem (3) may have
no distributional solutions (see Colombini and Spagnolo [4]). However, the Cauchy problem
(3) is well-posed in suitable Gevrey classes (see Colombini et al. [1]). At the moment, scalar
higher-order equations with time-dependent coefficients are relatively understood (see, e.g.
[3,13] and their respective extensions in [7,8]). Further extreme cases: analytic coefficients
and distributional coefficients have been also investigated (see, e.g. authors’ papers [6,9,10],
respectively, and references therein). Hyperbolic systems of the form (1) have been also
investigated (see, e.g. Garetto [6], Kajitani and Yuzawa [14] and Yuzawa [15]).

The main new idea behind this paper enabling us to obtain an improvement in the well-
posedness results for the system in (1) is the transformation of the system (1) to a larger system
which, however, enjoys the property of being in block Sylvester form. Such a transformation,
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Hyperbolic systems with Hölder characteristics 157

which can be performed under the assumption that the system coefficients are of class Cm−1

with respect to t , is carried out following the method of D’Ancona and Spagnolo [5], leading
to the Cauchy problem of the form

DtU − A(t, Dx )U − L(t, Dx )U = 0,

Ut=0 = U0.
(4)

This is a Cauchy problem for the first-order hyperbolic system of the sizem2×m2 of pseudo-
differential equations. Despite the increase in the size of the system from m ×m to m2 ×m2

and the change from a differential system to a pseudo-differential one, the system (4) has a
crucial advantage of being in a block Sylvester form (see (9) for a precise formulation). This
allows us to implement the ideas developed in [7] for scalar equations, where the reduction
in a scalar equation to a Sylvester form system was performed.

To summarise our result, herewe first note that combining the results in [14,15]we already
know that the Cauchy problem (1) is well-posed in the Gevrey class γ s, with

1 ≤ s < 1 + α

m
. (5)

Arguing by the Fourier characterisation of Gevrey–Beurling ultradistributions, one can easily
extend the Gevrey well-posedness above to spaces of ultradistributions. It is our aim in this
paper to show that the interval of Gevrey well-posedness in (5) can be enlarged under the
uniform property (2) of the eigenvalues. Since by the results of Kajitani and Yuzawa at least
an ultradistributional solution exists for Gevrey initial data with s ≥ 1+ α

m we will prove, for
suitable values of s, that this solution is indeed Gevrey, because it solves the reduced Cauchy
problem (4). In this sense, the well-posedness of (1) can be determined by studying the
well-posedness of the reduced Cauchy problem (4). More precisely, by standard arguments
it is sufficient to find an a priori estimate on the Fourier transform with respect to x of the
solution U of (4).

We assume that the Gevrey classes γ s(Rn) are well known: These are spaces of all f ∈
C∞(Rn) such that for every compact set K ⊂ R

n there exists a constant C > 0 such that for
all β ∈ N

n
0 we have the estimate

sup
x∈K

|∂β f (x)| ≤ C |β|+1(β!)s . (6)

For s = 1, we obtain the class of analytic functions. We refer to [7] for a detailed discussion
and Fourier characterisations of Gevrey spaces of different types. Since we are dealing with
vectors in this paper, we will write γ s(Rn)m form-vectors consisting of functions in γ s(Rn).
This is our main result:

Theorem 1.1 Assume that coefficients of the m × m matrices A and B are of class Cm−1

and that the matrix A(t, ξ) has m real eigenvalues λ j (t, ξ) of Hölder class Cα , 0 < α ≤ 1
with respect to t , that satisfy (2). Let T > 0 and g0 ∈ γ s(Rn)m. Then, the Cauchy problem
(1) has a unique solution u ∈ C1([0, T ], γ s(Rn)m) provided that

1 ≤ s < 1 + min

{
α,

1

m − 1

}
. (7)

For the proof, we can assume that s > 1 since the case s = 1 is essentially known (see
[11,12]).

Also, we note that the proof also covers the case α = 1, in which case it is enough to
assume that the eigenvalues are Lipschitz.
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158 C. Garetto, M. Ruzhansky

We note that the result of Theorem 1.1 is an improvement of known results in terms of
the Gevrey order. For example, this is an improvement of Yuzawa’s and Kajitani’s order (5)
from [14,15]. See Remark 2.3 for more details.

The energy estimates obtained in the proof of Theorem 1.1 allow one to also obtain
the ultradistributional well-posedness results. First we note that the Gevrey spaces γ s(Rn)

considered in (6) are of Gevrey–Roumeau type. At the same time, we denote by γ (s)(Rn)

the Gevrey spaces of Gevrey–Beurling type, i.e. the space of all f ∈ C∞(Rn) such that for
every compact set K ⊂ R

n and for every constant A > 0 there exists a constant CA,K > 0
such that for all β ∈ N

n
0 we have the estimate

sup
x∈K

|∂β f (x)| ≤ CA,K A|β|(β!)s .

For 1 < s < ∞, we denote by D′
(s)(R

n) := (γ
(s)
c (Rn))′ the topological dual of com-

pactly supported functions in γ (s)(Rn) and by E ′
(s)(R

n) the topological dual of γ (s)(Rn).
Consequently, arguing similarly to [7], the proof of Theorem 1.1 yields the following ultra-
distributional well-posedness:

Theorem 1.2 Assume that coefficients of the m × m matrices A and B are of class Cm−1

and that the matrix A(t, ξ) has m real eigenvalues λ j (t, ξ) of Hölder class Cα , 0 < α ≤ 1
with respect to t , that satisfy (2). Let T > 0 and g0 ∈ (E ′

(s)(R
n))m. Then, the Cauchy problem

(1) has a unique solution u ∈ C1([0, T ], (D′
(s)(R

n))m) provided that

1 < s ≤ 1 + min

{
α,

1

m − 1

}
.

2 Proof of Theorem 1.1

The first step in our new approach to the Cauchy problem (1) is to rewrite the system in a
special form, i.e. in block Sylvester form. This is possible thanks to the reduction given by
D’Ancona and Spagnolo [5], which is summarised in the following subsection.

2.1 Reduction to block Sylvester form

We begin by considering the cofactor matrix L(t, τ, ξ) of (τ I − A(t, ξ))T where I is the
m × m identity matrix. By applying the corresponding operator L(t, Dt , Dx ) to (1), we
transform the system

Dtu − A(t, Dx )u − B(t)u = 0

into

δ(t, Dt , Dx )I u − C(t, Dt , Dx )u = 0, (8)

where δ(t, τ, ξ) = det(τ I − A(t, ξ)),C(t, Dt , Dx ) is the matrix of lower-order terms (differ-
ential operators of orderm−1). Since the entries of A and B are of classCm−1 with respect to
t the equation above has continuous t-dependent coefficients. Indeed, the coefficients of the
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Hyperbolic systems with Hölder characteristics 159

equation Dtu − A(t, Dx )u − B(t)u = 0 are of class Cm−1 and the operator L(t, Dt , Dx ) is
of orderm−1 being defined via the cofactor matrix of am×m matrix. Note that δ(t, Dt , Dx )

is the operator

Dm
t +

m−1∑
h=0

bm−h(t, Dx )D
h
t ,

with bm−h(t, ξ) homogeneous polynomial of order m − h.
We got in this way a set of scalar equations of order m which can be transformed into a

first-order system of size m2 × m2 of pseudo-differential equations, by setting

U = (U1, . . . ,Um)T ∈ R
m2

Ui =
(
D j−1
t 〈Dx 〉m− j ui

)
j=1,...,m

∈ R
m, i = 1, . . . ,m,

where 〈Dx 〉 is the pseudo-differential operator with symbol 〈ξ 〉. More precisely, the equation
(8) is now written as

DtU − A(t, Dx )U − L(t, Dx )U = 0,

where A is a m2 × m2 matrix made of m identical blocks of the type

〈Dx 〉 ·⎛
⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

−bm(t, Dx )〈Dx 〉−m −bm−1(t, Dx )〈Dx 〉−m+1 · · · · · · −b1(t, Dx )〈Dx 〉−1

⎞
⎟⎟⎟⎠ ,

and the matrix L of the lower-order terms is made of m blocks of size m × m2 of the type⎛
⎜⎜⎜⎝

0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

l j,1(t, Dx ) l j,2(t, Dx ) · · · · · · l j,m2−1(t, Dx ) l j,m2(t, Dx )

⎞
⎟⎟⎟⎠ ,

with j = 1, . . . ,m. Note that the entries of the matrices A and L are pseudo-differential
operators of order 1 and 0, respectively.

Concluding, the Cauchy problem (1) has been transformed into

DtU − A(t, Dx )U − L(t, Dx )U = 0,

Ut=0 = U0.
(9)

This is a Cauchy problem of first-order pseudo-differential equations with principal part in
block Sylvester form. The size of the system is increased from m × m to m2 × m2, but the
system is still hyperbolic, since the eigenvalues of any block of A(t, ξ) are the eigenvalues
of the matrix A(t, ξ). The initial data U0 are an m2-column vector with entries

U0,i =
(
D j−1
t 〈Dx 〉m− j ui (0, x)

)
j=1,...,m

,

i = 1, . . . ,m, where u is the solution of the Cauchy problem (1) with u(0, x) = g0. As
observed in the introduction,we alreadyknow that suchu exists at least as ultradistribution.By
using the initial condition g0 and by deriving the system in (1)m−1 timeswith respect to t , we
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160 C. Garetto, M. Ruzhansky

obtain that D j−1
t 〈Dx 〉m− j u(0, x) has the same regularity properties of g0 for j = 1, . . . ,m.

It follows that if g0 ∈ γ s(Rn)m then U0 ∈ γ s(Rn)2m .

2.2 Energy estimates

As in [7] we regularise the eigenvalues λ j (t, ξ) with respect to t and we separate them by
adding some power of a parameter ε → 0. In detail, assuming that the λ j ’s are ordered and
taking a mollifier ϕ ∈ C∞

c (R), ϕ ≥ 0 with
∫

ϕ(t) dt = 1 we set

λ j,ε(t, ξ) := (λ j (·, ξ) ∗ ϕε)(t) + jεα〈ξ 〉, t ∈ [0, T ], ξ ∈ R
n,

where ϕε(t) = ε−1ϕ(t/ε) and j = 1, . . . ,m. The next proposition collects the main prop-
erties of these regularised eigenvalues and has been proven in [7] (see Propositions 18 and
19).

Proposition 2.1 Let ϕ ∈ C∞
c (R), ϕ ≥ 0 with

∫
R

ϕ(x) dx = 1.
Under the assumptions of Theorem 1.1, let

λ j,ε(t, ξ) := (λ j (·, ξ) ∗ ϕε)(t) + jεα〈ξ 〉, (10)

for j = 1, . . . ,m and ϕε(s) = ε−1ϕ(s/ε), ε > 0. Then, there exists a constant c > 0 such
that

(i) |∂tλ j,ε(t, ξ)| ≤ c εα−1〈ξ 〉,
(ii) |λ j,ε(t, ξ) − λ j (t, ξ)| ≤ c εα〈ξ 〉,
(iii) λ j,ε(t, ξ) − λi (t, ξ) ≥ εα〈ξ 〉 for j > i ,

for all t, s ∈ [0, T ′] with T ′ < T and all ξ ∈ R
n.

We can now define the m2 ×m2 block diagonal matrix Hε made of m identical blocks of
the type

⎛
⎜⎜⎜⎜⎝

1 1 1 . . . 1
λ1,ε〈ξ 〉−1 λ2,ε〈ξ 〉−1 λ3,ε〈ξ 〉−1 . . . λm,ε〈ξ 〉−1

λ21,ε〈ξ 〉−2 λ22,ε〈ξ 〉−2 λ23,ε〈ξ 〉−2 . . . λ2m,ε〈ξ 〉−2

. . . . . . . . . . . . . . .

λm−1
1,ε 〈ξ 〉−m+1 λm−1

2,ε 〈ξ 〉−m+1 λm−1
3,ε 〈ξ 〉−m+1 . . . λm−1

m,ε 〈ξ 〉−m+1

⎞
⎟⎟⎟⎟⎠ . (11)

By separation of the regularised eigenvalues, one easily sees that the matrix Hε is invert-
ible. Since weakly hyperbolic equations and systems posses the finite speed of propagation
property, we know that if the initial data are compactly supported then the solution will
be compactly supported in x as well. Hence, instead of dealing with the Cauchy problem
(9) directly we can apply the Fourier transform with respect to x to it and focus on the
corresponding Cauchy problem

DtV − A(t, ξ)V − L(t, ξ)V = 0,

Vt=0 = Û0
(12)

Note assuming compactly supported initial data in Theorem 1.1 is not restrictive. We look
for a solution V (t, ξ) of the type

V (t, ξ) = e−ρ(t)〈ξ〉 1s (det Hε)
−1HεW, (13)
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Hyperbolic systems with Hölder characteristics 161

where ρ ∈ C1[0, T ] will be determined in the sequel. By substitution in (12) we obtain

e−ρ(t)〈ξ〉 1s (det Hε)
−1HεDtW + e−ρ(t)〈ξ〉 1s iρ′(t)〈ξ 〉 1

s (det Hε)
−1HεW

+ ie−ρ(t)〈ξ〉 1s ∂t det Hε

(det Hε)2
HεW + e−ρ(t)〈ξ〉 1s (det Hε)

−1(Dt Hε)W

= e−ρ(t)〈ξ〉 1s (det Hε)
−1(A + L)HεW.

Multiplying both sides of the previous equation by eρ(t)〈ξ〉 1s (det Hε)H−1
ε we get

DtW + iρ′(t)〈ξ 〉 1
s W + i

∂t det Hε

det Hε

W + H−1
ε (Dt Hε)W = H−1

ε (A + L)HεW.

Thus,

∂t |W (t, ξ)|2 = 2Re(∂tW (t, ξ),W (t, ξ))

= 2ρ′(t)〈ξ 〉 1
s |W (t, ξ)|2 + 2

∂t det Hε

det Hε

|W (t, ξ)|2 − 2Re(H−1
ε ∂t HεW,W )

−2Im(H−1
ε AHεW,W ) − 2Im(H−1

ε LHεW,W ). (14)

Inspired by the treatment of higher-order equations given in [7], we proceed by estimating
the terms:

(i) ∂t det Hε

det Hε
,

(ii) ‖H−1
ε ∂t Hε‖,

(iii) ‖H−1
ε AHε − (H−1

ε AHε)
∗‖,

(iv) ‖H−1
ε LHε − (H−1

ε LHε)
∗‖.

2.2.1 Estimate of (i), (ii), (iii) and (iv)

We begin by noting that the m identical blocks of the m2 × m2-matrix Hε are exactly given
by the matrix H used in the paper [7] (formula (3.4)). Hence, we can set

H =

⎛
⎜⎜⎜⎜⎝

1 1 1 . . . 1
λ1,ε〈ξ 〉−1 λ2,ε〈ξ 〉−1 λ3,ε〈ξ 〉−1 . . . λm,ε〈ξ 〉−1

λ21,ε〈ξ 〉−2 λ22,ε〈ξ 〉−2 λ23,ε〈ξ 〉−2 . . . λ2m,ε〈ξ 〉−2

. . . . . . . . . . . . . . .

λm−1
1,ε 〈ξ 〉−m+1 λm−1

2,ε 〈ξ 〉−m+1 λm−1
3,ε 〈ξ 〉−m+1 . . . λm−1

m,ε 〈ξ 〉−m+1

⎞
⎟⎟⎟⎟⎠ .

and observe that

∂t det Hε

det Hε

= m
∂t det H

det H
.

By arguing as in (4.3) in [7] we immediately have that∣∣∣∣∂t det Hε(t, ξ)

det Hε(t, ξ)

∣∣∣∣ ≤ c1ε
−1, (15)

for all t ∈ [0, T ], ξ ∈ R
n and ε ∈ (0, 1].

Since Hε is block diagonal, its inverse will be block diagonal as well and precisely given
by m identical blocks H−1 as defined in Proposition 17(ii) in [7]. It follows that to estimate
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162 C. Garetto, M. Ruzhansky

‖H−1
ε ∂t Hε‖ it is enough to estimate the norm of the corresponding block H−1∂t H . This has

been done in Subsection 4.2 in [7] and leads to

‖H−1
ε ∂t Hε‖ ≤ c2ε

−1. (16)

Note that to obtain (16) one uses the uniform property (2) of the eigenvalues and of the
corresponding regularisations.

The same block argument applies to ‖H−1
ε AHε − (H−1

ε AHε)
∗‖. Indeed, the matrix

H−1
ε AHε−(H−1

ε AHε)
∗ is block diagonal withm blocks of the type H−1AH−(H−1AH)∗.

This is the type of matrix which has been estimated in Subsection 4.3 in [7]. In detail,
‖H−1AH − (H−1AH)∗‖ ≤ c3εα〈ξ 〉 and therefore

‖H−1
ε AHε − (H−1

ε AHε)
∗‖ ≤ c3ε

α〈ξ 〉. (17)

Finally, if we consider now the matrix of the lower-order terms H−1
ε LHε − (H−1

ε LHε)
∗

we easily sees that it is made of m blocks of the type (detH)−1 times a matrix with 0-order
symbols bounded with respect to ε (see Subsection 4.4. in [7]). More precisely, by following
the arguments of Proposition 17(iv) in [7], we get the estimate

‖H−1
ε LHε − (H−1

ε LHε)
∗‖ ≤ c4ε

α(1−m). (18)

We now insert (15), (16), (17) and (18) in the energy estimate (14). We obtain

∂t |W (t, ξ)|2 ≤ 2(ρ′(t)〈ξ 〉 1
s + c1ε

−1 + c2ε
−1 + c3ε

α〈ξ 〉 + c4ε
α(1−m))|W (t, ξ)|2

≤ (2ρ′(t)〈ξ 〉 1
s + C1ε

−1 + C2ε
α〈ξ 〉 + C3ε

α(1−m))|W (t, ξ)|2. (19)

We now set ε = 〈ξ 〉−γ in (19), and we compare the terms

〈ξ 〉γ , 〈ξ 〉1−γα, 〈ξ 〉γα(m−1).

For γ = min{ 1
1+α

, 1
αm } one has that

max{γ, γ α(m − 1)} ≤ 1 − γα

and therefore

∂t |W (t, ξ)|2 ≤ (2ρ′(t)〈ξ 〉 1
s + C〈ξ 〉1−γα)|W (t, ξ)|2.

2.3 Conclusion of the proof of Theorem 1.1

Let ρ(t) = ρ(0) − κt , where κ > 0. If

1

s
> 1 − γα = 1 − min

{
α

1 + α
,
1

m

}
= max

{
1

1 + α
,
m − 1

m

}
, (20)

for |ξ | large enough we have that ∂t |W (t, ξ)|2 ≤ 0, i.e. W (t, ξ) = W (0, ξ). Therefore,

|V (t, ξ)| = e−ρ(t)〈ξ〉 1s 1

det Hε(t, ξ)
|Hε(t, ξ)||W (t, ξ)|

≤ e−ρ(t)〈ξ〉 1s 1

det Hε(t, ξ)
|Hε(t, ξ)||W (0, ξ)|

= e(−ρ(t)+ρ(0))〈ξ〉 1s det Hε(0, ξ)

det Hε(t, ξ)
|Hε(t, ξ)||H−1

ε (0, ξ)||V (0, ξ)|, (21)
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where, arguing on the block level for γ as above, we have

det Hε(0, ξ)

det Hε(t, ξ)
|Hε(t, ξ)||H−1

ε (0, ξ)| ≤ c ε−α
(m−1)m

2 = c〈ξ 〉γα
(m−1)m

2 .

It follows that

|V (t, ξ)| ≤ ceκT 〈ξ〉 1s 〈ξ 〉γα
(m−1)m

2 |V (0, ξ)|.
By choosing κ small enough we can conclude that |V (t, ξ)| ≤ c′e−δ〈ξ〉 1s for some c′, δ > 0.
By the Paley–Wiener characterisation of Gevrey functions this yields to the existence and
uniqueness of the solutionU ∈ C1([0, T ]; γ s(Rn)m) of theCauchy problem (9) and therefore
to the Gevrey well-posedness of the original Cauchy problem (1).

Remark 2.2 We have proven that the solution u of the Cauchy problem (1) is of class C1

with respect to t . Since the coefficients of the matrices A and B are of class Cm−1, it actually
follows that u belongs to Cm([0, T ]; γ s(Rn)m).

Remark 2.3 Note that (20) implies

s < 1 + min

{
α,

1

m − 1

}
.

This is an improvement in terms of Gevrey order of Yuzawa’s and Kajitani’s result in
[14,15]. Indeed, Yuzawa first for t-dependent systems (without lower-order terms) in [15] and
later Yuzawa and Kajitani for (t, x)-dependent systems in [14] have proven well-posedness
in the Gevrey class γ s , with

1 ≤ s < 1 + α

m
.

It is easy to see that

α

m
≤ min

{
α,

1

m − 1

}
.

Remark 2.4 The strategy adopted in the proof of Theorem 1.1 shows how the energy estimate
used for scalar equations in [7] can be directly applied to systems after reduction to block
Sylvester form to obtainGevreywell-posedness. In the sameway, one can get well-posedness
in spaces of ultradistributions. In other words, Theorem 1.2 is proven by arguing on the
reduced Cauchy problem (9) as in Subsection 4.5 from the aforementioned paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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