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Full list of author information is function k- (n) (Williams in Number Theory in the Spirit of Liouville, vol. 76, 2011,
available at the end of the article Theorem 12.3). The objective of this paper is to introduce and prove convolution

identities for the twisted divisor functions o,_, (n) as well as for the twisted Eisenstein
series Sya,xo aNd Sakszqrs Sy 5§k+2,xo' and 5;k+2,x1 . As applications based on our
main results, we establish many interesting identities for pyramidal, triangular,
Mersenne, and perfect numbers. Moreover, we show how our main results can be
used to obtain arithmetical formulas for the number of representations of an integer
n as the sums of s squares.

1 Introduction and statement of main results
Throughout this paper, let § = {t € C|Imt > 0} be the complex upper half-plane. Let Sy
denote the normalized Eisenstein series of weight k defined on §) by

B o0
Sk = Si(r) = —ﬁ + Y oralmq’, 1)
n=1

where ox1(n) =3, d*1, q = €7, and By is the kth Bernoulli number.
Let S, S; ,»and S, be the twisted Eisenstein series defined by

Si = S () = Sk(T) - Sk(27)
= Z <Uk1(”) — Ok-1 <g)>qn = Z 01:71(”)’{" 2)
n=1 n=1

For i = 0,1, we define the twisted Eisenstein series by
Sty (1) 1= Z xi(n)or_1(n), Spy, (1) 1= Z xi(m)oy_y(nq", ®3)
n=1 n=1

where o;_,(n) is the twisted divisor function given by

G;_l (71) = Z dk_ly

d\n,sodd
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1, ifmisodd, 1, ifmiseven,
xa(n) = and  xo(n) =
0, otherwise 0, otherwise.
Consider the differential operator D = ﬁ % = qdi such that
q

o0 o0
D(Z a,,q”) = Znanq".
n=1 n=1

We are motivated by Ramanujan’s recursion formula for Sy, [1, Entry 14, p.332] and its
proof, and also by Besge-Liouville’s convolution identity for the divisor function oy_;(n)
[2, Theorem 12.3]. Inspired by these identities, we prove new identities for the convolu-
tion sums of various divisor functions oy_;(n), a,:fl(n) as well as recursion formulas for
,and S,

the twisted Eisenstein series S, ,, S, . Several arithmetical applications

k+2,%0 k+2,x1

based on our results are given.

The problem of convolution sums of the divisor function o7(#) and the theory of Eisen-
stein series has recently attracted considerable interest with the emergence of quasimod-
ular tools. For further details, we can refer to the works of Royer [3], Ramakrishnan and
Sahu [4], and Alaca and Williams [5, 6], and the references therein. In connection with the
classical Jacobi theta and Euler functions, other aspects of the function o1(#) are explored
by Adiga in [7] and by Simsek in [8]. In this paper, we prove the following results. First,
we state the most important identities for the convolution sums of divisor functions as
follows.

Theorem 1.1 Let k € Nand N € N, where k, N > 2. We have the identities in Table 1.

Our next results follow from the identities in Theorem 1.1. Thus, we obtain the following
identities for the Eisenstein series.

Theorem 1.2 Let k € N and n € N, where k,n > 2. We have the identities in Table 2.

Let p be a prime number, and let / be any positive integer. We introduce the twisted

divisor function

o, (N;pl) = Z a’.

dINX 0 (mod pl)

Table 1 Identities of divisor functions

Identities of convolution sums Reference

S G N 051 (M54 (N = m) [2, Theorem 12.3]
= 283 01 (N) + (£ = N)oaka (N)
+ 2T ijzz (2271)52/‘72“%21(/\/)

Y426 (o) ot Gy (M3 (N =) (10)
1 {o-ikﬂ (N) =Noy_, (N)}

= 305, 2N
k=1"( 2k 2N-1 * *

Yo () _m=1 D05 50 (MO0 N =m) (16)
=10QN- oy ,2N)
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Table 2 Identities of divisor functions

Identities of Eisenstein series Reference
-3 s, o = -20(",) SaSn2 [1, Entry 14, p. 332]

+ YL () (0 +3-50(n -8~ 5n)
-5 -2)(r+ 3)}52/+2~Sn72!

Sopia(T) = D(.S;n(f)) Theorem 3.2
+2 2570 (2 W)SZH 25 S2s+2 T)

SZHZXO(T) (2 W)SZk 25, X] 25+2 X1 (T Lemma 3.3
=4 Z (QH )Szk 25,0, (T )S2s+2 % (T)

D(SZk,xo 225 o (2s+1) Lemma 3.3

(Szms,m (™) - S;k—ZS,XO (T)S)45(T)

We define

(ot 1)
n n
by ()

nml

In Section 3.2 , we establish the following less definitive result.

Theorem 1.3 Let k >1and N,[ > 2.

T 2k N A
ZO |:2.S + 1] Z Oék—zs—l (leI; 21) Oés+1 (2l(N —m); 21)

5= {21y m=1

1(1 . *
"2 (?sz (2'N;2') - 2'Noy, (2'N;2)

i=1 i=1

-1 I-1
3 i (2) N S e ().

Finally, in the last Section 4, we show how to apply our main results to study some ques-
tions related to the famous problem

o1(n) = o1(n +1)

and its variants. Moreover, we consider similar questions on the arithmetic function o, (n).
Many remarks and results are established.

2 The p°th scalar multiplicative function
Let p be a prime number, and let i be a nonnegative integer. A function f : N — C is called
a p'th scalar function if f(px) = p'f (x) for all integers x.

Moreover, a p‘th scalar function f(x) is called a p’th scalar multiplicative function if and
only if f(xy) = f(x)f (y) for all positive integers x, y such that (x,y) = 1.

Example 2.1
1. Let f(x) = x. Then f(x) is a pth scalar multiplicative function.
2. Let s be a nonnegative integer; we recall that

o, (N;p) = > 4, and o,(N)=o0,(N;2),
AN, Y0 (mod p)

Page 3 of 23
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and we define the function

Us,r(N; Wl) = Z as.

d|N,d=r (mod m)

Then the function o5(N;p) : Z, 1 05,-(N; p) is a p°th scalar multiplicative function.

3. The function o1,(N;2) is a 2°th scalar multiplicative function.
Theorem 2.2 The divisor function o, (N;p) is a p*th scalar multiplicative function.

Proof Letrl=p™Nand!#0 (mod p) for somer,/ € Nand prime p. Since / does not divide

p, we can write r = p™”d for some d € N. Therefore, we have

o, (P"N;p) = ) re ) @y

rp™ NmeNéo (mod p) dAINY 0 (mod p)
=Y Ao Nip), ©)
dIN
S#0  (mod p)

We claim that o, (MN;p) = o, (M;p)o, (N;p), where (M,N) =1.If p{ MN, then
0, (MN; p) = 0(MN) = 0,(M)oy(N) = o, (M; p)o, (N; p).
Assume that p|M and pt N and M = p!M'. Hence, we have

o, (MN;p) = o, (p'"M'N;p) = p'o; (M'N; p)

=plo, (M';p)o,(N;p) = o, (' M'; p)o, (N; p). (6)
Therefore o, (MN;p) = o, (M;p)o, (N; p). Then we get the theorem. O

Proposition 2.3 Let N € N. For nonnegative integers m and n, we have

=, . im_1)(p" -1
Zgi "k p")o; (p"(N - k);p") = p’”% ZO’ (k; p)o; ‘(N = k; p).
Py

Proof We can see that

N-1
>0l (p"kip")o] (" (N = K);p")
k=1

N-1

=3 {oi(p"k) - 0ik)} {0y (0" (N = B)) = (N~ K). @)

k=1

Page 4 of 23
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Then, by Theorem 2.2, we have

0i(p"k) — 0:(k) = (0:1(p"'k) — 0:(p"7'k)) + (03 (p" k) — 0:(p""*k))
+(0i(p" k) = 0i(p" k) + -
+ (0:(p?k) = 0i(pk)) + (0:(pk) — 0:(k))
=0, (p"k;p) +0; (p" ks p) + o, (p" ki p) + - -
+0;(p*kip) + 07 (pkip)
= (" P g p)o] (k)

i 1

:pip — a;(k;p). (8)

p-1

Thus, using (8), we can write (7) as

NZ . N pri-1 ., pi-1 .
Zai (p'"k;p”’)oj (p"(N - k);p") = Z{p‘ 1 o; (k;p)} {p’ 1 o; (N—k;p)}.

k=1 k=1

O

3 Convolution relations on twisted Eisenstein series and their applications
3.1 Convolution relations on the twisted Eisenstein series S, ,,(T)
We quote the following lemma from [2, Chap. 10, p.113].

Lemma 3.1 Let f :Z — C be an even function. Let n € N. Then

> (f(a—b)—f(a+b))

(a,b,x,y)eN*ax+by=nx,y odd

= f(0)o1(n/2) + Z(S - d)f(d) -y (g - d)j(d).

deN deN
din d|n/2

Using the above lemma, we can prove our next result.

Theorem 3.2 Let n>1. Then

n-1
2n

S;n+2(r) = D(S;n(f)) +2 Z (2S + 1>S;n—25(T)S;s+2(T)' (9)
s=0
Proof We take f(x) = x** in Lemma 3.1. The left-hand side of Lemma 3.1 is

Y (@-by* —(a+b*)

(a,x,b,y)eN4
ax+by=n
x,y odd
2k 2k
S (Z <2k> (-1ya?rb - (Zk) 2k br)
(ax,by)eNt \r=0 " =0 N
ax+by=n

x,y odd
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2k
Z Z (2:<> a2k—rbr

4 r=0
(ax,by)eN o

ax+by=n
x,y odd
k-1
2k
) Z <2 . Z 6l2k_25_1b25+1
S +
=0 (ax,by)eN*
ax+by=n
x,y odd

n-1
o Z (25 + 1) Z G;kfzsfl(m)azasﬂ(” -m).
m=1

Therefore, we deduce that

k-1

N-1
2 (23 . 1) (Z 02k 251 (M35, (N - m)) = 130 (V) - Nogy (V).
s= m=1

From (10) and (2), we get the theorem.

3.2 Proof of Theorem 1.3
From (4) and (10), we obtain

k-1 N1
Z |:2S + 1i| Z Oﬂékfzsfl (2[M; 21)025+1 (ZI(N - Wl); 21)

5= {20y m=1

k-1 22/((22[/( 1) ( 2k

% + 1) Zazk 25-1 m)02s+1(N m)

k-1 22/((22[/( 1) 1

Z 2{U§k+1(N) N‘Tzk 1(N)}
§=
%[{22/([ + 22](1 1) -+ 22(2]{) + 22k}0_;k+1(N)

_ N{zzkl + 22/((1—1) Foeee 22(2/() + 22/(}0,;](_1(]\[)].
Then, the first term on the right-hand side of (11) can be written as

[22K 1 Q2KUD Ly 9200 | 92K (N

~ (21)2k+1 (21—1)2k+1 (22)2k+1 22k+1
- 2! + 21-1 ot 22 2

Nl }o;}ﬂ(N)

1 . _ 1 . 1.
= —0'2]“_1(2[]\[) + F02](+1<2l 1]\[) + -+ §02k+1(22N) + 502k+1(2N)

1 1 1 1
(210'2k+1(2 N) - gﬁzku(ZHN)) + (Fﬁzkﬂ(Z 1N) - F02k+1(212N))

1 1 1
+oee (2202k+1(2 N) - 02k+1(2N)) (5021@1(2]\1) -3

:%(Ozkﬂ(le) 02k+1(N)) 1(02k+1(2 N) 02k+1(N))+

1<721<+1(N)>

(11)

Page 6 of 23
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1
t 5 (0211 (2N) = 04,1 (N))
. (2'N;2!) + 1o (27'N;2) + Lo (272N;272)
- 2! 2k+1 ’ 2l 2k+1 ’ 9l-1 2k+1 ’
1 .
ot §02k+1(2N;2).
Similarly, the second term on the right-hand side of (11) is

_ N{22kl + 22/((1—1) Foeeet 22(21{) + 22k}o-;k_1(N)

#

= -N{2/oy_, (2'N;2") -2 0y, (27'N;27Y) - - = 205, 1 (2N 2) ).
Therefore, the proof is completed.

3.3 Pyramidal numbers
Let « be a fixed integer with « > 3, and let

Pyr, (x) = éx(x +1)((@-2)x+5-«a)

denote the oth order pyramid number [9]. These combinatorial numbers play an impor-

tant role in number theory and discrete mathematics. Using (10) with k = 1, we derive

N-1

> 61 (m)oy (N —m) = 7 o3 () ~ Noy (V). 12)

m=1

Proposition 2.3 is a very efficient formula for the computation of the sum
N-1
> ol (p"kp™)o; (p" (N - k) p").

k=1

For example, using Proposition 2.3 and (12), we get the interesting formulas in Table 3.

1. The pyramidal numbers Ps , are closely connected to the convolution sums
N-1

Z of(m)af (N —m).

m=1

Table 3 Values of Y"p-1 0. (2™k; 2™)a; (2™ (N - k); 2™)

N1 071 (2K)o; (2(N - k) N1 01 (4k; 4)o; (AN -K);4) - o1 01 (2™k; 2o (2N - k); 2™)
2-1)%(o5(N) - No; (V) 4 -1)%(o5(N) - Noy (V) S QM =17(05(N) - Noy (N)

Table 4 Examples for Ps x and P; .

X 2 3 4 5 6 7 8 9 10 11 12 13 14

Psy 6 18 40 75 126 196 288 405 550 726 936 1,183 1470
P: 6 18 40 75 126 198 288 405 560 726 936 1,210 1,470

S5X
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In fact, if N = 2g + 1 is a prime number, then from (12), we obtain

IG& . 1
5 Zol (m)o, 2q +1—m) = qu(q+ 1).

m=1

From Theorem 2.2, we deduce that

q q
o e 1 . R
D 610m6Qq+1=m) =23 01 (m)oy(2q +1~m) = Pyrs(q),
m=1 m=1
where
N o, (t) iftisodd,
sO=1"

01(%) otherwise.
In Table 4, we list the first thirteen values of

Ps, = gxz(x +1) and P, := Z 6, (m)6, (2x + 1 —m).

m=1

According to Table 4 and Figure 1, we observe that if 2x + 1 is prime, then Ps,

coincides with P .
2. We consider the pyramidal numbers

1
Ps,:=Pyr;(x—1) = gx(x —1)(x+1)
and the convolution sums

P;x = Z o1(k)o1(2x + 1 — 4k).

x>2k

From (21) (with N = 2g + 1 prime), we obtain

Py, = P;q =Pyry(g - 1).

Page 8 of 23
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Figure 1 Ps, and P;’x.
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Table 5 Examples for P3 x and P; X

X 2 3 4 5 6 7 8 9 10 11 12 13 14

P3x 1 4 10 20 35 56 84 120 165 220 286 364 455
P, 1T 4 9 20 35 52 84 120 160 220 281 360 455

3x

260

—+—Py,

P
(X3

200

180 |-

100

Figure 2 P3, and P;,x'

We list the first thirteen values of P3,, and P; , in Table 5. According to Table 5 and

Figure 2, we observe that if 2x + 1 is prime, then Ps,, coincides with P; . We note that
9 1
E:y"=P;, = gx(x— (x+1)

is an elliptic curve with P = (2,1) = (2, , /P;z) € E(Q)\E:(Q) and rank E(Q) > 1. From
the Lutz-Nagell theorem [10, p.240], P cannot be of finite order. For more details on
the extended results of pyramidal numbers and rank of elliptic curves, one can refer
to [9] .

3.4 Convolution on the twisted Eisenstein series S, ,, xr =001

We prove the following result.

Lemma 3.3 Let k> 1. Then

k-1

2k . .
Sokrngy(T) =4 <25 . 1) o251 (V)S2542, (T)
s=0

k-1
2k
=4 — <2S n 1)52/(—25,)(1 (T)52S+2,X1 (T)

§

and

k-1
. 2k . .
D(S2k,x0 (T)) =2 Z (25 + 1) (SZk—Zs,Xl (T) - SZk—2s,xO (T))S2s+2(f)‘

s=0

Page 9 of 23
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Proof Letus put N =2L in (10). Then

k-1 2L-1

Z <2S + 1) ; O2k-25-1 (m)UZHI (2L —m)

§=

= ( 2% )
= Z Zgzk 251 (2m =10y (2L — 2m + 1)
s 2s+1 (
-1
+ Z a;k—ZS—l (21’1’1)02*“1 (2L - 2Wl))
m=1
1, . X
- 5o 2105 0. ”

From Theorem 2.2 and (14), we derive

k-1

L
SX: <Zs + 1) (; Ook—2s-1(2m — 1)0951 (2L — 2m + 1))
L/ o2k
= Z <25 + 1) (Z 021< 25— 1(2}’1’1 1)025+1(2L W+ 1))

=0

@

1
{22k+10.2k+1(L) 2L . 22/( lo.zk I(L)} — E 22 {O'2k+1(L) LO'Zk I(L)}

— l\JI»—l

= Zo;kH(ZL). (15)

From (14) and (15), we find that

k-1 2L-1

. 1 B
Z (25 + 1) Z 1" 0y g1 (m)05,, (2L — m) = 2 (2L - oy 4(20)). (16)

§=

From (15) and (16), we deduce our lemma. O
We have the following theorem.

Theorem 3.4 Let L, M, k be positive integers. Let

k-1

M
Ui (M) := SZ (25 . 1) ; O2k-25-1(2m — 1) 0,1 (2M — (2m - 1)).

() If(L,M) =1, then
Uni (L) Un(M) = 2% Ui (LM).
) IfL=2%pT" ... po with odd distinct primes p;, then

U2k(L) — 22r—2+(2k+1)(eo—21—~~~—er) Ui (pil) o Uy (pir).
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Proof
(a) Since (L, M) =1, we can choose 2|L and 2 { M. From the definition of Uy (M) and
(15), we obtain

U (DU (M) = 103 10L) - 3031 (2M)

22k+10,£k+1 (M)

»-l>|>—l>4>»—n

1 .
= Z%ku(ﬂ)

1.
=% (ZGZ,M(ZLM))

=221 (LM).

(b) Since L =2%p7" - .. p with odd distinct primes p;, we have

Uy (L) = 02k+1(2 P py)

1 #
ar 2@k O2k+1 (P? n '1’?)
1 k ® *
_ E . 2(2 +1)eoo'2k+1 (Pil) .. 62k+1( i’)
1
_ Z 2(2k+1 0 9= (2k+1)eq 621<+1 (2 61) L.2” (2k+1)8ro— (Zpr )
! (2k+1)eg—(2k+1)ey—-—(2k+1)e 1 er r
Z -2 02k+1 Zp e 102k+1 (Zpr ) -4
= 92r-2+(2k+1)(eg—e1 - Uk(Pl) ( ) O

3.5 Triangular and twisted triangular numbers: results and remarks
(1) Using the theory of elliptic theta functions, Glaisher [11, p.300] considered Eq. (15).
(2) Four special cases for (15) and (16) are of interest here (see Table 6).
(3) In particular, if L is an odd prime, then

2L-1

lZ( 1)"*o] (m)o, (2L —m) =

Zk T;, 17)

where T7 is a triangular number. We note that

-1 )
S o oy 2L - m) = 22

m=1

{L+ Doy (1)}

Table 6 Special cases of convolution sums

Convolution sums Convolution sums

Y oem-NoiRL-2m+ ) =05) Y _ oi@m-1)o32L-2m+1) =0 (L)

Ay o (m)o; (2L -m) = Lo (1) 2 1™ o (m)os (2L - m) = Lo (L)
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by using m = 2L — m (mod 2). If L is odd, then

L-1

> (1)) (m)oy (2L - m) =

m=1

20 w1,

(4) In particular, if L =2 — 1 is an odd prime, then

L-1 q
Y (-1)"0; (m)oy (2L —m) = —— = Z (18)
m=1 k=1

We introduce the twisted triangular numbers T} and F, given by

2L-1 2L-2

| .

T, :=§§ (1), (m)o, (2L — m), F: _§ (~1)" o, (m)o, (4L — 2 — m).
m=1

The first sixteen values of
L
T, T, F=)K, F

are given in Table 7.
We can see from Figure 3 and Table 7 that when 2x — 1 (resp. x) is prime, the numbers

2x-2
Fy= (-1)"0y (m)oy (4x — 2 — m)
m=1

(resp. T, := 3 LS 21y 6) (m)o, (2% — m)) and F, = Y5 _ kO (resp. Ty = 3 ;_, k) are the
same.
(5) A similar question regarding such convolution formulas has been addressed

previously in [12]: Can one find ry, 3, 51, 2, m, a1, f1, B in Z satisfying

p-1
2

Y onalakim)on, ., (Bp - Biksm) = ) K"
k<BplB1 k=1

for a fixed u and for a fixed odd prime p?
We believe that such a problem is generally not easy to solve. Equations (17) and (18) are
special cases for this question with u = 0 and 1. A similar result is presented in [12, (12)].

(6) From Tables 6 and 7, we can easily obtain values of 7 for any prime L.

Table 7 Examples for T/, Ty, F, and F|

L 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
. 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153
T 2 6 8 15 24 28 32 W 60 6 9% 91 112 180 128 153
A2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Ff2 3 4 26 6 7 108 9 10 176 12 93 260 15 16 360
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180

160

140

120

100

80

60

40

20

Figure3 Fi,F;, T/, and T;.

Table 8 Triangular and twisted triangular numbers

Remark 3.5 (An application) Let us compute the quantity ZkN;ll o1(k; 4)o1(N - k; 4), that

is,

(7) In Table 8 we compare the properties of triangular numbers 77 and twisted

Triangular number

Twisted triangular number

m, n:any positive integer

Tmin =Tm + Tp+ (mn)

m,n, m;’” odd prime numbers

m+n
Triin =T &+ T+ mn+ 220

(13, @)
n:any positive integer n :odd prime number
Ton = 2Ty =n? Tom, —4"T, =0

[14,(1.13)]

n:any positive integer
Ton-1 = 2Tpy =n?
[14,(1.14)]

2n—=1,n-1:0dd prime numbers
Doy = 2Tp g =0’

n:any positive integer
25T, +3=Tsps2
[14,(4.2)]

n,5n+ 2 :odd prime numbers
25T, +3=Tc,,,

triangular numbers 7.

N-1

> o (k4)oy (N - k;4)

k=1

N-1

sl )

N-1
01(1( 0’1 N k ZZGI(N 4k)GVI( )
k=1 k<%
N
+ Zol(k)m<Z —k)
k<%

- %{30_;:(1\[;4) -0y (g) - BNG;(NA)}’

(19)
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Table 9 Convolution sum when N is prime

N : prime

Shiorkioy(N-k) Y31 0 (k;:4)o; (N - k; 4)
2¢°(q+1) 3¢2(g+1)

N=2g+1

where we refer to

N-1
; 1K) (N = K) = = {505(N) + (1~ 6N)o ()

in [15, (3.10)] and

> o1(k)or (N - 4k)

N
k<7

48

in [15, Theorem 4]. Combining (19) and (12), we have Table 9
From Theorem 1.3, for k = 1, we deduce that

N-1
>0y (4k; 4)o; (4N - k);4)
k=1

= —{0,(4N;4) + 03(2N) — 16N o, (4N;4) + 8No; (2N)}.

Moreover, from (19) and (22), we see that

4N-1 4N-1
> o1(k)o1(aN — k) = Y " oy (k; 4)oy (4N - k; 4)
W

afk
4N-1

N-1
> 0y (ki4)oy (AN — k;4) = Y oy (4k; 4)oy (4N — 4k; 4)
k=1 k=1

= —{2103(4N) = 1903(2N) - 203(N) + 24Ny (4N)

-72N01(2N) + 48Noy(N)}.

(23)
To refine the above formula, we use the following observation. Let p be a prime and %,
N € N. It is well known that

0

ok(pN) - (p* +1)ox(N) +Pk0k<%)

(24)
from [2, p.26]. Now, if we set p = 2 and use (23) and (24), we obtain
4N-1

§ 01(k)o1 (4N — k) = 1705(N) = 05(2N; 4) + 05(2N).
k=1
atk

(25)

(20)

{Gg(N) + (2 =3N)o1(N) + 303 (%) + 1603 (JZV) +(2 - 12N)01(%> } (21)
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Table 10 Convolution sums and triangular numbers

Convolution sum tg(N)
S a1 (m)on (4N - m) L {503(4N) + (1 - 24N)o (4N)}
YA o @m - @N-2m-1)  o52N) tg2N—1)
Z;‘%}* o1 (m)o 1 (4N = m) 05 2N) + 05 (2N; 4) 17tg(N=1)
4m
g o1 (m)ay (4N — m) o5 (2N; 4) Ag(N-1)

m=2 mod 4

Remark 3.6 (Representations of N as the sum of m triangular numbers) We set A =
{Ty|k=0,1,2,...}. For m € Nand N € NU {0}, we let

t,,,(N)=card{(x1,x2,...,xm)eA XA X -+ X AN =x +x2+--~+xm}

so that t,,(N) counts the number of representations of N as the sum of m triangular num-
bers. For N € NU {0}, we have the classical result

tg(N) = O’3(N+1) —O'3<A%> :O';(N+ 1); (26)

see [16, p.55].
From (26), (25), (20), Table 5, and [17, p.401], we obtain Table 10.
From Theorem 2.2, we derive

ts(2N — 1) = 05 (2N) = 805 (N) = 8£3(N - 1), ts(2" ~1) = 8",
and using Theorem 2.2 we get

(2P b —1) =05 (27p - ) = 8705 (p') - 03 (p7)
= Smtg(p? - 1) e tg(pir - 1)

with p; odd distinct primes.

3.6 Representation of an integer N as the sum of s squares
The s squares problem is to count the number 7,(N) of integer solutions (x3, ..., ;) of the
Diophantine equation

x4 +x2=N, (27)

where changing the sign of the order of the x/s gives distinct solutions. Explicit formulas
for ry(N) were given by Legendre in 1798 and Gauss in 1801. In 1770 Lagrange gave formula
for r4(N). Using the theory of theta functions, Jacobi obtained explicit formulas for r;(N),
where s = 2,4, 6, 8. Glaisher used elliptic function methods rather than modular functions
to obtain 14(N). A formula for r4(n) was proved by Ramanujan. For more details, see [18]
and references therein. In this subsection, we give a new formulation for rg(4N) in terms
of O’; and o3, and from our main result, we deduce a congruence formula for this number.

Following Jacobi, we consider the equation

93(0,-q) =1+ Y _(-D"r(N)g", (28)
N=1
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where 93(0, g) is the z = 0 case of the theta function ¥3(z, ¢) in [19] given by

e}

93(0,9) = Z qu-

j==00

Jacobi [20] proved

9;(0,-q)* =1-8 (- 1)’-11“1 —1+8 Z(—I)N< 3 d)qN. 29)
r=1 + q N=1 d|N,d>0

afd

From (29) and (23), we get a new formulation of rg(4N) in terms of o5 (N) and o3(N). In

fact,
4N-1
rs(4N) = 16(01(4N) — 401(N)) + 64 Y _ 01(k)or (4N - k)
i
N-1
+64 ) {01(4k) - 40y (k) }{o1 (4(N - k) - 4oy (N - k)}
k=1
and then
r3(4N) = 16{560;(N) + 1503(N)}, (30)

which gives the following theorem. Here,

N-1

> {o1(4k) - oy (k) }{or (4N — k) — 4oy (N — k)

k=1
N-1
{361(/() 60‘(/2()}{30'1(]\] k) — 60<N2 k)}
k=1

N-1
N
9k:1<71 (K)o (N — k) — 36;011\[ 2k)a ( )+36I(ZNal(k)ol(5—k)
<2 <5

—3 N) + 4 N N) +2 N
—1(03( )+ 03(5>—ol( )+ 01(5»,

we refer to [15, (3.10), (4.4)].
From the above computation, we have a beautiful arithmetical results, which we give
now.

Theorem 3.7 Let N € N. We have a formula
r3(4N) = 16{560;(N) +1503(N)}
and if N = -1 (mod 8) is an odd integer, then

rg(4N)=0 (mod 9,088).
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Proof By using (30) and 03(8k —1) =0 (mod 8), we get the theorem. O

Remark 3.8 Let M and N be odd integers with (M, N) = 1. From Theorem 3.7, we derive
that

rg(4MN) = 1,13603(M)o3(N) = L(1,13603(M)) (1,13603(N))

1136
- L aMran) 31)
T L1z BT
and
. 1 r-1 . .
re(4pl - py) = ( 113 6) rg(4py) - - rs(4py). (32)

Corollary 3.9 Let N =py' - - - p be a prime decomposition of the integer N, and if pi' = -1
(mod 8) foralli=1,...,r, then we have

rg(4N)=0 (mod 2% .71).

4 The problem o, (n) =0, (n+1)
Sierpinski has asked if o1 () = 01(n + 1) infinitely often. Jud McCranie found 832 solutions
of

o1(n)=o1(n+1) forn<4.25 x 10°%;

see[21, p.103]).
We consider the values of o, (1) = o, (n +1) and o7 (1) = 0, (n + 1) = 0y (n + 2).

4.1 Further results
First, we shall compare the above problem for o7(n) and oy (1).

The results of Table 11 were realized by combining several computers and by using Math-
ematica 8.0 software. It would be impossible for us to reproduce here all their details. It is
clear, according to our numerical computations, that the study of the above problem with
Uf is faster than that of the o7 one.

Table 11 ¢,(n) and 07 (n)

n af(n):af(n+1) o1(n)=01(n+1)
n <200 3,6,7,10,22,31,58, 14
82,106, 140, 154,
160, 166, 180
n<425x10° #{nlo, (M =0,(+1)}=1870  #{nlo1(n)=01(n+1)} =832
n 01*(n):ar(n+1):01*(n+2) on=o1n+1)=01(n+2)
n <200 6 no
n<425x10° 6 no
n o, (n+2)=0,(n+2 o1(n+2)=01(n)+2
twin prime all all
m, n ma;(m) :nar(n), m=#n mao(m) = no (n)

1<mn<7x10* no m=12g,n=14q(q,42) =1
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Table 12
o1(n)=n af(n):n o1(n)=n+2 a:(n)=n+2
n 1 2", meNU{0} n none n = 2p, with p any odd prime
or(nN=n+1 O':(n):ﬂ+“ oi(nN=n+3 (71“'(n):n+3
n  prime odd prime n 4 none

In fact, using Mathematica 8.0, we were able to obtain all positive integers for all # <
4.25 x 10° in Table 11. Note that the results of o;(#) in Table 11 are also presented in [21,
p.100, pp.103-104].

Theorem 4.1
() If2" —1is an odd prime number, then o, (2" — 1) = o, (2").
(b) If p and 2p + 1 are odd prime numbers, then o, (2p) = o, (2p +1).
(c) If2" —1is an odd prime number, then we get o, (2" —2) # 07 (2" — 1) = 0 (2") with
n>3and o, (6) =0,(7) = 07 (8).
(d) Ifnand n+ 2 are twin prime numbers, then oy (n + 2) = oy (n) + 2.
(e) Ifmis a positive integer, then we get Table 12.

Proof Let p be an odd positive integer. Using o1(p) = p + 1 and o, (2m) = 20, (m), we get
(a), (b), (d), and (e). In (c), if 2" — 1 is an odd prime number with # > 3, then # is an odd
number. It is easy to verify that

07 (2" =2) =20, (2" = 1) =20, ((2"7 -1)(2'7 +1)) #2"

and o, (2" — 1) = 07 (2") = 2". It is clear that 0, (6) = 7, (7) = 0, (8). O

Corollary 4.2 Let p be an odd prime. If L = 2" —1 is an odd prime or L = 2p, and 2p + 1 is
prime, then

1
01(2L +1) = 3 01(2L - 1) + 507 (L)

2L-2
+ Z(—l)'”*laf(m + 1)(af(2L +1-m)— af(ZL —-—m— 1)) }
m=1

Proof From Table 5, we get

(L +1)o,(L+1)-Lo, (L)

2L+1 2L-1
=Y (1) oy (m)oy QL +2 - m) = Y _(=1)"* o) (m)oy (2L — m)
m=1 m=1
2L-1
= Z(—l)”’“of(m){o*f@L +2-m)—o, (2L - m)} —0,(2L)5,(2) + o, 2L +1)
m=1
2L-1
=o;()fo; 2L +1) =07 2L - 1)} + Z(-l)m”af (m){o| (2L +2 - m) - o, (2L — m)}
m=2

— 4o, (L) + 0 (2L +1).
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From Theorem 4.1(a), (b), we know that o, (L +1) = 07 (L) and 0, (2L +1) = 01(2L +1); hence,
the proof is completed. g

Lemma 4.3 Let I; := {n € N|oy(n) = 0, (n + i)} with i € N. Then 8;ym; : I; — Lm;, 8;ym;(n) =
2", is an injective map. In particular, there exists an injective sequence of I;,

31,2 52,4 34,8
11——)12——)14——)[8—)~~-

satisfying 8,m yma injective map.

Proof Let n € I,. By the definition of I;, we deduce that o, (1) = 0, (n+i). From Theorem 2.2,
we get 0, (2"n) = 0, (2"n + 2™i) and 2"n € Iym;. And let n € I; and [ € I; with n # [, then
2" # 2" and 07 (2"n) = 0] (2" n + i), 0, (2"]) = 0, (2”1 + i). Therefore, §;m; is an injective

map. It is clear that §ym 5m+1 is an injective map. 0
By Lemma 4.3, we deduce the corollary.

Corollary 4.4 Let m be a nonegative integer. If t{n|o, (n) = oy (n + 1)} > 00, then
ﬁ{n|af(n) = af(n + 2"‘)} > 00.

4.2 Remarks and examples

We list the following interesting remarks and examples.

Remark 4.5

1. (Sophie Germain primes) Note that if there are an infinite number of Sophie
Germain primes, then the problem o, (1) = o, (1 + 1) has an infinite number of
solutions (in terms of prime numbers).

2. (Mersenne numbers) Assume that o, (m) = o7 (m + 1). Then, by Theorem 2.2, we have
o, (2'm) = o, (2'm + 2). If the cardinal of the Mersenne primes or the cardinal of
primes p, such that 2p + 1 is also prime, is infinite, then by using Theorem 4.1(a), (b),
the number of m satisfying o, (m) = o, (m + 1) and o, (m) = o, (m + 2! is infinite.

3. (Perfect numbers) A positive integer # is called perfect if o1(n) = 2n. Euclid and Euler

showed that all even perfect numbers are of the form
2/71(2” —1)  such that 2” — 1 is a Mersenne prime.

In our case, we observe that o, (2771(27 — 1)) #2 - 2°71(27 - 1). If there exists an odd
positive integer m satisfying o7 (m) = 2m, then the number of  satisfying oy (1) = 2n
is infinite, that is, o, (2'm) = 2o (m) = 2(2'm).

4.3 Numerical computations for the truncated sets /;(N)
Let N be a positive integer and set [;(N) =; N {1,2,...,N}. From Lemma 4.3 we see that
the restricted map 8;m;(n) = 2" n is still injective between [;(N) and I,m;(2"'N).

In this section, using Mathematica 8.0 we compute the sets [;(N) for N = 100,000 =
2°.5% and i = 2,4, 8,16,32. We obtain the following lists.
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(@)

[,(100,000) = { 6, 12, 14, 20, 33, 44, 62, 92, 116, 138, 164, 212, 254, 280, 308, 320,
332, 356, 452, 524, 572, 692, 716, 764, 932, 956, 1,004, 1,124, 1,172, 1,436, 1,496,
1,562, 1,676,1,724,1,772, 1,964, 2,002, 2,036, 2,132, 2,372, 2,564, 2,598, 2,612,
2,636, 2,732, 2,876, 2,913, 2,972, 3,044, 3,228, 3,236, 3,344, 3,408, 3,644, 3,812,
4,052, 4,076, 4,124, 4,187, 4,196, 4,292, 4,412, 4,728, 4,892, 4,916, 5,156, 5,170,
5,636, 5,756, 5,804, 5,924, 5,996, 6,044, 6,236, 6,332, 6,404, 6,764, 6,932, 7,169,
7,244, 7,424, 7,556, 7,604, 7,724, 7,892, 8,012, 8,050, 8,156, 8,234, 8,252, 8,276,
8,516, 8,564, 8,930, 9,092, 9,356, 9,359, 9,404, 9,572, 9,596, 9,836, 10,172, 10,196,
10,772, 10,796, 10,964, 11,012, 11,276, 11,612, 11,756, 11,852, 11,876, 12,092, 12,212,
12,565, 13,196, 13,316, 13,436, 13,556, 13,652, 13,796, 13,964, 14,156, 14,372, 14,492,
15,044, 15,085, 15,116, 15,212, 15,284, 15,404, 15,452, 15,644, 16,076, 16,120, 16,292,
16,376, 16,382, 16,844, 17,084, 17,396, 17,492, 17,564, 17,636, 17,924, 18,170, 18,932,
19,172, 19,484, 19,676, 19,772, 20,012, 20,156, 20,204, 20,324, 20,684, 20,924,
21,116, 21,212, 21,332, 21,461, 21,518, 21,596, 21,764, 22,004, 22,556, 22,844, 22,964,
23,396, 23,612, 24,212, 24,404, 24,452, 24,524, 24,692, 24,881, 25,019, 25,052,
25,076, 25,292, 25,316, 25,338, 25,796, 25,964, 26,084, 26,204, 26,252, 26,324,
26,609, 27,044, 27,596, 27,932, 28,172, 28,316, 28,412, 28,484, 28,604, 28,772,
28,844, 29,396, 29,696, 29,732, 30,164, 30,572, 30,596, 30,764, 31,292, 31,364,
31,532, 31,604, 32,276, 32,372, 32,444, 32,804, 32,972, 33,092, 33,590, 34,052,
34,652, 34,772, 34,964, 35,358, 35,804, 35,876, 36,116, 36,236, 36,884, 37,172,
37,484, 37,676, 37,892, 37,916, 38,156, 38,516, 38,756, 39,164, 40,244, 40,364,
40,458, 40,652, 41,012, 41,084, 41,252, 41,324, 42,116, 42,356, 42,452, 42,764,
42,836, 42,932, 43,124, 43,196, 43,532, 44,684, 45,078, 45,284, 45,476, 45,572,
45,884, 46,076, 46,196, 46,316, 46,796, 46,863, 47,132, 47,204, 47,252, 47,324,
47,636, 47,756, 47,792, 47,978, 48,044, 48,164, 48,404, 48,476, 48,812, 49,052,
49,225, 49,316, 50,612, 50,684, 51,164, 51,284, 51,596, 51,692, 51,835, 51,836,
52,004, 52,196, 52,916, 53,058, 53,252, 53,804, 53,852, 53,963, 54,212, 54,476,
54,596, 55,052, 55,532, 55,604, 55,652, 55,748, 56,036, 56,324, 56,612, 56,636,
56,996, 57,212, 57,284, 57,956, 58,056, 58,244, 58,484, 58,676, 58,796, 58,964,
59,132, 59,324, 59,516, 59,756, 59,987, 60,404, 60,644, 60,692, 60,932, 61,076,
61,604, 61,832, 62,276, 62,516, 63,092, 63,164, 63,212, 63,692, 64,004, 64,364,
65,012, 65,204, 65,684, 65,972, 66,212, 66,692, 67,244, 67,292, 67,532, 67,724,
68,636, 68,732, 69,164, 69,332, 69,404, 70,316, 70,676, 70,724, 71,756, 71,924,
72,164, 72,524, 72,596, 72,764, 72,836, 72,932, 73,364, 73,772, 73,844, 74,924,
75,092, 75,108, 75,212, 75,596, 76,652, 77,057, 77,204, 77,276, 77,492, 77,564,
77,732, 78,212, 78,236, 78,644, 78,836, 79,004, 79,292, 79,556, 79,652, 79,676,
79,964, 80,252, 80,996, 81,055, 81,476, 81,572, 81,644, 81,764, 82,772, 83,012,
83,036, 83,084, 83,156, 83,516, 83,684, 83,756, 83,852, 84,044, 84,356, 84,596,
84,716, 84,884, 85,364, 85,532, 85,676, 86,170, 86,444, 86,804, 86,852, 87,212,
87,572, 88,052, 88,316, 88,532, 89,036, 89,084, 89,372, 89,396, 89,636, 89,732,
89,876, 89,924, 90,164, 91,004, 91,412, 91,772, 92,396, 93,116, 93,284, 93,356,
93,836, 94,244, 94,412, 94,676, 95,012, 95,276, 95,636, 95,924, 96,812, 96,956,
97,124, 97,892, 98,036, 98,204, 98,444, 98,732, 98,996, 99,638, 99,884 }.
1,(100,000) = { 12, 24, 28, 40, 51, 66, 88, 115, 124, 184, 232, 276, 319, 328, 424, 508,
560, 616, 640, 664, 712, 904, 1,003, 1,048, 1,144, 1,384, 1,432, 1,528, 1,864, 1,912,
2,008, 2,248, 2,344, 2,585, 2,872, 2,992, 3,124, 3,352, 3,448, 3,544, 3,928, 4,004,
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4,072, 4,183, 4,195, 4,264, 4,744, 5,128, 5,196, 5,224, 5,272, 5,464, 5,752, 5,826,
5,944, 5,959, 6,088, 6,456, 6,472, 6,688, 6,816, 7,288, 7,624, 8,104, 8,152, 8,248,
8,374, 8,392, 8,584, 8,824, 9,456, 9,784, 9,832, 10,312, 10,340, 11,272, 11,512, 11,608,
11,659, 11,848, 11,992, 12,088, 12,367, 12,472, 12,561, 12,664, 12,808, 13,528, 13,581,
13,864, 14,338, 14,488, 14,8438, 15,112, 15,208, 15,365, 15,4438, 15,784, 16,024, 16,100,
16,312, 16,468, 16,504, 16,552, 17,032, 17,128, 17,860, 18,184, 18,712, 18,718, 18,808,
19,144, 19,192, 19,672, 20,344, 20,392, 20,541, 21,544, 21,592, 21,928, 22,024, 22,552,
23,224, 23,512, 23,704, 23,752, 24,184, 24,424, 25,130, 26,392, 26,632, 26,872,
27,112, 27,304, 27,592, 27,928, 28,312, 28,744, 28,984, 29,393, 30,088, 30,170,
30,232, 30,424, 30,568, 30,808, 30,904, 31,288, 32,152, 32,240, 32,584, 32,665,
32,752, 32,764, 33,688, 34,168, 34,792, 34,984, 35,128, 35,272, 35,848, 36,340,
37,864, 38,344, 38,968, 39,352, 39,544, 39,913, 40,024, 40,312, 40,408, 40,648,
41,368, 41,848, 42,232, 42,423, 42,424, 42,664, 42,922, 43,036, 43,192, 43,528,
44,008, 45,112, 45,688, 45,928, 46,792, 47,224, 47,841, 48,424, 48,808, 48,904,
49,0438, 49,384, 49,762, 50,038, 50,104, 50,152, 50,435, 50,584, 50,632, 50,676,
51,592, 51,928, 52,168, 52,408, 52,504, 52,648, 53,218, 54,088, 55,192, 55,864,
56,344, 56,632, 56,824, 56,968, 57,208, 57,544, 57,688, 58,792, 59,392, 59,464,
60,328, 61,144, 61,192, 61,528, 62,584, 62,728, 63,064, 63,208, 64,552, 64,744,
64,888, 65,608, 65,944, 66,184, 67,180, 68,104, 69,304, 69,544, 69,928, 70,716,
71,608, 71,752, 72,232, 72,472, 73,768, 74,344, 74,968, 75,352, 75,784, 75,832,
76,312,77,032,77,512, 78,328, 80,488, 80,728, 80,916, 81,304, 82,024, 82,168,
82,504, 82,648, 84,232, 84,712, 84,904, 85,528, 85,672, 85,864, 86,248, 86,392,
87,064, 88,303, 89,368, 90,156, 90,568, 90,952, 91,144, 91,768, 92,152, 92,392,
92,599, 92,632, 93,592, 93,726, 94,264, 94,408, 94,504, 94,648, 95,272, 95,512,
95,584, 95,956, 96,088, 96,328, 96,808, 96,952, 97,624, 98,104, 98,450, 98,632}.

(c) 13(100,000) = { 15, 24, 48, 56, 69, 80, 87,102, 132, 175, 176, 230, 248, 368, 464, 552,
638, 656, 689, 848, 1,016, 1,120, 1,127, 1,232, 1,280, 1,328, 1,349, 1,424, 1,808, 2,006,
2,096, 2,288, 2,768, 2,864, 3,056, 3,728, 3,824, 4,016, 4,496, 4,688, 5,170, 5,744,
5,984, 6,248, 6,704, 6,896, 7,088, 7,856, 8,008, 8,144, 8,366, 8,390, 8,528, 9,488,
10,256, 10,392, 10,4438, 10,544, 10,928, 11,504, 11,652, 11,888, 11,918, 12,176, 12,912,
12,944, 13,376, 13,632, 14,576, 15,2438, 16,208, 16,304, 16,496, 16,748, 16,784, 17,168,
17,648, 18,912, 19,511, 19,568, 19,664, 19,829, 20,624, 20,680, 22,544, 23,024,
23,216, 23,318, 23,696, 23,984, 24,176, 24,597, 24,734, 24,944, 25,122, 25,328,
25,616, 27,056, 27,162, 27,728, 28,676, 28,976, 29,696, 30,224, 30,416, 30,730,
30,896, 31,568, 32,0438, 32,200, 32,624, 32,936, 33,008, 33,104, 34,064, 34,256,
35,720, 36,368, 37,391, 37,424, 37,436, 37,616, 37,901, 38,288, 38,384, 39,344,
40,688, 40,784, 41,082, 43,088, 43,184, 43,856, 44,048, 45,104, 45,925, 46,448,
47,024, 47,408, 47,487, 47,504, 48,368, 48,848, 50,260, 52,784, 53,264, 53,744,
54,224, 54,608, 55,184, 55,856, 56,624, 57,488, 57,968, 58,786, 59,125, 60,176,
60,340, 60,464, 60,848, 61,053, 61,136, 61,616, 61,808, 62,576, 64,304, 64,480,
65,168, 65,330, 65,504, 65,528, 67,376, 68,336, 69,584, 69,968, 70,256, 70,544,
71,696, 72,680, 75,728, 76,688, 77,936, 78,704, 79,088, 79,826, 80,048, 80,624,
80,816, 81,296, 81,989, 82,736, 83,696, 84,464, 84,846, 84,848, 85,328, 85,844,
86,072, 86,384, 87,056, 88,016, 90,224, 91,376, 91,856, 93,584, 94,4438, 95,682,
96,8438, 97,557, 97,616, 97,808, 98,096, 98,768, 99,524, 99,827}.
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(d) 6Le(100,000) = { 30, 48, 55, 96, 112, 138, 160, 174, 204, 205, 264, 350, 352, 355, 460,
496, 736, 928, 1,104, 1,276, 1,293, 1,312, 1,378, 1,696, 2,032, 2,240, 2,254, 2,464,
2,560, 2,656, 2,698, 2,848, 3,277, 3,616, 3,669, 4,012, 4,192, 4,576, 5,536, 5,728,
6,112, 7,456, 7,648, 8,032, 8,992, 9,376, 9,853, 10,340, 11,488, 11,968, 12,496, 12,549,
13,408, 13,792, 13,899, 14,176, 14,857, 15,712, 16,016, 16,288, 16,732, 16,780, 17,056,
18,976, 20,512, 20,784, 20,896, 21,088, 21,856, 23,008, 23,287, 23,304, 23,776,
23,836, 24,352, 25,824, 25,888, 26,077, 26,752, 27,264, 29,152, 30,496, 32,416,
32,608, 32,992, 33,496, 33,568, 34,336, 35,296, 36,669, 37,824, 39,022, 39,136,
39,187, 39,328, 39,658, 41,248, 41,360, 41,525, 45,088, 46,048, 46,432, 46,636,
47,392, 47,968, 48,352, 49,194, 49,468, 49,888, 50,244, 50,656, 51,232, 54,112,
54,324, 55,456, 56,743, 57,352, 57,952, 59,392, 60,448, 60,832, 61,460, 61,792,
63,136, 64,096, 64,400, 64,963, 65,248, 65,872, 66,016, 66,208, 68,128, 68,512,
71,440, 72,736, 73,321, 74,782, 74,848, 74,872, 75,232, 75,802, 76,576, 76,768,
78,688, 81,376, 81,568, 82,164, 85,839, 86,176, 86,368, 87,712, 88,096, 90,208,
90,637, 91,850, 92,896, 94,0438, 94,816, 94,974, 95,008, 95,113, 96,193, 96,736,
97,696).

(e) I3,(100,000) = { 60, 96, 110, 177, 192, 224, 276, 303, 320, 348, 408, 410, 528, 605,
700, 704, 710, 749, 920, 992, 1,045, 1,157, 1,472, 1,856, 2,208, 2,552, 2,567, 2,586,
2,624, 2,756, 3,392, 4,064, 4,480, 4,508, 4,533, 4,928, 5,120, 5,312, 5,396, 5,696,
6,554,7,232,7,338, 7,697, 8,024, 8,384, 9,152, 10,547, 11,072, 11,456, 12,224, 13,199,
14,912, 15,296, 16,064, 16,345, 17,984, 18,752, 19,706, 20,381, 20,680, 21,197, 21,797,
22,976, 23,936, 24,992, 25,075, 25,098, 26,816, 27,584, 27,798, 28,352, 29,321,
29,365, 29,714, 31,424, 32,032, 32,576, 32,849, 33,464, 33,560, 34,112, 37,929,
37,952, 41,024, 41,568, 41,792, 42,176, 43,712, 46,016, 46,574, 46,608, 47,552,
47,672, 48,704, 51,648, 51,776, 52,154, 53,504, 54,528, 58,304, 60,992, 61,705,
64,832, 65,216, 65,984, 66,992, 67,136, 68,672, 70,049, 70,592, 73,338, 75,648,
78,044, 78,272, 78,374, 78,656, 79,316, 82,496, 82,720, 83,050, 85,769, 89,033,
90,176, 92,096, 92,864, 93,272, 94,784, 95,936, 96,704, 98,388, 98,936, 99,776}.

We conclude this paper by the following remark.

Remark 4.6 According to the obtained numerical results, it is interesting to study lower
and upper bounds for the cardinality of the sets [;(N). In the same manner we can also
study the asymptotic behavior of this cardinality. This would allow us to know whether or
not the full J; is infinite.
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