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Summary Introduction Modeling and simulation of phar-
macokinetics and pharmacodynamics has previously been
shown to be potentially useful in designing Phase I
programs of novel anti-cancer agents that show hematolog-
ical toxicity. In this analysis, a two-stage model-based trial
design was evaluated retrospectively using data from the
Phase I program with the aurora kinase inhibitor barasertib.
Methods Data from two Phase I trials and four regimens
were used (n=79). Using barasertib-hydroxy QPA plasma
concentrations and neutrophil count data from only study
1A, a PKPD model was developed and subsequently used
to predict the MTD and a safe starting dose for the other
trials. Results The PKPD model based on data from the first

study adequately described the time course of neutrophil
count fluctuation. The two-stage model-based design
provided safe starting doses for subsequent phase I trials
for barasertib. Predicted safe starting dose levels were
higher than those used in two subsequent trials, but lower
than used in the other trial. Discussion The two-stage
approach could have been applied safely to define starting
doses for alternative dosing strategies with barasertib. The
limited improvement in efficiency for the phase I program
of barasertib may have been due to the fact that starting
doses for the studied phase I trials were already nearly
optimal. Conclusion Application of the two-stage model-
based trial design in Phase I programs with novel anti-
cancer drugs that cause haematological toxicity is feasible,
safe, and may lead to a reduction in the number of patient
treated at sub-therapeutic dose-levels.
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Introduction

During Phase I development of novel anticancer drugs, it is
common to evaluate various administration regimens in
parallel dose escalation studies. As a result, the information
obtained from one trial may not be available to guide the
design of the other Phase I trials, as they are often
conducted simultaneously. Previously, our group has
presented a two-stage model-based design for the Phase I
program of novel anticancer agents with dose limiting
haematological toxicity [1]. The proposed model-based
design consists of a first stage which is the conduct of an
initial Phase I dose escalation trial using a single dosing
regimen. During a model-based interim analysis, data from
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the initial Phase I trial (stage 1) are then used to optimize
the design of subsequent trials using alternative dosing
regimens (stage 2). The interim analysis consists of the
development of a pharmacokinetic (PK) and pharmacody-
namic (PD) population model and subsequent trial simu-
lations. These trial simulations predict the maximum
tolerated dose (MTD), and safe doses to start dose
escalation with alternative administration regimens. The
PD model describing the time course of neutrophil counts
was developed by Friberg et al. [2] This semi-mechanistic
model has been applied to describe the time course of
myelosuppression in patients following the administration
of several anticancer drugs [3–11] and has shown consis-
tency in its system-related parameters among a wide variety
of anti-cancer agents and regimens [2, 10].

In a simulation study, we have previously explored the
performance of the two-stage model-based trial designs [1].
Five compounds with diverse PKPD characteristics (differ-
ent models and parameters) were selected to evaluate the
approach. The simulation analysis showed that the ap-
proach could be applied safely, and improved the efficiency
of the dose escalation process by reducing the number of
patients required at dose levels below the MTD by 27%.
Furthermore, data from the phase I program with indisulam
was used to retrospectively evaluate the performance using
real data, which showed that the approach provides more
efficient safe starting doses for the trials in the second stage.

In the current study, the two-stage model-based design is
evaluated retrospectively using data from another real
compound, barasertib. This compound is an investigational
anticancer agent (an aurora kinase inhibitor) that has shown
activity against tumor cell-lines and human xenografts [12–
14]. Barasertib is a soluble phosphate prodrug developed
for parenteral administration that is rapidly activated by
phosphatase cleavage in serum to release the more active
drug, barasertib-hydroxy quinazoline pyrazol anilide
(hQPA) [13, 15]. Barasertib has been investigated in a
phase I program consisting of several dose escalation
studies designed to test various dosing regimens. In these
studies, hematological toxicity was observed as the main
dose limiting toxicity [16].

Methods

Data

In total, three phase I studies of barasertib in solid tumours
have been performed, evaluating four different dosing
regimens of barasertib (Table 1). In these phase I studies,
haematological toxicity was the dose limiting toxicity
(DLT) and, as no other clinically significant DLTs were
reported, this was the only factor influencing dose

escalation [16]. Regimens that were investigated in these
trials were (number of patients included): 1A: 2 h infusion,
weekly (n=19); 1B: 2 h infusion, 2-weekly (n=23 in dose
escalation, n=17 additional at the MTD); 2A: 48-hour
infusion, 2-weekly (n=20); 2B: 2 h infusion on day 1 and
day 2, 2-weekly (n=15), see Tables 2 and 3. Administration
of granulocyte colony-stimulating factor was not allowed
during these trials.

Starting doses for the clinical trials were determined
based on FDA guidance [17]. This document states that the
maximal starting dose should be based one tenth of the
lethal dose in rodents (LD10), using the appropriate
conversion factors for species and, correcting for body
weight on an allometric basis. Following this guidance,
experiments in rodents and dogs were used to determine a
safe starting dose in humans. Allowing some margin for
low body surface areas in oncology patients and variations
in body weight, the safe starting doses were determined to
be 100 mg, 50 mg, and 50 mg for the 2-hour, 48-hour
infusion schedule, respectively. The clinical trials for
barasertib already incorporated some form of a two-stage
design as the MTDs obtained in part 1A and 2A were used
as starting doses in 1B and 2B, respectively.

Blood sampling for PK analysis was performed pre-
infusion, and at 0.25 h, 0.5 h, 0.75 h, 1 h, 1.5 h, 2 h, 3 h,
4 h, 6 h, 8 h, 10 h, 12 h, 20 h and 22 h following the end of
the first infusion, appropriate for this drug with a terminal
half-life of about 5 h (metabolite). During the next three
infusions, if undertaken, blood samples were taken pre-
infusion, 5 min before the end of infusion and 1 h, 3 h and
6 h following the end of infusion. Preclinical experiments
indicated rapid and total conversion of barasertib to the
more active metabolite barasertib hydroxy-quinazoline
pyrazole anilide (barasertib-hQPA) [18]. Therefore, bio-
analysis included determination of concentration of both
barasertib and barasertib-hQPA, which was performed
using a validated high performance liquid chromatography
with tandem mass spectrometry (HPLC-MS/MS). Haema-
tological analysis (including absolute neutrophil count,
ANC) was performed routinely at least every 7 days, and
more often when neutropenia was observed, using standard
laboratory procedures. For study 2, an extra day of PK
sampling was added to the schedules on day 3.

Analysis

Figure 1 is a schematic representation of the design of the
current analysis. Plasma concentration data and neutrophil
count data from one of the administration regimens (study
1A) was used to construct a PKPD model. This information
model was subsequently used for trial simulations of the
other dosing regimens, for which the encountered MTDs
were recorded, and from which a safe starting dose was
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calculated. The model-based design was evaluated for its
ability to predict safe starting doses and reduce the number
of patients treated at doses below the MTD.

PKPD analysis

Model estimation was performed with non-linear mixed
effects modeling using NONMEM, version VI, level 2.0
(Icon Development Solutions, Ellicott City, MD, USA)
with g77 as Fortran compiler, and Piraña as modeling
environment [19]. The Laplacian estimation method with
interaction was used for estimating the model parameters.
Judgment of model fit was done using goodness-of-fit
plots. Nested models were tested for significant improve-
ment in fit at a significance level of p<0.01, corresponding
to a decrease in objective function value (OFV) of 6.67.
Further model evaluation was based on model convergence,
model stability (condition number) and estimation charac-
teristics such as the successful completion of the covariance
step. Three significant digits was considered to be the
minimal acceptable precision. Visual predictive checks
(VPC), created using PsN and Xpose were used to evaluate
the performance of final models [20, 21]. Data in the VPC
were binned, so that sufficient data in each bin was

available to allow evaluation of differences between
observed and simulated data [22].

Data from part A of study 1 were used to develop i) a
population PK model describing the time profile of barasertib
(−hQPA) plasma concentrations and ii) a semi-physiological
population pharmacodynamic model describing the time
course of drug-related neutropenia. It was attempted to
construct models for both barasertib and barasertib-hQPA
timecourse. The PKPD model was developed using a
sequential approach, i.e. the PK sub-model was fitted to the
PK data alone, and then the PD sub-model was fitted to the PD
data alone conditional on the fitted PK model [23]. For PK
concentrations below the lower limit of quantification
(LLOQ), the likelihood of observing an LLOQ was
calculated and used in fitting the PK model to the data
(method M3. according to Beal et al.) [24].

Time courses of neutropenia were described by a semi-
physiological model, introduced by Friberg et al. [2]. This
model comprises a progenitor compartment for proliferating
blood cells, linked to a series of three compartments
representing the maturation chain in the bone marrow and
leading to the central circulation compartment. The models
is defined by the following parameters: mean transition
time (MTT), a feedback parameter (γ), baseline absolute

1A 1B 2A 2B

Age (yrs) 59 (40–71) 59 (25–73) 63 (33–80) 56 (38–78)

Weight (kg) 78 (50–98) 77 (53–120) 79 (51–149) 75 (49–107)

Height (cm) 178 (160–194) 176.5 (15–194) 165.5 (155–189) 172 (158–193)

Sex (m/f) 14/5 30/10 11/9 9/6

Race (caucasion/oriental) 19/0 38/2 19/1 15/0

ANC0 (10
9) 5.2 (1.86–11.4) 5.6 (2.1–13.3) 4.5 (1.8–7.6) 5.6 (1.8–13.7)

WHO performance status

0 1 (5%) 9 (23%) 9 (45%) 9 (60%)

1 16 (84%) 28 (70%) 10 (50%) 6 (40%)

2 2 (11%) 3 (8%) 1 (5%) 0

Dropout due toa

Adverse event 3 (16%) 1 (3%) 0 1 (7%)

Other 3 (16%) 9 (23%) 4 (20%) 0

Death 0 0 1 (5%) 0

Table 2 Patient characteristics.
Median (range) for continuous
characteristics, counts for
categories

a other than disease progression

Table 1 Administration regimens evaluated in barasertib phase I clinical studies

Study Duration infusion Dosing frequency Cycle duration n Start dose MTD NTD

1A 2 h weekly 3 weeks 19 100 mg 200 mg 300/450 mg

1B 2 h 2-weekly 4 weeks 40 200 mg 450 mg 650 mg

2A 48 h 2-weekly 4 weeks 20 25 mg 150 mg 225 mg

2B 2 h day 1, 2 every 2 weeks 4 weeks 15 75 mg 220 mg 300 mg

MTD Maximum tolerable dose level; NTD Non-tolerable dose level
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neutrophil count (ANC0), and drug effect parameters
(Emax/EC50 or Slope). These parameters were all estimated.
Aurora kinase inhibitors are key regulatory roles at critical
points of the cell cycle, hence AZD1152-hQPA affects
dividing cells. This justifies the model structure that was
used, in which the effects of AZD1152-hQPA was imple-
mented on the progenitor compartment. Both slope and
Emax models were evaluated. The absolute neutrophil
counts (ANC) were log transformed prior to analysis. All
parameters were assumed to be log-normally distributed in
the study population. Consequently, between subject vari-
ability (BSV) was estimated using an exponential function
(Pi=θi · exp(ηi)) to describe the individual deviation (ηi)
from the population typical value (θi). An additive residual

error model related model predicted ANC to the (log
transformed) observed data. Standard errors and measures
of correlation between parameter estimates were obtained
from the covariance step in NONMEM

Simulation studies

The PK and PD models developed from study 1A data were
used to simulate study parts 1B, 2A and 2B. The results of
the simulation studies were used to predict the MTD and a
safe starting dose for these regimens. All simulations were
performed in R (http://cran.r-project.org, version 2.7.0),
supplied with packages for solving the non-linear system of
differential equations of the PK and PD models (odesolve)

Table 3 Parameter estimates for PKPD model, fitted on study 1, part A, and data from all barasertib studies together

Parameter Description Estimates from
study 1, part A

Post hoc estimates,
all studies

unit

estimate (%
RSE)

shrinkage estimate (%
RSE)

shrinkage

Pharmacokineticsa CL/F Clearance 19.1 2% 19.9 2% L.hr−1

V/F Volume of distribution 15.8 3% 15.3 10% L

Q2/F Inter-compartmental clearance
to 1st periph. comp.

5.81 4% 5.87 4% L.hr−1

V2/F Volume of 1st periph. comp. 20.5 6% 18.4 5% L

Q3/F Inter-compartmental clearance
to 2nd periph. comp.

3.16 3% 3.35 8% L.hr−1

V3/F Volume of 2nd periph. comp. 186 9% 206 4% L

BSVCL Between subject variability in CLb 18.5 18% 0.8% 25.9 11% 0.6% %

BSVV Between subject variability in Vb 25.9 19% 11% 52.3 14% 6.8% %

BSVQ2 Between subject variability in Q2b 24.8 17% 11% 17.5 16% 33% %

REprop Proportional residual error
magnitude

25.6 7% 4.6% 28.4 8% 3.4% %

REadd Additional residual error magnitude 0.469 29% 4.6% 1.21 29% 3.4% ng/mL

Pharmacodynamics ANC0 Absolute neutrophil count
at baseline

5.10 7% 5.70 2% 109 cells

MTT Mean transtition time 109 1% 89.1 1% hours

γ Feedback parameter 0.172 2% 0.150 3% –

Slope Drug effect magnitude 2.46 11% – – ng−1·mL

Emax Maximal drug effect magnitude – – 15.0 20% –

EC50 Drug concentration of half of
maximal effect

– – 3.53 67% ng.mL−1

BSVANC0 Between subject variability in ANC0 41.4 18% 7.6% 34.3 11% 15% %

BSVMTT Between subject variability in MTT 13.1 43% 26% 11.6 17% 36% %

ANC0i~MTTi Correlation between ANC0i
and MTTi

– – 29.6 27% %

BSVSlope/EC50 Between subject variability in Q2 27.2 23% 19% 52.7 26% 28% %

ANC0i ~ Slopei/
EC50i

Correlation between ANC0i ~
Slopei or EC50i

– – 26.3 47%

REexp Additional residual error
magnitude (on log scale)

0.398 17% 9.4% 0.508 14% 8.2% –

a Pharmacokinetics of metabolite AZD1152-hQPA
bCorrelation in BSV in parameters could not be estimated with adequate precision and where not included in the final PK model estimation
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and sampling from multi-variate normal distributions
(MASS) to allow for incorporation of uncertainty in the
estimation of model parameters (for both fixed an random
effects), and correlation between random effects [25]. It was
confirmed that the odesolve package produced exactly the
same results as the ODE-solver in NONMEM.

Dose escalation trials for studies 1B, 2A and 2B were
simulated 200 times, thereby accounting for between-subject
variation in model parameters. To account for uncertainty in
the estimation of the model parameters, this step was repeated
200 times, each time with a new set of PKPD parameters
drawn from the variance-covariance matrix of the final model.
Courses of neutrophil counts were simulated with added
residual variability, and virtual sampling was performed every
7 days. Neutrophil baseline was simulated based on the
estimated baseline ANC0 and BSV in ANC0. Datasets were
created on the fly based on the dose-escalation algorithm,
and mimicking the clinical sampling schedule for neutrophil
measurements, i.e. if the neutrophil count on an occasion
was found to be lower than 1.5·109 cells (corresponding to a
grade 2 toxicity [26]), the measurement was repeated 3 days
later, according to clinical practice. A dose limiting toxicity
(DLT) due to neutropenia was defined in the study protocol
as one of two criteria:

& any neutropenia of common toxicity (CTC, NCI version
III) grade 4, or

& neutropenia of CTC grade ≥3 with fever (38.5°C).

The former criterion was scored by evaluating the nadir
of simulated neutrophil counts (including residual variabil-
ity) for the first cycle. The latter criterion was not included
in the simulation algorithm, as the occurrence of febrile
neutropenia was only sparsely encountered in the actual
trials (1A: 0%, 1B: 8%, 2A: 10%, 2B: 0% of included
patients over the entire study period), and were in all cases
already scored as a grade 4 neutropenia toxicity.

In silico dose escalation was performed according to the
barasertib Phase I program using an accelerated titration
design consisting of two phases [27]. In the first phase, 1-
patient cohorts were studied, and 100% dose escalation
were performed. If a toxicity of grade 2 or higher was
encountered, a second dose escalation phase was initiated,
with 3-patient cohorts. In this phase, doses were escalated
by 50%, or by 25% if serious (grade 3 or 4) neutropenia
was observed. If on a dose level ≥ 2 DLTs were
encountered at a particular dose level, the previous (lower)
dose level was expanded to a maximum number of 6
patients. Dose de-escalation was repeated until a cohort of
six patients experienced less than two DLTs. This dose level
was defined as the MTD, while the dose level just above
was labelled the non-tolerated dose level (NTD).

One tenth of the non-tolerated dose in humans, predicted
from preclinical experiments, is traditionally considered a
safe starting dose for dose escalation studies. In the
simulated escalation trials, the starting dose for the
subsequent trial was determined by multiplying the NTD
level obtained in the previous trial by 10%, and perturbed
by a randomly generated factor, drawn from a normal
distribution with geometric standard deviation (SD) of
1.178 to account for uncertainty [1]. The geometric SD
was calculated from predicted and empirically determined
non-tolerated doses of 21 anti-cancer drugs [28–31]. The
predicted MTD and NTD for each regimen was defined as
the median value of all simulated MTDs and NTDs for that
regimen, respectively. The 5th percentile of the prediction
interval of all simulated barasertib MTDs was considered a
safe starting dose, because there is a 95% probability this
starting dose will be lower than the MTD [1].

In addition, simulations of studies 1B, 2A and 2B were
performed using the starting doses used in the actual trials,
and with parameter estimates based on data from all studies
(post hoc). This was done to evaluate whether the two-stage
design was more efficient, in terms of numbers of patients
included, than the original design.

Validation criteria

The predicted MTDs cannot be formally tested against the
outcomes of the clinical studies because the study outcomes
are often an imprecise estimates of the true MTDs. Therefore,
data from Phase I studies 1A, 1B, 2A and 2B were combined
and used to obtain post hoc estimates of the PK and PD
parameters for barasertib-hQPA. These new parameter
estimates were subsequently used to perform the same
simulation experiments as described above, and to calculate
MTDs and safe starting doses. If the post hoc prediction of
the MTD were within the prospectively determined 90%
confidence intervals, it could be concluded that the two-stage
model-based design could have been successfully applied to

Fig. 1 Schematic representation of analysis approach. MTD maximum
tolerable dose, NTD Non-tolerated dose, SSD Safe starting dose
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the Phase I development of barasertib. In accordance with
the criteria used in the earlier publication, the two-stage
model-based design was considered successful if all selected
starting doses were below the NTDs found in the post hoc
simulated trials, and if the number of patients treated at a
dose level below the recommended dose could have been
reduced, i.e. if the predicted starting doses were higher than
those used for the actual studies [1].

The exact reduction in number of patients cannot be
calculated retrospectively, as it is not possible to repeat the
actual trial with exactly the same patients. Therefore, another
simulation study was initiated, in which it was evaluated if the
two-stage approach could reduce the number of patients in the
phase I studies. In these simulations, the safe starting doses
predicted in the first stage were used as the starting dose, while
it was assumed that the post-hoc model and parameter
estimates described the true population. The number of
patients needed in each simulated clinical trials was recorded,
and the mean number was compared to the number of patients
that were actually included in the trial.

Results

PKPD model development (based on data from 1A)

In Fig. 2, the sequence of patient inclusion is presented
visually for all regimens.

PK data was available from all patients, collected from the
first four cycles. From the different trials, 569 (1A), 1179
(1B), 458 (2A), and 485 (2B) blood samples were available
for PK analysis. The precentage of BLQ datapoints in the
dataset used was only 4.0% (106 out of 2,639 samples). From
the dataset, eight trough levels were discarded, as they were
more likely to have been taken post-dose than pre-dose. For all

patients where PDmeasurements were available, also PK data
was available. For PD analysis, 210, 422, 117 and 200
neutrophil counts were available from the respective studies.

The dense PK sampling schedule that was used allowed
the identification of a three compartment mamillary model
for the metabolite, with a central and two peripheral
compartments, and linear elimination from the central
compartment fitted the data best. Due to the rapid
conversion of the parent drug to its metabolite, combined
modelling of both barasertib and barasertib-hQPA did not
improve the model, and therefore only concentration data
from barasertib-hQPA was used, assuming instantaneous
and complete conversion from the parent compound. The
final parameter estimates of the model are given in Table 3.

The PKPD model for neutropenia when implemented
with an Emax model led to high uncertainty for the EC50

parameter (CV >100%), and did not improve model fit over
a slope model. Therefore, the slope model was imple-
mented and estimated. For the parameters Slope, MTT and
ANC0, BSV could be estimated, as well as a negative
correlation in BSV in MTT and ANC0 of 33% (CV 21%).
Estimation of a full covariance matrix for BSV was not
supported by the data. The parameter estimates for the PK
and PD models are presented in Table 1. The VPC in Fig. 3
shows that the model adequately describes observed time-
course of neutrophils and the occurrence of myelosuppres-

Fig. 2 Sequence of patient inclusion in each barasertib Phase I study.
Trials 1B and 2B were conducted after completion of studies 1A and
1B, respectively

Model: conditioned on data from Study part 1A. 
Data: Study part 1A 

Fig. 3 Visual predictive check of (log transformed) neutrophil count
data for PKPD model conditioned on data from study 1A. The points
represent the observed ANCs. The black solid line connects the
observed median values per bin, while the dotted lines represent the
observed 5th and 95th percentile of the observations. Grey areas
indicate the 95% confidence interval of the median, and 5th and 95th
percentiles of the predicted neutrophil counts. Binning was done by
count, using eight bins
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sion observed in the trial, as both the observed median and
boundaries of the 90% confidence interval were contained
within the model prediction intervals for these statistics at
almost all timepoints. Patients with grade 4 neutropenia are
likely to drop-out of treatment. This may affect the VPC in
two ways: the prediction interval (PI) may be downwardly
biased, and the confidence interval around the edges of the
PI may be widened due to availability of data. The latter
was circumvented by binning on the number of available
datapoints instead of on nominal timepoints. Furthermore,
the VPC shows only the first treatment cycle, in which only
2, 4, 2, and 4 patients dropped out for studies 1A, 1B, 2A,
and 2B respectively. It is therefore expected that the VPC
was not affected much, and we did not account for patient
drop-out in the VPC. A small negative correlation in
individual parameter estimates was present for MTT and
ANC0 but not between other parameters. The system
specific parameters (MTT and γ) were very similar to
those presented for other drugs that used the same PD model:
MTT was estimated at 109 h (reported range 90.4–135 hs),
and γ at 0.172 (reported range 0.121–0.239) [2].

Post-hoc PKPD model development (based on data
from all trials)

The PK model developed using data from study 1Awas used
as a starting model for the post hoc PK analysis. Simpler
models with no, or less peripheral compartments were
significantly worse in fitting the barasertib-hQPA concentra-
tion data, while incorporating non-linearity in PK parameters
did not improve fit. Again, combined modelling of a
metabolite and parent did not improve model fit. Therefore,
the same PK model was used in the simulation studies,
although with updated parameter estimates (Table 1), and
using an updated covariance matrix to account for uncer-
tainty in parameter estimates (both fixed and random effects)
in the simulation studies. The post hoc analysis contained
sufficient data to support the estimation of an Emax model,
and resulted in improved model fit. A sigmoidal Emax
model did not described the data better than a non-sigmoidal
one. Therefore, the Hill coefficient was fixed to 1. For the
parameters EC50, MTT and ANC0, the incorporation of BSV
was supported by the data, as well as the estimation of a full
covariance block for the BSV random effects. The VPCs for
the description of neutrophil time counts, shown in Fig. 4,
show that the model adequately described observed time-
course of myelosuppression observed in the trials as both
median and 90% CI of the observed fall within their
respective prediction intervals obtained by simulation.
Again, at some timepoints in the VPC signs of model misfit
were noted, however these were likely due to the small
number of patients in the dataset, and hence the uncertain
estimate of the 90% confidence interval of the observed data.

Performance of two-stage model-based design

As is presented in Fig. 5, for all studies, the 90% CI of all
post hoc determined MTDs contained the observed MTD.
In this figure, discrepancies between observed and post hoc
values are indicative of the observed value not reflecting
the true value, i.e. differing from the population mean by
random chance. Here, the median of the post hoc
determined MTDs was similar to those observed in the
actual studies, except for study 1B, in which the post hoc
MTD was determined to be 25% lower than was observed
in the trial. On the other hand, discrepancies between post
hoc estimates and predicted values are indicative of
malperformance of the two-stage approach. The discrepancy
between predicted and post hoc determined MTDs, was
largest for study 2A, for which the predicted median MTD
was about a factor two higher than its median post hoc
estimate.

The predicted safe starting doses (5th percentile of MTD
predictions) were lower than the post hoc determined
MTDs for all studies, except for 2A, which was similar.
They were also lower than the observed MTDs for studies
1B and 2B, but again similar for study 2A. Thus, the first
criterion for determining success of the proposed two-stage
model-based design in this trial was met: the selected safe
starting doses for the subsequent trials were below the
median MTD levels, and thus well below the median NTD
levels found in the post hoc simulated trials. This implies
that, the two-stage model-based approach could have been
safely implemented clinically for all trials.

The predicted safe starting doses were higher than the
starting dose levels used in the actual studies, except for
study 1B, for which the predicted safe dose level was about
25% lower than used in the actual study. Therefore, the
second objective, predicting an efficient starting dose with
the aim of reducing the number of patients treated at a dose
level below the recommended dose, was met for trials 2A
and 2B, but not for 1B. Trial simulation using the post hoc
model parameter estimates revealed that reductions of 60%,
30%, and 0% (overall 40%) in the number of patients for
the trials 1B, 2A, and 2B might have been possible using
the two-stage approach.

Discussion

Novel approaches to phase I trial design have been
presented to improve efficiency in the development of
novel anti-cancer agents, such as the Bayesian continuous
reassessment methods (CRM) [32], and escalation with
overdose control (EWOC) [33]. It has been shown using
simulation studies that these methods can reduce the overall
number of patients in dose escalation trials, as well as the
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number of patients treated at sub-therapeutic doses [33, 34].
However, less than 2% of the phase I oncology trials
between 1991 and 2006 were performed using other than
conventional dose-escalation designs [35]. Important rea-
sons for the limited adoption of more sophisticated designs
may be the unfamiliarity of clinicians with advanced
approaches such as CRM and EWOC, and the fact that
these approaches require data analysis during the trial,

which may pose operational or logistic difficulties, and
requires close collaboration with the project statisticians.
Also, if constraints are imposed on the dose escalation
procedure, the benefit of using Bayesian approaches over
conventional up-down designs is limited. Constraints may
include e.g. limitation of dose escalation to an increase of
100% for the next dose level, escalation that is performed in
three patient cohorts, and the use of conservative starting dose

Model: conditioned on data from all studies 
Data: Study part 1A 

Model: conditioned on data from all studies 
Data: Study part 1B 

Model: conditioned on data from all studies 
Data: Study part 2A 

Model: conditioned on data from all studies 
Data: Study part 2B 

Fig. 4 Visual predictive checks of (log transformed) neutrophil count
data from posthoc analysis. The points represent the observed ANCs.
The black solid lines connects the observed median values per bin,
while the dotted lines represent the observed 5th and 95th percentile of

the observations. Grey areas indicate the 95% confidence interval of
the median, and 5th and 95th percentiles of the predicted neutrophil
counts. Binning was done by count, using 8 bins
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levels. Because of the constraints, the sophisticated method
becomes quite similar to a conventional design. Hence, the
differences between the conventional dose-escalation design
and the sophisticated study designs in terms of reduction of
numbers of patients and dose levels to be studied are expected
to be limited. However, such designs do provide a more
accurate estimate of the MTD [36].

In the current analysis we retrospectively evaluated a
two-stage model-based phase I design, as we have
described earlier [1]. This approach does not alter the
execution of the phase I trials itself, i.e. the trials are
performed using conventional modified Fibonacci designs,
but instead divides the phase I program in two stages. After
completion of an initial first phase I trial, a population
PKPD model is constructed, and trial simulations are
performed with the aim of reducing the number dose levels
below the MTD, in order to efficiently identify the optimal
dose to carry forward to phase II. In this article we tested
the hypothesis that the model-based sequential phase I

design is a safe and effective approach to increase this
efficiency, based on a retrospective analysis of the phase I
program of barasertib.

As stated, the major aim of the two-stage model-based
trial design evaluated in this article is to reduce the number
of patients treated at doses lower than the MTD while
remaining safe for the subsequent trials. The approach of
estimating safe starting doses on the basis of preclinical
experiments is common practice in oncology, and was also
used in the original design of the phase I program of
barasertib. As the conventional dose escalation design
remains unchanged in the proposed two-stage design,
increases in efficiency can only be achieved by starting at
higher dose levels than predicted from the preclinical
experiments. However, the approach should also be safe:
the predicted safe starting dose levels should be below the
MTD.

Our retrospective analysis showed that these goals could
have been achieved in the phase I program of barasertib.

Fig. 5 Observed, predicted and post hoc determined MTD, NTD, and starting doses for each study
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The two-stage approach could have been implemented
safely since the predicted safe starting doses for the
subsequent trials were all below the post-hoc determined
MTD, which may be considered as more precise estimates
of the ‘true MTD’. They were also below the observed
MTDs. It was observed that the predicted safe starting dose
for 2A was broadly similar to the observed MTD, which is
clearly undesirable. It may be that the patient cohort around
the MTD level in the actual 2A trial were more sensitive to
the drug, or in worse condition than the average patient in
trial 1A, and hence a low MTD was established. In fact,
neutrophil counts at baseline were slightly lower for the 2A
trial compared to the other trials. Of course, it may also be
due to model misspecification, e.g. due to schedule
dependency. The sampling schedules for determination of
neutrophil countss were considered appropriate for demon-
strating the maximum and minimum limits of the neutrophil
profile i.e. the baseline, nadir and recovery points per cycle.
However greater precision in defining the shape of the
neutrophil profile would have been possible if additional
sample points had been introduced.

The increase in efficiency was however not consistent
for all three studies. For studies 2A and 2B, the predicted
safe starting dose was higher than the one used in the
clinical trials, implying that in these trials efficiency would
have been increased. For trial 1B, the safe starting dose that
was predicted was 25% lower than was actually used in the
trial. An explanation for the two-stage approach proving of
limited value for this specific trial, was the already optimal
selection of the starting dose (one level below the MTD),
and hence the low number of dose levels studied, and the
low number of patients included (15). The optimal selection
of the starting dose was likely due to the fact that this dose
level was selected based on the MTD of trial 1A, i.e. the
original design of the barasertib phase I program already
incorporated a simple form of a two-stage design, which
could not be improved by the model-based two-stage
design.

For all actual clinical trials in the phase I program of
barasertib, the starting doses were already chosen fairly
efficiently, as the numbers of dose levels studied in these
trials were low. A review of phase I trials oncology
monotherapy trials with haematological toxicity as DLT,
published in the last 12 months prior to preparation of this
manuscript, revealed that a median of 7 dose levels (range
4–8) are generally investigated in phase I trials [37–47].
This is higher than the Phase I program of barasertib, which
used 5, 3, 4, and 4 dose levels for the respective regimens.
A median of 38% (range 13–72%) of patients in the cited
studies were treated below the MTD, which is also high
compared to those in the barasertib Phase I program (5.2%,
17.5%, and 33.3%, and 26.6% for the respective trials).
These comparisons show that the starting doses in the

barasertib Phase I trial program were already chosen closer
to the MTD than is common, and hence only limited benefit
from the proposed two-stage design could be realised. In
addition, only limited benefits in terms of dose level/patient
numbers reductions could be achieved as the starting doses
for studies 1B and 2B were already based on the MTD
found in studies 1A and 2A.

The actual performance of the two-stage method in terms
of reducing the numbers of patients treated below the MTD
can only be investigated in simulation studies, or in large
prospective trials which compare the design against a
conventionally designed trial. While the latter approach is
not likely to be implemented due to practical and ethical
considerations, the former approach has been performed
previously, and has resulted in an overall 27% decrease of
patients [1]. If however, it is assumed that for barasertib the
post-hoc model and parameters estimates to describe the
‘true’ PKPD behavior of the patient population, it is
possible to establish if the advanced design would be able
to reduce patient numbers. These trial simulations were
performed, mimicking the escalation designs used in the
actual trials, and demonstrated a reduction 40% reduction in
patients for the second stage of the phase I program.
However, this may be a too optimistic estimate, as model
misspecification is disregarded in such trial simulations.
Interesting was the finding that for trial 1B, from the
simulation analysis based on the data from the first stage, a
reduction in the number of patients of 60% was estimated,
although a lower starting dose was proposed than used in
the actual trial. This may be linked to the fact that the
predicted (and post-hoc estimated) MTD was lower than
the MTD in the actual trial. Similarly, the failure to improve
the efficiency in trial 2A may have been due to differences
in predicted and observed MTD for this trial. In the
simulations, the escalation algorithm from the study
protocol was implemented, so no differences in escalation
efficiency could have occurred, and differences in overall
efficiency are due to a differences in selection of the
starting dose, or differences in MTD.

It was noted that MTD in the four studies were different,
and thus that design can influence the MTD. For example,
the MTD in study 2A (48-hour infusion) was observed to
be considerably lower than determined in the other trials (2-
hour infusions). If the concentration-effect relationship is
characterized sufficiently well by the model, typical
neutrophil-time profiles can be simulated for each study
design to investigate severity of neutropenia between the
different designs. If the dosing regimens to be investigated
are very different from the one used for model develop-
ment, the unbiased and precise description of the relation-
ship between drug exposure and effect on progenitor cell
proliferation is of key importance. In the trial that was used
for model development in this analysis, only few dose
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levels were studied (4), which might have precluded the
conditioning of an Emax model for the drug effect.
Moreover, it is likely that the small number of patients
(19) led to a biased estimate of drug effect. In comparison
with our previous published analysis, using data from the
Phase I program of indisulam, where predictions were
based on 26–42 patients per trial, and covered larger dose-
ranges (ratio lowest/highest level: 12.5–33.3) compared to
barasertib (ratio lowest/highest level: 3.25–9) [1]. There-
fore, it is important to include uncertainty in model
parameters in the simulation analysis, as otherwise biased
parameter estimates may lead to the prediction of possibly
toxic ‘safe’ starting dose levels.

The MTDs that were obtained in the post-hoc analysis
for each trial can be considered as more precise and less
biased estimates of the ‘true’ MTD. As the escalation
cohorts in the conventional modified Fibonacci designs
consist of only three patients, and six in expanded levels,
imprecision may be expected in the determination of the
MTD. Moreover, generally only discrete dose levels are
studied, which decreases the precision of the MTD
estimate. The proposed approach for obtaining a model-
based MTD still suffers to some extent from these sources
of bias since the post-hoc estimation step is based on data
from the actual trials. However, the fact that determination
of MTD will be based on parameter estimates obtained
using all patient data simultaneously, instead of discrete
toxicity grades from limited numbers of patients, bias will
likely be reduced. Therefore, the MTDs predicted from the
post-hoc analysis can be considered a more precise estimate
of the ‘true’ MTDs for the trials. Additionally, the model-
based approach provides a measure of the uncertainty of the
predicted MTD. Overall, the median MTDs obtained in the
post-hoc analysis were very close to those observed in the
actual study, with only the one established for trial 1B
being estimated about 25% lower in the post-hoc analysis
than as determined in the actual study.

Conclusion

The work presented in this article shows that the application of
the two-stage model-based approach to the design of Phase I
programs with novel anti-cancer agents is feasible, and may
be able to reduce the number of patients that are treated at less
than efficacious dose levels. It was shown here that it could
have been implemented safely in the barasertib phase I
program. As the chosen starting doses for the different
schedules were already nearly optimal in this Phase I program
were already nearly optimal, and the number of dose
escalations steps was low, the improvement in efficiency
was limited here. It is our opinion however, based on these and
previous results, that the two-stage approach can be applied

safely, to reduce Phase I development timeframes for novel
anti-cancer agents.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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