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age-related disorders
Sarika Srivastava*

Abstract 

Nicotinamide adenine dinucleotide (NAD+) is a central metabolic cofactor in eukaryotic cells that plays a critical role 
in regulating cellular metabolism and energy homeostasis. NAD+ in its reduced form (i.e. NADH) serves as the primary 
electron donor in mitochondrial respiratory chain, which involves adenosine triphosphate production by oxidative 
phosphorylation. The NAD+/NADH ratio also regulates the activity of various metabolic pathway enzymes such as 
those involved in glycolysis, Kreb’s cycle, and fatty acid oxidation. Intracellular NAD+ is synthesized de novo from 
l-tryptophan, although its main source of synthesis is through salvage pathways from dietary niacin as precursors. 
NAD+ is utilized by various proteins including sirtuins, poly ADP-ribose polymerases (PARPs) and cyclic ADP-ribose 
synthases. The NAD+ pool is thus set by a critical balance between NAD+ biosynthetic and NAD+ consuming path-
ways. Raising cellular NAD+ content by inducing its biosynthesis or inhibiting the activity of PARP and cADP-ribose 
synthases via genetic or pharmacological means lead to sirtuins activation. Sirtuins modulate distinct metabolic, 
energetic and stress response pathways, and through their activation, NAD+ directly links the cellular redox state with 
signaling and transcriptional events. NAD+ levels decline with mitochondrial dysfunction and reduced NAD+/NADH 
ratio is implicated in mitochondrial disorders, various age-related pathologies as well as during aging. Here, I will 
provide an overview of the current knowledge on NAD+ metabolism including its biosynthesis, utilization, compart-
mentalization and role in the regulation of metabolic homoeostasis. I will further discuss how augmenting intracel-
lular NAD+ content increases oxidative metabolism to prevent bioenergetic and functional decline in multiple models 
of mitochondrial diseases and age-related disorders, and how this knowledge could be translated to the clinic for 
human relevance.
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Introduction
Mitochondria are highly dynamic intracellular organelles 
that play crucial roles in energy production, metabolism, 
intracellular signaling and apoptosis [87, 112]. These 
organelles are maternally inherited and semiautono-
mous containing their own DNA (mtDNA) which is a 
circular double-stranded molecule of ~16.5 kb in mam-
mals encoding 13 polypeptide subunits, 22 transfer RNAs 
and 2 ribosomal RNAs. The rest of the mitochondrial 

proteome, consisting of  ~1500 additional polypeptides 
is encoded by the nuclear DNA (nDNA), translated in 
the cytosol and imported into the organelles by an active 
process [87]. Mitochondria have the ability to change 
their morphology, number and function in response to 
various physiological stimuli (e.g. exercise, diet, temper-
ature, or hormones) and stress [91]. Proper mitochon-
drial function is therefore critical for the maintenance 
of metabolic homeostasis and activation of appropri-
ate stress responses. A principal bioenergetic function 
of mitochondria is to generate adenosine triphosphate 
(ATP) from nutrient breakdown (e.g. glucose, fatty-acids 
and amino-acids) through a process termed as oxidative 
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phosphorylation (OXPHOS). This process involves 
transport of electrons from reduced equivalents [e.g. 
nicotinamide adenine dinucleotide (NADH) and flavin 
adenine dinucleotide (FADH2)] along the respiratory 
chain protein complexes (CI-IV) via the electron carri-
ers (e.g. coenzyme Q10 and cytochrome c) to the termi-
nal electron acceptor i.e. oxygen (O2) which is ultimately 
reduced to water (Fig. 1) [34]. The electron flow is cou-
pled with the translocation of protons from the matrix 
to the intermembrane space (via complexes I, III and 
IV) which in turn generates an electrochemical proton 
gradient or membrane potential (ΔΨm) across the inner 
mitochondrial membrane. The energy in this gradient is 
subsequently harnessed by complex V or ATP synthase 
to generate ATP from adenosine diphosphate (ADP) and 
inorganic phosphate (Pi), during when the protons flow 
back from the intermembrane space to the matrix (Fig. 1) 
[34]. Under normal conditions  ~1 to 2  % of electrons 
leak from the electron transport chain and reduce O2 to 
superoxide radical (O2

•−) thereby producing reactive oxy-
gen species (ROS), which is detoxified by the action of 

antioxidant enzymes such as superoxide dismutase, cata-
lase, and glutathione peroxidase [44, 95]. However, when 
the balance between ROS production overrides the anti-
oxidant capability of the cells, it leads to oxidative stress 
which is highly damaging to cellular macromolecules 
(i.e. DNA, lipids and proteins), and is linked to multiple 
pathologies including neurodegenerative diseases, diabe-
tes, cancer and premature aging [44, 95]. Mitochondrial 
dysfunction caused by genetic mutations in mtDNA or 
nDNA encoded OXPHOS proteins affects the electron 
transport chain (ETC) function and impairs ATP pro-
duction leading to the onset of mitochondrial diseases 
wherein the high energy demanding tissues such as brain, 
heart, retina and skeletal muscle are predominantly 
affected [34, 93]. Mitochondrial dysfunction is not only 
a hallmark of mitochondrial disorders, but is also impli-
cated in aging and age-related disorders such as diabetes, 
obesity, neurodegeneration and cancer.

Sirtuins or silent information regulator 2 (Sir2) pro-
teins are a family of evolutionarily conserved nicotina-
mide adenine dinucleotide (NAD+)-dependent protein 
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Fig. 1 Schematic illustration of mammalian oxidative phosphorylation system. The mammalian OXPHOS comprises of five multimeric enzyme 
complexes (CI–V). Electrons from reducing equivalents i.e. NADH and FADH2 enter mitochondrial electron transport chain (ETC) and reduce com-
plex I and complex II, respectively. An inner membrane electron carrier, coenzyme Q10 or ubiquinone accepts an electron from either complex I 
or complex II and donates it to complex III. Cytochrome c, another electron carrier in the intermembrane space accepts an electron from complex 
III and donates it to complex IV, which in turn reduces molecular O2 to H2O. During the electron flow, complex I, III and IV simultaneously pump 
protons from the matrix towards intermembrane space generating an electrochemical gradient or membrane potential (Ψm) across the inner mito-
chondrial membrane. The energy in this gradient is harnessed by complex V to generate ATP from ADP and inorganic phosphate (Pi), a phenom-
enon termed as OXPHOS. Approximately 1–2 % electrons leak from the ETC and reduce O2 to superoxide radical (O2

•−) thereby producing reactive 
oxygen species (ROS)
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deacylases harboring lysine deacetylase, desuccinylase, 
demalonylase, demyristoylase and depalmitoylase activ-
ity [37, 40, 88, 104], or an ADP-ribosyltransferase activ-
ity [36, 48]. Mammals contain seven sirtuins (SIRT1–7) 
that are located in different subcellular compartments 
i.e. nucleus (SIRT1, SIRT6 and SIRT7), cytosol (SIRT2), 
and mitochondria (SIRT3, SIRT4 and SIRT5) [49, 114], 
and are implicated in a wide variety of biological func-
tions including control of cellular metabolism and energy 
homeostasis, aging and longevity, transcriptional silenc-
ing, cell survival, proliferation, differentiation, DNA 
damage response, stress resistance, and apoptosis [2, 
49, 102, 110, 114]. Since sirtuins are NAD+-depend-
ent enzymes, the availability of NAD+ is one of the key 
mechanisms that regulate their activity. Sirtuins therefore 
serve as “metabolic sensors” of the cells as their activity 
is coupled to changes in the cellular NAD+/NADH redox 
state, which is largely influenced by the availability and 
breakdown of nutrients [20]. Thus, NAD+ is not only a 
vital cofactor/coenzyme but also a signaling messen-
ger that can modulate cell metabolic and transcriptional 
responses. Changes in cellular NAD+ levels can occur 
due to modulation of pathways involved in NAD+ biosyn-
thesis and consumption. Reduced NAD+ levels have been 
reported in mitochondrial and age-related disorders, and 
NAD+ levels also decline with age [17, 26, 45, 53, 60, 67, 
71]. Boosting cellular NAD+ levels serves as a powerful 
means to activate sirtuins, and as a potential therapy for 
mitochondrial as well as age-related disorders.

Review
NAD+ biosynthesis, consumption 
and compartmentalization
The mammalian NAD+ biosynthesis occurs via de novo 
and salvage pathways, and involves four major substrates 
including the essential amino acid l-tryptophan (Trp), 
nicotinic acid (NA), nicotinamide (NAM), and nicoti-
namide riboside (NR) [25, 54]. De novo biosynthesis of 
NAD+ starts from dietary Trp which is catalytically con-
verted to N-formylkynurenine by either indoleamine 
2,3-dioxygenase (IDO) or tryptophan 2,3-dioxygenase 
(TDO) and is the first rate limiting step. N-formylkynure-
nine is then converted by a series of four enzymatic reac-
tions to α-amino-β-carboxymuconate-ε-semialdehyde 
(ACMS) which is unstable and hence undergoes either 
complete enzymatic oxidation or non-enzymatic cycliza-
tion to quinolinic acid (Fig. 2). The second rate limiting 
step involves the catalytic conversion of quinolinic acid 
to nicotinic acid mononucleotide (NAMN) by quinoli-
nate phosphoribosyl transferase (QPRT). Next, NAMN is 
converted to nicotinic acid adenine dinucleotide (NAAD) 
by one of the three isoforms of nicotinamide mononucle-
otide adenylyltransferase (NMNAT) enzyme. The human 

NMNAT1 is localized in the nucleus, NMNAT2 is found 
in the Golgi and cytosol, whereas NMNAT3 is local-
ized in both mitochondria and cytosol [13, 54]. The final 
step of de novo biosynthesis is the amidation of NAAD 
by NAD synthase (NADS) enzyme (Fig. 2) [25, 54]. The 
de novo pathway contributes only a minor fraction to 
the total NAD+ pool, however, its importance is stressed 
by the human disease pellagra which is caused by die-
tary deficiency of Trp and NAM intermediate, leading 
to diarrhea, dermatitis, dementia and ultimately death 
[51]. However, pellagra is easily treated by dietary sup-
plementation of Trp or niacin (i.e. NA, NAM and NR). 
The primary source of NAD+ biosynthesis is the salvage 
or Preiss-Handler pathway which utilizes dietary niacin 
as precursors (Fig. 2). The salvage pathway involves cata-
lytic conversion of NA to NAMN by nicotinic acid phos-
phoribosyltransferase (NAPT), which is subsequently 
converted to NAD+ by the action of NMNAT and NADS 
enzymes. The NAM and NR are converted to NMN by 
the action of nicotinamide phosphoribosyltransferase 
(NAMPT) and nicotinamide riboside kinase (NRK) 
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Fig. 2 Schematic representation of de novo and salvage pathways 
for NAD+ biosynthesis. In mammals, the de novo biosynthesis starts 
from l-tryptophan (Trp) which is enzymatically converted in a series 
of reactions to quinolinic acid (QA). Through quinolinate phosphori-
bosyltransferase (QPRT) enzyme activity, QA is converted to nicotinic 
acid mononucleotide (NAMN), which is then converted to nicotinic 
acid adenine dinucleotide (NAAD) by nicotinamide mononucleotide 
adenylyltransferase (NMNAT) enzyme. The final step in de novo bio-
synthesis is the amidation of NAAD by NAD synthase (NADS) which 
generates NAD+. The salvage pathway involves NAD+ synthesis 
from its precursors, i.e. Nicotinic acid (NA), nicotinamide (NAM) or 
nicotinamide riboside (NR). NA is catalytically converted to NAMN by 
the action of nicotinic acid phosphoribosyltransferase (NAPT). NAM 
is converted by nicotinamide phosphoribosyltransferase (NAMPT) 
to nicotinamide mononucleotide (NMN), which is also the product 
of phosphorylation of NR by nicotinamide riboside kinase (NRK) 
enzyme. Finally, NAMN is converted to NAD by the action of NMNAT 
and NADS enzymes, whereas NMN is converted to NAD by the 
NMNAT enzyme. Multiple enzymes break-down NAD+ to produce 
NAM and ADP-ribosyl moiety, however only sirtuins are depicted in 
this figure
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enzymes respectively. Finally, NMN is enzymatically con-
verted to NAD+ by NMNAT (Fig. 2) [25, 54].

The cellular abundance of NAD+ is also regulated by its 
breakdown since NAD+ serves as a degradation substrate 
for multiple enzymes including sirtuins, poly ADP-ribose 
polymerases (PARPs) and cyclic ADP (cADP) ribose 
synthases which cleave NAD+ to produce NAM and an 
ADP-ribosyl product [29, 49, 54, 56, 96]. For instance, the 
deacetylase activity of mammalian sirtuins uses NAD+ 
to cleave the acetyl group from ε–acetyl lysine residues 
of target proteins to generate NAM and 2′O-acetyl-
ADP-ribose. Sirtuins are activated in response to nutri-
ent deprivation or energy deficit which triggers cellular 
adaptations to improve metabolic efficiency. PARP’s are 
activated in response to DNA damage (e.g. DNA strand 
breaks) and genotoxic stress, and use NAD+ to catalyze 
a reaction in which the ADP ribose moiety is transferred 
to a substrate protein. The cADP-ribose synthases (e.g. 
CD38 and CD157) use NAD+ to generate cADP-ribose 
which serves as an intracellular second messenger. The 
members of PARP and cADP-ribose synthase family 
show increased affinity and lower Km for NAD+ com-
pared to sirtuins, indicating that their activation critically 
impacts intracellular NAD+ levels and determines if it 
reaches a permissive threshold for sirtuin activation [54]. 
Multiple studies also suggested that PARP activity consti-
tutes the main NAD+ catabolic activity, which drives cells 
to synthesize NAD+ from de novo or salvage pathways 
[14, 98].

Intracellular NAD+ has a short half-life, which is esti-
mated to be ~1 to 2 h [38, 84], and is not evenly distrib-
uted in subcellular compartments i.e. nucleus, cytosol 
and mitochondria. Studies report that mitochondrial 
NAD+ levels are higher than in other compartments, for 
example in mouse skeletal muscles and cardiac myocytes, 
the mitochondrial NAD+ levels were found to be approx-
imately twofold and fourfold higher respectively, than 
the rest of the cell [1, 77]. Multiple studies indicate that 
mitochondrial NAD+ concentration is ≥250 μM whereas 
nuclear NAD+ concentration is  ~70  μM [73, 115], and 
the nuclear NAD+ levels are also lower than the cyto-
solic NAD+ levels [41, 122]. Also, the NAD+ pool in each 
subcellular compartment is partially sequestered from 
free NAD+ by binding to proteins. NAD+ cannot diffuse 
through mitochondrial membranes, therefore changes 
in cytosolic NAD+ levels cannot directly alter the mito-
chondrial NAD+/NADH ratio [9, 79, 109, 115]. Mam-
malian mitochondria have their own NAD biosynthetic 
machinery which plays a key role in maintaining mito-
chondrial NAD pool [13, 115]. However, in yeast NAD is 
not synthesized in mitochondria but instead transported 
across the mitochondrial membranes via membrane 
NAD transporters [106]. A mammalian mitochondrial 

NAD transporter however has yet to be found. Interest-
ingly, a recent study demonstrated that exogenous NAD 
can cross the plasma membrane and elevate mitochon-
drial NAD levels in mammalian cells causing significant 
enhancement in mitochondrial oxygen consumption and 
ATP production suggesting the possibility that mito-
chondrial NAD transport mechanism/s might exist in 
mammals and that mitochondria can rapidly increase its 
pyridine nucleotide pool when the cytoplasmic availabil-
ity of NAD and/or its precursors increases [78].

NAD+ plays a key role in regulating cellular metabolism 
and energy production
NAD+ and its phosphorylated and reduced forms includ-
ing NADP+, NADH, and NADPH are vital in regulating 
cellular metabolism and energy production. NAD+ func-
tions as an oxidoreductase cofactor in a wide range of 
metabolic reactions and modulates the activity of com-
partment-specific pathways such as glycolysis in the cyto-
sol, and tri-carboxylic acid (TCA) cycle, OXPHOS, fatty 
acid and amino acid oxidation in the mitochondria. For 
instance, NAD+ is converted to NADH at the glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) step of gly-
colysis, a pathway that generates pyruvate from glucose 
[12, 68, 97]. In the mitochondrial compartment, NAD+ 
is converted to NADH at multiple steps in the TCA cycle 
in which acetyl-coenzyme A is oxidized to carbon diox-
ide. Mitochondrial NADH is then oxidized by furnishing 
reducing equivalents to complex I in the ETC through a 
series of redox reactions that generate ATP from ADP by 
OXPHOS. The NAD+/NADH ratio thus regulates mul-
tiple metabolic pathway enzymes including GAPDH, 
pyruvate dehydrogenase, isocitrate dehydrogenase, 
α-ketoglutarate dehydrogenase and malate dehydroge-
nase. In contrast to NAD+/NADH, the NADPH/NADP+ 
ratios are maintained high in both cytosol and mitochon-
drial compartments, to maintain a reducing environment 
[105]. NADPH plays a key role in reductive biosynthesis 
and cellular defense against oxidative damage [80]. For 
instance, NADPH serves as a cofactor for P450 enzymes 
that detoxify xenobiotics, acts as a terminal reductant 
for glutathione reductase which maintains reduced glu-
tathione levels during oxidative defense, and also serves 
as a substrate for NADPH oxidase that generates perox-
ides for release during oxidative burst processes in the 
immune system [80].

Therapeutic potential of NAD+ metabolism
Since NAD+ is a rate-limiting cofactor for sirtuins, its 
modulation is emerging as a valuable tool to regulate sir-
tuin function, and consequently oxidative metabolism. 
SIRT1 is the most characterized among all sirtuins and is 
implicated in mitochondrial and metabolic homeostasis 
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[21, 47, 50]. There are multiple targets of SIRT1 including 
transcriptional co-activators such as the peroxisome pro-
liferator-activated receptor gamma coactivator-1alpha 
(PGC-1α) and transcription factors such as the forkhead 
box protein O1 (FOXO1). PGC-1α is the master regulator 
of mitochondrial biogenesis and function [64, 100, 101], 
whereas FOXO1 modulates mitochondrial fatty acid 
metabolism and protects against oxidative stress [108]. 
SIRT3 is the major mitochondrial deacetylase which tar-
gets several proteins involved in fatty acid metabolism, 
ketogenesis and antioxidant defense [3, 56]. Thus, modu-
lation of NAD+ levels has profound effects on oxidative 
metabolism and mitochondrial function, exerted through 
a multitude of sirtuin targets, and serve as a promising 
avenue for the management and treatment of mitochon-
drial and age-related diseases.

Modulation of NAD+ levels by physiological processes
The intracellular NAD+ levels are typically between 
0.2 and 0.5  mM in mammalian cells, and change dur-
ing a number of physiological processes [54]. Since the 
nucleus, cytosol and mitochondria are equipped with 
NAD+ salvage enzymes, the compartment-specific 
NAD+ production activates distinct sirtuins to trigger the 
appropriate physiological response. The NAD+/NADH 
levels also vary with the availability of dietary energy and 
nutrients. For instance, tissue NAD+ levels decrease with 
energy overload such as high-fat diet [23, 118], and dis-
play circadian oscillations with a 24 h rhythm in the liver, 
which is regulated by feeding [4, 74, 83]. During ener-
getic stress such as exercise, calorie restriction (CR) and 
fasting in mammals, the NAD+ levels increase leading 
to sirtuin activation, which is associated with metabolic 
and age-related health benefits (Fig.  3) [19, 24, 27, 30]. 
Decreased sirtuins (e.g. SIRT1 and SIRT3) expression is 
associated with various age-related pathologies [21, 58, 
116, 117, 120, 123] and their overexpression has been 
reported to enhance overall mitochondrial and metabolic 
health in age-related disorders as well as mitochondrial 
diseases [7, 16, 26, 31, 35, 76, 82, 99].

Modulation of NAD+ levels by pharmacological compounds
Besides physiological processes, NAD+ levels can be 
modulated pharmacologically. Resveratrol—a polyphe-
nolic compound found in red wine has been shown to 
indirectly stimulate NAD+ production by activating the 
energy sensor AMP-activated protein kinase (AMPK) 
[22, 42]. Increased NAD+ subsequently stimulates SIRT1 
activity, which in turn activates PGC-1α and FOXO fam-
ily of proteins that govern mitochondrial biogenesis 
and function (Fig.  3) [21, 22]. SIRT1 is also amenable 
to intervention by small molecules such as SIRT1-acti-
vating compounds (STACs) that exert beneficial effects 

on age-related metabolic abnormalities [21, 71]. NAD+ 
levels can be directly raised by supplying NAD+ biosyn-
thetic precursors/intermediates, or by inhibiting NAD+ 
consuming enzymes with specific inhibitors (Fig. 3). For 
instance, supplementation of NA, NR or NMN com-
pounds increase NAD+ levels in both cultured cells and 
mouse tissues [21, 23, 118]. Because NR can be metabo-
lized both in the nucleus and mitochondria, its supple-
mentation raises the nuclear and mitochondrial NAD+ 
levels, thereby activating nuclear SIRT1 and mitochon-
drial SIRT3 respectively [21, 23]. Pharmacological acti-
vation of NAD+ thus stimulates the activity of multiple 
sirtuin in a compartment-specific manner to exert its 
beneficial effects on multiple metabolic pathways which 
is in contrast to STAC’s that specifically stimulate the 
activity of SIRT1 pathway. Treatment of mice or cultured 
cells with PARP and CD38 specific inhibitors has also 
been shown to induce NAD+ levels that activate sirtuins 
[6, 8].

Increased NAD+ levels protects against mitochondrial 
and age‑related disorders
Mitochondrial disorders represent one of the most com-
mon forms of heritable metabolic disease in children [33, 
70, 92]. Reduced NAD+/NADH ratio is strongly impli-
cated in mitochondrial disorders and, age-related disor-
ders including diabetes, obesity, neurodegeneration and 
cancer [26, 53, 60, 71]. NAD+ levels also decline during 
aging in multiple models including worms, rodents and 
human tissue [17, 45, 67, 72]. Increasing evidence sug-
gests that boosting NAD+ levels could be clinically ben-
eficial, as it activates the NAD+/sirtuin pathway which 
yields beneficial effects on multiple metabolic pathways.

Pharmacological activation of NAD+ production has 
recently been used to treat mouse models of mitochon-
drial diseases. For instance, treatment of cytochrome 
c oxidase (COX) deficiency caused by SURF1, SCO2 
or COX15 genetic mutations in mice, with AMPK ago-
nist 5-aminoimidazole-4-carboxamide ribonucleotide 
(AICAR), partially rescued mitochondrial dysfunction 
and improved motor performance [111]. These findings 
could be explained by the fact that AMPK stimulates 
NAD+ production, consequently activating SIRT1 which 
promotes energy production and homeostasis [21]. Oral 
administration of NAD+ precursor, NR in mitochondrial 
myopathy mice harboring a pathogenic mutation in the 
mtDNA helicase—Twinkle, effectively delayed myopa-
thy progression, by increasing mitochondrial biogenesis, 
preventing mitochondrial ultrastructural abnormalities, 
mtDNA deletion formation and activating the mitochon-
drial unfolded protein (UPRmt) response [60]. In addition, 
NR supplementation and reduction of NAD+ consump-
tion by a specific PARP inhibitor significantly improved 
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mitochondrial respiratory chain defect and exercise 
intolerance, in a mouse model of COX deficiency caused 
by SCO2 mutation [26].

Besides improving mitochondrial function, boosting 
NAD+ levels with resveratrol, NR or NMN also cor-
rects metabolic disturbances in mice caused by high fat 
diet [10, 21, 62, 118]. NMN administration ameliorates 
glucose intolerance and insulin resistance in diet- and 
age-induced type 2 diabetic mice [82, 118], and recti-
fies glucose-stimulated insulin secretion and glucose 
intolerance in NAMPT-deficient animals, by restoring 
NAD+ levels [85]. Interventions using NAD+ precursors 
or PARP inhibitors were also shown to be neuroprotec-
tive. For instance treatment with NMN or NR precursors, 
protected against axonal degeneration and hearing loss in 
mice [18, 90]. Raised NAD+ levels after CR, NAM or NR 
treatment attenuated increase in β-amyloid content and 
oxidative damage, preventing cognitive decline and neu-
rodegeneration in rodent models of Alzheimer’s disease 

[46, 81, 107]. PARP-1 activation also occurs in neurode-
generative DNA repair disorders including xeroderma 
pigmentosum group A (XPA) and Cockayne syndrome 
group B (CSB), and treatment with specific PARP inhibi-
tors rescues defective phenotypes in XPA mutant worms 
and CSB mutant mice respectively [39, 94]. However, 
PARP-2 deleted mice were glucose intolerant and exhib-
ited pancreatic dysfunction, implying that these results 
may interfere with other beneficial consequences of 
PARP inhibition, and hence warrant further investigation 
on the safe clinical use of these inhibitors [5]. Because 
PARP inhibitors enhance oxidative metabolism and 
improve metabolic flexibility, these compounds are being 
tested in phase III trials as anti-cancer agents [6, 86].

Increasing NAD+ levels by treatment with NA and 
NAM precursors has been shown to inhibit metasta-
sis and breast cancer progression in response to mito-
chondrial complex I defect in mice [89]. However, 
reducing NAD+ bioavailability is reported to have an 
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Fig. 3 Boosting NAD+ levels is beneficial for health and lifespan. NAD+ is a rate-limiting cofactor for the enzymatic activity of sirtuins. Boosting 
intracellular NAD+ levels by physiological (e.g. exercise, calorie restriction, fasting) or pharmacological [e.g. resveratrol, sirtuin activating compounds 
(STACs)] interventions, and inducing NAD+ biosynthesis through supplementation with precursors (e.g. NA, NAM, NR) or inhibition of NAD+ con-
suming enzymes (e.g. PARP-1, CD38) leads to activation of sirtuins (e.g. SIRT1, SIRT3). SIRT1 deacetylates and activates transcriptional regulators (e.g. 
PGC-1α, FOXO1), whereas SIRT3 deacetylates and activates multiple metabolic gene targets (e.g. succinate dehydrogenase, superoxide dismutase 
2), which in turn regulate mitochondrial biogenesis and function. Supplementation with NR or PARP inhibitors extends lifespan in worms by induc-
ing the UPRmt stress signaling response via Sir-2.1 activation, which then triggers an adaptive mitohormetic response to stimulate mitochondrial 
function and biogenesis. Improved mitochondrial function associated with mitohormesis or metabolic adaptation can attenuate the impact of 
mitochondrial diseases, aging as well as age-related metabolic and neurodegenerative disorders. The physiological and pharmacological interven-
tions that boost NAD+ levels are highlighted in yellow and pink respectively whereas the pathways that produce and consume/decrease NAD+ 
levels are highlighted in green and red respectively
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antineoplastic effect in various tumor cell types, as can-
cer cells rely on increased central carbon metabolism and 
biomass production to sustain an unrestricted growth 
[28, 103]. The exact role of sirtuins in cancer remains con-
troversial with dichotomous functions being reported, 
for example multiple studies have shown that SIRT1, 
SIRT3 and SIRT5 can act as tumor promoters or tumor 
suppressors under different cellular conditions, tumor 
stage and tissue of origin [11, 32, 43, 52, 61, 63, 65, 66, 
113, 119]. However, SIRT4 is only shown to have a tumor 
suppressor function [57, 69]. Further research is needed 
to understand why and how certain sirtuins have both 
oncogenic or tumor-suppressive roles, and how this dual 
action may be best exploited for cancer management.

Declining NAD+ levels during aging compromise mito-
chondrial function in multiple model organisms, which 
can be restored via NAD+ precursor supplementation or 
PARP inhibition. For instance, NMN or NR administra-
tion in aged mice or worms respectively, reversed mito-
chondrial dysfunction by restoring NAD+ levels [45, 72, 
121]. Moreover, NR administration or PARP inhibition in 
worms extended lifespan by activating the UPRmt response 
via Sir-2.1 (worm SIRT1 ortholog) and mitonuclear pro-
tein imbalance, which in turn induced a mitohormetic 
response to improve mitochondrial function (Fig.  3) [55, 
72]. Inducing UPRmt genes such as Hsp60 paralogs in 
Drosophila also prevented mitochondrial and age-depend-
ent muscle dysfunction, thereby promoting longevity [75].

Conclusions and future directions
NAD+ has emerged as a vital oxidoreductase cofactor 
that regulates metabolism, activates sirtuins and main-
tains mitochondrial function by enhancing oxidative 
metabolism to promote healthy aging, and can extend 
lifespan in worms through the UPRmt stress response 
pathway. The control of mitochondrial and metabolic 
homeostasis by an evolutionarily conserved NAD+/sir-
tuin pathway has opened an exciting new area of research 
that holds great clinical potential. Based on the current 
evidence, both NAD+ precursors and PARP inhibitors 
seem as promising candidates for boosting NAD+ lev-
els in cell culture and animal models. However, there 
are several key questions that remain unanswered. First, 
whether different pharmacological, genetic and physio-
logical manipulations that boosts NAD+ production lead 
to enhanced activity of all sirtuin enzymes or whether 
only a few family members are activated, especially con-
sidering the fact that some sirtuins may have opposing 
actions? Second, how sirtuins located in different sub-
cellular compartments differ in their enzyme kinetics 
towards NAD+ availability? Third, what may be the opti-
mal dosages, routes of administration, efficacy and bio-
availability of compound drugs that raise intracellular 

NAD+ levels for human application? Future studies that 
are directed towards understanding these would be 
highly relevant in designing therapeutic strategies aimed 
at selective activation of specific sirtuins, and would also 
aid in translating the results for human clinical applica-
tion. It is possible that some of the NAD+ boosting drugs 
show adverse side effects in humans which could pre-
clude their use and/or may be acceptable for only those 
inherited conditions that are highly devastating. It is also 
important to determine if NR could be valid substitute 
to avoid undesirable side effects of other NAD+ precur-
sors such as NA and NAM, for instance when used as 
lipid lowering drugs [15, 59]. In addition, future studies 
are required to examine the UPRmt pathway in  vivo in 
mammalian models to identify key signaling molecules 
involved in mitochondrial protective mechanisms, which 
will further advance our understanding of the diseases 
associated with mitochondrial dysfunction, and will 
allow discovery of new targets to modulate this path-
way. Finally, it remains to be determined whether or not 
boosting NAD+ levels could extend lifespan in higher 
organisms. Although much remains to be done, based on 
the steadily growing evidence, the pharmacological mod-
ulation of NAD+ levels via NAD+ precursors and PARP 
inhibitors appears to be an attractive and valid strategy 
to enhance oxidative metabolism and mitochondrial 
biogenesis, and holds a significant therapeutic potential 
in the clinical management of mitochondrial and age-
related disorders.
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