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Abstract This paper presents a new blind speech separa-
tion algorithm using beamforming technique that is capable
of extracting each individual speech signal from a mixture
of three speech sources in a room. The speech separation
algorithm utilizes the steered response power phase trans-
form for obtaining a localization estimate for each individual
speech source in the frequency domain. Based on those esti-
mates each desired speech signal is extracted from the speech
mixture using an optimal beamforming technique. To solve
the permutation problem, a permutation alignment algorithm
based on the mutual output correlation is employed to group
the output signals into the correct sources from each fre-
quency bin. Evaluations using real speech recordings in a
room environment show that the proposed blind speech sep-
aration algorithm offers high interference suppression level
whilst maintaining low distortion level for each desired sig-
nal.

Keywords Blind speech separation - SRP-PHAT -
Beamformer

1 Introduction
Over the last 10-15 years research in machine interfaces

for voice pick-up in reverberant and noisy environments has
been very actively conducted using multi-channel systems
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like microphone arrays [1-4]. Multi-channel techniques have
been useful in many applications such as hearing aids, hands-
free communication, robotics, audio and video conference
systems, and speech recognition [1,2,5,6]. One of the most
popular techniques applied to multi-microphone systems is
the optimal beamforming technique [1]. Optimal beamform-
ers are formulated to exploit spatial information of desired
and undesired signals in such a way that the desired one is
extracted and undesired signals are suppressed [1,2]. Many
methods have been proposed for determining the location of
the desired source such as predefined well-determined array
geometry combined with source localization [7,8], a calibra-
tion method using training samples of pre-recording desired
and undesired sources [9,10]. Based on this information,
optimal beamformers are designed using the spatial informa-
tion to suppress the contribution of all undesired signals while
reserving the contribution of the desired signal [1,11,12].
Specifically, the optimal beamformer weights are calculated
using knowledge about the location of the target signal and
array geometry. It is also possible to obtain estimates of
speech and noise correlation matrices. These estimates are
then used to form the optimal beamformer weights; for this
method to be efficient a priori knowledge about the statistical
characteristics of the noise is necessary. When the back-
ground noise is stationary over the measurement period either
avoice activity detector (VAD) [2] estimate or arelative trans-
fer function (RTF) estimate can be found [13]. Either of these
estimates can be used to form optimal beamformers [2]. This
leads us to a more general case where the spatial knowledge
is not known a priori and the observed mixture signals are the
only available information to be used for speech separation
and noise suppression. In this case, blind source separation
(BSS) techniques can be deployed for separating the differ-
ent sound sources. Many blind source separation techniques
using microphone array have been proposed for speech sep-
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aration in both time domain and frequency domain. Some
prominent BSS techniques for speech separation are inde-
pendent component analysis (ICA), maximum likelihood,
second-order gradient, and kurtosis maximization [14-18].
Most of the BSS techniques are based on either statisti-
cal independence or non-stationarity of the different input
sources in the observed signal.

Speech separation in cocktail party or multiple-speaker
environment is one of the significant problems in speech
enhancement research. It occurs when the observed signals
are obtained from several speakers in different spatial loca-
tions. Here, the spatial separation of speech sources is very
important for speech separation due to the fact that all speech
signals have the same spectral characteristic. We can catego-
rize two different cases:

1. When the sources’ spatial information is available, many
separation techniques such as steering beamforming,
optimum beamforming, and post-filtering have been
proposed [3,4,6,10,19]. In [19], we introduced a post-
filtering method which is implemented after an optimum
beamformer to extract the desired speech source from
a mixture of signals in multiple speakers environments.
However, the source spatial information in those studies
was obtained using a calibration method.

2. When the sources’ spatial information is not available
then blind separation techniques in a multiple-speaker
environment need to be employed. For this scenario,
a number of different BSS techniques have been pro-
posed for the case of two speech sources in both time
domain and time—frequency domain [4,18,20-22]. When
the number of speech sources is more than two, the
blind signal separation is more of a complicated and
computational intense problem [23-25]. For this case,
popular blind separation techniques are conducted to
extract the desired source signal by finding a separating
vector that maximizes the deterministic character (such
as non-Gaussianity in ICA technique) of the extracted
source signals [4,24,26,27].

In this paper, a blind signal separation method is pro-
posed which estimates the source spatial information without
having prior knowledge about the spatial location of speech
sources in three-speaker environments. Once the source spa-
tial information is estimated, it is used to design optimum
beamformers for extracting speech sources from the observed
signal. As such, the source spatial information estimation
is performed in the frequency domain without having prior
knowledge about the spatial location of the speech sources.
Here, a spatial localization technique employing steered
response power phase transform (SRP-PHAT) is proposed
for estimating each source’s spatial information based on the
observed signal. The SRP-PHAT localization employs cross-
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correlation and phase transform weighting of the received
signals from all microphone pairs in the array [28]. From
the SRP-PHAT estimates, the proposed spatial localization
technique calculates the spatial information of three speech
sources from the observed signal. Based on the spatial infor-
mation of the three speech sources, an optimum beamformer
is proposed for extraction of each individual speech source
from the observed signal. A permutation alignment is used
for grouping each extracted signal into the correct source
output before transforming them into the time domain. The
performance of the proposed algorithm shows that the pro-
posed algorithm offers a good interference suppression level
while maintaining low speech distortion.

The paper is organized as follows: Sect. 2 outlines the
problem formulation and details the signal model. In Sect.
3, the spatial localization method is derived and discussed
in detail. Section 4 provides the details and derivation of the
optimum beamforming technique. Section 5 discusses the
method used for permutation alignment. In Sect. 6, the exper-
imental results are presented and discussed. Finally, Sect. 7
summarizes the paper.

2 Problem formulation

Consider a linear microphone array, according to Fig. 1, con-
sisting of L microphones and observed mixture signals x(n).
The observed signals are a speech mixture from three speak-
ers sitting in front of the microphones. The observed sampled
signal x(n) at one time instant is an L x 1 vector, which can
be expressed as

X(n) = s1(n) +s2(n) +s3(n) ey

where s1(n), sa(n) and s3(n) are the received signals from
each respective speech source. In the short-term time—

Microphone

array Speaker

Fig. 1 Position of three speakers and the microphone array in the three-
speaker environment
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frequency (STFT) domain, the observed signal can be written
as

X(w, k) = s1(w, k) + s2(w, k) + s3(w, k) 2)

where x(w, k), s1(w, k), s2(w, k) and s3(w, k) are the contri-
bution from the observed signal, the first, the second and the
third speech sources, respectively. The objective is to sepa-
rate each individual source signal from the observed signal.
As such, one speech source is treated as the desired source
while the others become undesired in a round robin fash-
ion. In this case, the VAD cannot be employed to detect the
desired source active or inactive periods because all sources
can be active at the same time. Thus, a spatial localization
technique needs to be employed. In this case, SRP-PHAT is
utilized to estimate the spatial information for each speech
source based only on the statistics of the observed signal.

3 Spatial localization technique employing
SRP-PHAT

For the SRP-PHAT processing, we divide the sequence of
observed signal into Q blocks, each consisting of N samples
with the index [(¢ — )N + 1,¢gN], 1 < g < Q. The
estimated correlation matrix R(w, ¢g) of the observed signal
in the gth block can be obtained as

gN

R(w,q>=% >

k=(@—1)N+1

x(w, )x? (w, k). 3)

Denote by R(w) the estimated correlation matrix of the
observed signal. This matrix can be obtained based on
R(w, g) as

R(w) = — x(w, k)x" (w, k) = — R(w,q). &)
QN k=1 Q qg=1

Clearly, during the conversation either speech sources can be
active or non-active. Therefore, there exist periods in which
all speech sources are inactive. Since, R(w) in (4) is the aver-
age of all estimated correlation matrices R(w, ¢), this matrix
can be used as a reference to detect non-speech blocks or
blocks with low speech presence. Thus, we propose to use
a threshold ¢ R(¢, ¢, w) to detect the speech presence where
¢ is a pre-set threshold, 0 < ¢ < 1, and ¢ is a reference
microphone. The value R (¢, £, w) is the (¢, £)th element of
the matrix R(w).

Denote by S the index set of all blocks with at least one
active speech source. Based on the proposed threshold, this
set can be obtained as

S={q,1<q=<Q0: R,%,w,q) >R, {,w)} ®)]

where R({, ¢, w, q) is the (£, £)th element of the matrix
R(w, g). Note that S is not an empty set since R(¢, £, w)
is the average of R(¢, ¢, w, q), see (4). For each ¢ € S,
denote by R, (v, q) the normalized correlation matrix of the
gth block

R(w, q)

Rw.q) = @9
@D =R tw )

(6)

By assuming that the speech signals of three speakers are
statistically independent, the matrix R(w, g) can be decom-
posed as

R(CL), Q) = Rl(wv ‘I) +R2(0), 4) +R3(a)3 ‘]) (7)

where R (w, ¢), Ra(w, ¢) and R3(w, q) are the correlation
matrices for the first, the second and the third speech signals,
respectively. We have

R(w, q) = p1(w, 9)R{ (@) + p2(, @Rz (w)
+p3(w, )Rz (w) ®)

where pi(®,q), p2(®,q), p3(w,q) and Ri(w), Ry (w),
R3(w) are, respectively, the PSD and the normalized spa-
tial correlation matrices of the first, the second and the third
speech signals with (¢, £)th elements are 1. Based on the idea
of DOA estimation of acoustic signals using Near-field model
[29], the spatial correlation matrices of speakers’ speech
signals are available. Since the (¢, £)th elements of the nor-
malized spatial correlation matrices R (), Ra(w) and R3(w)
are one, it follows from (8) that (6) can be rewritten as

D pl(a)»Q) =
R(w,q) = R
@) pi(w, q) + p2(w, q) + p3(w, q) 1)
PZ(W»CI) m
R
+1!71(0),q)+pz(w,q)+p3(w,q) 2(@)
pole, 4) Ry(@). )

pi(w, q) + p2(w, q) + p3(w, q)

Eq. (9) can then be expressed as

R(0, ) = y1(®, 9)R1(®) + y2(®, ¢)R2(®) + y3(w, ¢)R3(w)
(10)

where the values y;(w, q), y2(w, ¢) and y3(w, g) represent,
respectively, the proportions of the matrices Rj(w), Ra(w)
and R3(w) in the normalized correlation matrix R(w, ¢), i.e.,

Pi(w, q)
e 11
nie.a =, 9) + p2(@,q) + p3(@, 9) "
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and
PZ(CU, q)
= . 12
r2(@, q) P1(@, q) + p2(w, ) + p3(w, q) ()
and
v, q) = pric ) ' (4

pi(w, q) + p2(w, q) + p3(w, q)

Since pi(w,q) > 0, pa(w,q) > 0 and p3(w,q) > 0 we
have

V1@, q) 20, n(w,q) 20, y3(w,q9) =0 (14)
and
vi(w,q) +y2 (0, q) + y3(w,q) = 1. (15)

Since R(w) in (4) is the correlation matrix of the observed
signal it follows

R(®) = y1(0)R1 (®) + y2(0)R2 (@) + y3(@)R3(w)  (16)

where R(w) is the normalized correlation matrix of the
observed signal. The values y1(w), y2(®) and y3(w) rep-
resent, respectively, the proportions of the matrices Ry (w),
R>(w) and R3(w) in the matrix R(w), also

yi(w) >0, y2(w) >0, y3(w) >0 (17)
and
y1(w) + y2(w) + y3(w) = 1. (18)

In the sequel, a spatial localization technique employ-
ing SRP-PHAT is proposed. Here, the (m, m)th element of
R(w, q) is the cross-correlation of mth and nth microphone
observed signals in the gth block. As such, the SRP-PHAT
in block ¢ can be estimated as follows

L L
YR@,q) =D D Rimnoq (19)
m=1n=m+1

where R(m, n,w, q_) is the (m, n) element of the normalized
correlation matrix R(w, ¢). From (19) and (10), we have the
following

Y(R(w, q)) = y1 (0, ) ¥R (@)
+72(0, )V (R2(@) + y3(w, ) ¥ (R3(w)). (20)

Clearly, the Eq. (20) shows the contribution balance of three
speech sources in block g. As such, during the conversation,
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each speech sources can be active and non-active so the corre-
lation matrices of blocks, in which only one speech source is
active, are useful for speech spatial estimation. In the block
of only one active source, the contribution of this source
should be 1 and all contributions of other sources should be
0. In the complex plane, based on (14) (15) (20), the point of
U (R(w, q))islocated inside a triangle, with vertices given by
these points W (R ()), ¥ (Rz(w)) and W (R3(w)). In addi-
tion, based on (14), the point of \D(R(w)) is located inside
this triangle too, see Fig. 2a. As such, normalized spatial
correlation matrices R (w), Ry (w) and R3(w) can be esti-
mated by detecting triangle vertices of blocks’ SRP-PHAT
of observed signal, see Fig. 2b. Hence, a spatial detection
of speech sources is proposed that employs an algorithm for
finding triangle vertices, i.e., the blocks of only one source
active.

The block of only first source active is detected as block
q1 as follows:

1 = argmax W (R(@, 9)) — ¥(R(®))| 21

here | - | is the absolute operation. The block of only second
source active is detected as block g5 as follows:

g2 = arg max ¥ (R(w, ¢)) — ¥(R(w, q1))|. (22)

The block of only third source active is detected as block ¢3
as follows:

g = argm;x{W(R(w, 9) — V(R(w, q1))|

+¥ (R, 9)) — V(R(w, 2))1}. (23)

Here, the correlation matrix of the observed signal in the
block of only one active source contains only spatial charac-
teristic of the active source. As such, the normalized spatial
correlation matrix for the active source can be estimated as
normalized correlation matrix in the block of only this source
active. To reduce the correlation mismatch, we propose to
estimate the normalized spatial correlation matrices for the
speech sources by taking the average of the estimated normal-
ized correlation matrices corresponding to / blocks which
SRP-PHAT are nearest to estimated triangle vertices.

The average is employed to reduce the estimation error
which can occur due to a limited number of samples in each
block. Then, &1, Sz, and S3 are proposed to be subsets of S
and each subset has 7 block’s indexes of blocks which SRP-
PHAT are nearest to SRP-PHAT of blocks g1, ¢2, and g3,
respectively. In practice, the value / can be chosen smaller
than 5 % of the number of elements in S. The normalized
spatial correlation matrix R 1(w) for the first source can be
estimated as follows:
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Fig. 2 a The triangle with (a) 12 T
SRP-PHAT vertices in the 10k
complex plane; b SRP-PHAT
values of the observed signal for 8
frequency of 2100 Hz from the 6k
simulation in Sect. 6
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Ri(@) =7 > R@ q1). (24)

The normalized spatial correlation matrix R, () for the sec-
ond source can be estimated as follows:

S 1 _
Ry@) = - > R, 92). (25)

iCS,

The normalized spatial correlation matrix l_{3 (w) for the sec-
ond source can be estimated as follows:

2 1 _
Ry@) = - > R, q3)). (26)

iCS3

Due to the small value Aof 1, thAe proportiog of non-desired
sources in the matrices R (@), Rz (w), and Rz (w) is approx-
imately close to zero and their contribution can be neglected.
These matrices are now used to estimate the optimum beam-
former in each frequency bin.

4 Optimum beamformer using spatial information

BaseAd on theAestimated n9rmalized spatial correlation matri-
ces Rj(w), Ra(w), and R3(w), an optimum beamformer is
proposed for each desired source in the frequency bin w.
For extracting one speech source from the observed signal,

an optimum beamformer is desired to suppress all unde-
sired sources whilst preserving the desired one. Then, the
first source is assumed to be the desired source so two other
sources are undesired and denote by w (w) the filter weight
for the first source in the frequency bin w. The filter weight
wi(w) isAdesigned to minimize two weighted cost functions
w1 (@) Ry (0)W) (w) and wi (w) R3(w)w; (@) while main-
taining the source direction as follows:

min w; ()7 Ry (@)w) (@) . w1 (@) Rz (@)w ()
wi(w) 27

subject to W(w)Hfil(a)) = 1.

where d; () is the estimated cross-correlation vector between
the first source at a £th reference microphone. This vector is

also the ¢th column of the matrix R (w). Thus, from (27)
we propose to minimize the following weighted cost func-
tion w; () [ﬁz(w) + ﬁ3 (a))] wi(w) and the filter weight
w1 (w) can be obtained by solving the optimization problem

min wf! (@) [Ro(@) + Ra(@) | w1 (@) o8

subject to w{ial(w) =1

Similarly, the beamformer weight w»(w) for the second
source can be obtained as the solution to the optimization
problem
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min w¥ (@) [R1(@) + Rs(@) | wa(@)

2 (29)
subject to Wéf dr(w) =1

where ds(w) is the £th column of the matrix Ry(w). The
beamformer weight w3(w) for the third source can be
obtained as the solution to the optimization problem

min w¥ (@) [R1(@) + Ro(@) | w3(@) 0

subject to wid3(w) = 1

where d3(w) is the £th column of the matrix R3(w). The
solutions to three optimization problems can be expressed as

A 2 12
[Ro(@) + Rs(@)]  di(@)
wi(w) = 2 H ~ ~ =12 @D
d; @ [R(@) + R3(@)|  di(@)
and
~ 2 —1a
[Ri@ + Rs@)]  da@)
Wo0) = (32)
d; @ [Ri@) +Rs(@)]| * da2(@)
and
A 2 12
[Ri@ +Ro@)]  ds(@)
W) = - - (33)

dy @ [Ri©) + Re(@)] * ds(@)

The beamformer outputs for the three sources are calculated
as

Yi(w, k) = wi ()x(w, k) (34)
and
y2(@, k) = wy (@)X(, k). (35)
and
y3(@, k) = wi (@)X(, k). (36)

The remaining problem is to align the beamformer output in
different frequency bins to the same source. In the sequel,
the correlation between the beamformer outputs in neigh-
boring frequencies is employed to overcome the permutation
problem.

@ Springer

S Permutation alignment

Since the optimum beamformers are performed in each fre-
quency bin, the permutation alignment is needed before
transforming the signals to the time domain. Here, the corre-
lation approach is chosen for the permutation alignment and
permutation decision is based on inter-frequency correlation
of the output signal amplitudes based on the assumption that
the amplitudes of the output signals from the one speech
signal are correlated with adjoining frequencies. The per-
mutation alignment can be performed continuously with a
reference frequency in the middle of the frequency range. In
this case, permutation correlation is performed in two direc-
tions, with increasing and decreasing frequency indexes until
the end of the frequency range. For two neighboring frequen-
cies wy, and wy, 41, the following correlations between the ith
beamformer output of frequencies w,, and jth beamformer
output of frequencies w4 are obtained as follows:

cor. . — 10 @n, Ky @11, D = pyi(@m, DDRAy; @nt1, D))
o o (1yi (@m, DT (¥} (@mi1. D)

(37

where w(+) and o (+) are, respectively, the mean and the stan-
dard deviation of (-). Permutation decision IT is made with
permutation alignment IT as follows

IT=arg ml_allx Z cor; j, (38)
i,jell

After permutation alignment, three output signals in all fre-
quencies are passed through the synthesis filters for obtaining
the output signals with three speech sources in the time
domain.

6 Experimental results

For performance evaluations of the proposed blind speech
separation algorithm, a simulation is performed in a real
room environment using a linear microphone array consisting
of 6 microphones. Here, the distance between two adjacent
microphones is 6 cm and the positions of three speakers are
shown in Fig. 1. The distances between the array and speak-
ers are about 1-1.5 m. The duration of the observed signal
is 150 s and the value N was chosen as the number of sam-
ples in 0.5 s period while I and & were chosen as 10 and 0.1,
respectively. With the chosen N and 7, the evaluation time
of each speech source is about 5 s. Based on our experience,
the evaluation time 5s is enough for evaluation of the spa-
tial characteristic of the speech source. We conducted our
numerical experiments on HP Laptop with Intel Core 17 and
16GB RAM, using Matlab (R2013b).
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Fig. 3 Time domain plots of
the original speech signals and
the observed signal at the fourth
microphone

Fig. 4 Time domain plots of
the second-order BSS algorithm
outputs

Source 1
1 T T
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Observed Signal
1 T T T T
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1st Output
1 T T
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1 T T
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Fig. 5 Time domain plots of 1st Output
the proposed algorithm outputs 1 ‘
0
-1
2nd Output
1 T T

3rd Output

The observed signals are decomposed into sub-bands
using an oversampled analysis filter bank. Here, an oversam-
pling factor of two is chosen to reduce the aliasing effects
between the adjacent sub-bands [30]. After the decompo-
sition, the implementation of the proposed algorithm is
performed in sub-bands. Figure 3 shows time domain plots
of three speech signals and the observed signal. The speech
signals from three speakers occur at different times and can
overlap with each other in the observed signal. The overlap-
ping signals simulate simultaneous conversation.

We have compared a second-order BSS algorithm with the
suggested method. In Fig. 4, the results for when the second-
order blind signal separation (BSS) algorithm is used for
separating the observed signal are given. This second-order
BBS algorithm was used in [22] for speech separation in two
speaker environment. Figure 4 depicts time domain plots of
the three outputs of the second-order BSS algorithm. The
three outputs are speech signals extracted for three speakers
from the observed signal. Hence, Fig. 4 shows a little differ-

| |
10s 20s 30s 40s 50s 60s 70s 80s 90s 100s 110s 120s 130s 140s 150s

ence between three output signals and the separation did not
have a good result.

Figure 5 depicts time domain plots of the three outputs of
the proposed separation algorithm when the proposed blind
separation algorithm is used for separating the observed sig-
nal. The three outputs are speech signals extracted for three
speakers from the observed signal. Thus, Fig. 5 shows that
the proposed algorithm can separate the three speech signals
from the observed mixture. Informal listening tests suggest
the good listening quality of signal outputs from the proposed
algorithm. From the Table 1, it is clear that the computation
time of proposed algorithm is lower than computation time
of the second-order BSS algorithm.

To quantify the performance of the second-order BSS
algorithm and the proposed algorithm, the interference
suppression (IS) and source distortion (SD) measures as pre-
sented in [31] are employed. As such, the speech signal from
one speaker is viewed as the desired signal and other speech
signals are interferences. Table 1 shows the IS and SD levels

Table 1 The interference suppression and the source distortion levels in the outputs of the proposed blind speech separation algorithm

Methods First output Second output Third output Computation time (s)
IS (dB) SD (dB) IS (dB) SD (dB) IS (dB) SD (dB)

Second-order BSS algorithm 1.8 —25.1 2.9 —24.3 2.1 —23.4 42

Proposed algorithm 6.8 —29.2 5.7 —26.6 6.3 —26 27
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for the three outputs of the second-order BSS algorithm and
the proposed algorithm; the proposed algorithm has a better
performance. In addition, the proposed blind speech separa-
tion algorithm offers a good interference suppression level
(5-7 dB) whilst maintaining a low distortion level (—26 to
—29 dB) for the desired source.

7 Summary

In this paper, a new blind speech separation algorithm in the
frequency domain was developed for the three-speaker envi-
ronment. Since, the position of the sources are unknown,
the SRP-PHAT localization is used for estimating the spa-
tial location of all speakers in each frequency bin. Based on
that information, an optimum beamformer is designed for
each speech source to extract the desired signal. The permu-
tation alignment is used before transforming the signals to
the time domain. Simulation results show that the proposed
blind speech separation algorithm offers a good interference
suppression level whilst maintaining a low distortion level
for the desired source.

Acknowledgments This research is funded by Vietnam National
University Ho Chi Minh City (VNU-HCM) under Grant Number
C2014-26-01.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Nordholm, S., Dam, H., Lai, C., Lehmann, E.: Broadband beam-
forming and optimization. Signal processing: array and statistical
signal processing, vol 3, pp. 553-598. Academic Press Library
(2014)

2. Doclo, S., Kellermann, W., Makino, S., Nordholm, S.E.: Mul-
tichannel signal enhancement algorithms for assisted listening
devices: exploiting spatial diversity using multiple microphones.
IEEE Signal Process. Mag. 32(2), 18-30 (2015)

3. Cohen, I., Benesty, J., Gannot, S. (eds.): Speech Processing in
Modern Communication: Challenges and Perspectives. Springer,
Berlin, Heidelberg (2010). ISBN 978-3642111297

4. Benesty, J., Makino, S., Chen, J.: Speech Enhancement. Springer,
Berlin, Heidelberg (2005). ISBN 978-3540240396

5. Bai, M.R., Ih, J.-G., Benesty, J.: Acoustic Array Systems: Theory,
Implementation, and Application. Wiley-IEEE Press, Singapore
(2013). ISBN 978-0470827239

6. Benesty,J., Chen,J., Huang, Y.: Microphone Array Signal Process-
ing Springer, Berlin, Heidelberg (2008). ISBN 978-3540786115

7. Nordebo, S., Claesson, 1., Nordholm, S.: Adaptive beamforming:
spatial filter designed blocking matrix. IEEE J. Ocean. Eng. 19,
583-590 (1994)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

. Nagata, Y., Abe, M.: Two-channel adaptive microphone array with

target tracking. Electron. Commun. Jpn. 83(12), 860-866 (2000)

. Nakadai, K., Nakamura, K., Ince, G.: Real-time super-resolution

sound source localization for robots. In: Proceedings of 2012
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS 2012), pp. 694-699. IEEE, Vilamoura (2012)

Grbi¢, N., Nordholm, S., Cantoni, A.: Optimal fir subband beam-
forming for speech enhancement in multipath environments. IEEE
Signal Process. Lett. 10(11), 335-338 (2003)

Brandstein, M., Ward, D. (eds.): Microphone Arrays: Signal
Processing Techniques and Applications. Springer, Berlin, Heidel-
berg (2001). ISBN 978-3540419532

Fallon, M., Godsill, S.: Acoustic source localization and tracking
of a time-varying number of speakers. IEEE Trans. Audio Speech
Lang. Process. 20(4), 1409-1415 (2012)

Gannot, S., Burshtein, D., Weinstein, E.: Signal enhancement using
beamforming and nonstationarity with applications to speech.
IEEE Trans. Signal Process. 49, 1614-1626 (2001)

Low, S.Y., Nordholm, S., Togneri, R.: Convolutive blind signal sep-
aration with post-processing. IEEE Trans. Speech Audio Process.
12(5), 539-548 (2004)

Grbi¢, N., Tao, X.J., Nordholm, S., Claesson, I.: Blind signal sep-
aration using overcomplete subband representation. IEEE Trans.
Speech Audio Process. 9(5), 524-533 (2001)

Parra, L., Spence, C.: Convolutive blind separation of non-
stationary sources. IEEE Trans. Speech Audio Process. 8(3),
320-327 (2000)

Dam, H.H., Nordholm, S., Low, S.Y., Cantoni, A.: Blind signal sep-
aration using steepest descent method. IEEE Trans. Signal Process.
55(8), 4198-4207 (2007)

Sawada, H., Araki, S., Makino, S.: Underdetermined convolutive
blind source separation via frequency bin-wise clustering and per-
mutation alignment. IEEE Trans. Audio Speech Lang. Process.
19(3), 516-527 (2011)

Dam, H.Q., Nordholm, S., Dam, H.H., Low, S.Y.: Postfiltering
using multichannel spectral estimation in multispeaker environ-
ments. EURASIP J. Adv. Signal Process ID 860360, 1-10 (2008)
Krishnamoorthy, P., Prasanna, S.R.M.: Two speaker speech sepa-
ration by Ip residual weighting and harmonics enhancement. Int. J.
Speech Technol. 13(3), 117-139 (2010)

Dam, H.Q.: Blind multi-channel speech separation using spatial
estimation in two-speaker environments. J. Sci. Technol. Spec.
Issue Theor. Appl. Comput. Sci. 48(4), 109-119 (2010)

Dam, H.Q., Nordholm, S.: Sound source localization for subband-
based two speech separation in room environment. In: 2013
International Conference on Control, Automation and Information
Sciences (ICCAIS), pp. 223-227. IEEE, Nha Trang City (2013)
Tariqullah, J., Wenwu, W., DeLiang, W.: A multistage approach to
blind separation of convolutive speech mixtures. Speech Commun.
53, 524-539 (2011)

Minhas, S.F., Gaydecki, P.: A hybrid algorithm for blind source sep-
aration of a convolutive mixture of three speech sources. EURASIP
J. Adv. Signal Process. 1(92), 1-15 (2014)

Araki, S., Mukai, R., Makino, S., Nishikawa, T., Saruwatari, H.:
The fundamental limitation of frequency domain blind source sep-
aration for convolutive mixtures of speech. IEEE Trans. Speech
Audio Process. 11(2), 109-116 (2003)

Makino, H.S.S., Lee, T.-W., Sawada, H. (eds.): Blind Speech Sep-
aration. Springer, Netherlands (2007). ISBN 978-1402064784
Naik, G.R., Wang, W. (eds.): Blind Source Separation: Advances in
Theory. Algorithms and Applications. Springer, Berlin, Heidelberg
(2014). ISBN 978-3642550157

Cobos, M., Marti, A., Lopez, J.J.: A modified srp-phat functional
for robust real-time sound source localization with scalable spatial
sampling. IEEE Signal Process. Lett. 18(1), 71-74 (2010)

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Vietnam J Comput Sci

29. Sawada, H., Mukai, R., Araki, S., Makino, S.: Frequency-domain 31. Dam, H.Q., Nordholm, S., Dam, H.H., Low, S.Y.: Adaptive
blind source separation. In: Speech Enhancement. Signals and beamformer for hands-free communication system in noisy envi-
Communication Technology, pp. 299-327. Springer, Berlin, Hei- ronments. IEEE Int. Symp. Circuits Syst. 2, 856-859 (2005)
delberg (2005). ISBN: 978-3540240396

30. Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Prentice
Hall, Englewood Cliffs (1993). ISBN 978-0136057185

@ Springer



	Source separation employing beamforming and SRP-PHAT localization in three-speaker room environments 
	Abstract
	1 Introduction
	2 Problem formulation
	3 Spatial localization technique employing SRP-PHAT
	4 Optimum beamformer using spatial information
	5 Permutation alignment
	6 Experimental results
	7 Summary
	Acknowledgments
	References




