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Abstract
In this paper, the demiclosed principle for a k-asymptotically strictly
pseudononspreading mapping is shown. Meanwhile, an iterative scheme is
introduced to approximate a common element of the set of common fixed points of
k-asymptotically strictly pseudononspreading mappings and the set of solutions of
mixed equilibrium problems in Hilbert spaces, and some weak and strong
convergence theorems are proved. The results presented in this paper improve and
extend some recent corresponding results.
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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖. Let C be a
nonempty closed convex subset of H and F : C × C → R be a bifunction, where R is the
set of real numbers. The equilibrium problem (for short, EP) is to find x∗ ∈ C such that

F
(
x∗, y

) ≥ , ∀y ∈ C. (.)

The set of solutions of EP is denoted by EP(F). Given a mapping T : C → C, let F(x, y) =
〈Tx, y–x〉 for all x, y ∈ C. Then x∗ ∈ EP(F) if and only if x∗ ∈ C is a solution of the variational
inequality 〈Tx, y – x〉 ≥  for all y ∈ C, i.e., x∗ is a solution of the variational inequality.
Let ϕ : C → R ∪ {+∞} be a function. The mixed equilibrium problem (for short, MEP)

is to find x∗ ∈ C such that

F
(
x∗, y

)
+ ϕ(y) – ϕ

(
x∗) ≥ , ∀y ∈ C. (.)

The set of solutions ofMEP is denoted byMEP(F ,ϕ).
If ϕ = , then mixed equilibrium problem (.) reduces to (.).
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If F = , then mixed equilibrium problem (.) reduces to the following convex mini-
mization problem:

Find x∗ ∈ C such that ϕ(y) ≥ ϕ
(
x∗), ∀y ∈ C. (.)

The set of solutions of (.) is denoted by CMP(ϕ).
The mixed equilibrium problem (MEP) includes several important problems arising

in physics, engineering, science optimization, economics, transportation, network and
structural analysis, Nash equilibrium problems in noncooperative games and others. It
has been shown that variational inequalities and mathematical programming problems
can be viewed as a special realization of abstract equilibrium problems (e.g., [, ]). Many
authors have proposed some useful methods to solve the EP,MEP; see, for instance, [–]
and the references therein.
LetH be a real Hilbert space and C be a nonempty closed convex subset ofH . Following

Kohsaka and Takahashi [–], a mapping T : C → C is said to be nonspreading if

‖Tx – Ty‖ ≤ ‖Tx – y‖ + ‖Ty – x‖ for all x, y ∈ C.

It is easy to see that the above inequality is equivalent to

‖Tx – Ty‖ ≤ ‖x – y‖ + 〈x – Tx, y – Ty〉 for all x, y ∈ C.

In , Browder and Petryshyn [] introduced the concept of k-strictly pseudonon-
spreading mapping.

Definition . [] Let H be a real Hilbert space. A mapping T : D(T) ⊂ H → H is said
to be k-strictly pseudononspreading if there exists k ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥x – Tx – (y – Ty)

∥∥ + 〈x – Tx, y – Ty〉, ∀x, y ∈D(T).

Clearly, every nonspreading mapping is k-strictly pseudononspreading.

In , Osilike [] introduced a class of nonspreading type mappings, which is more
general than the mappings studied in [] in Hilbert spaces, and proved some weak and
strong convergence theorems in real Hilbert spaces. Recently, Chang [] studied the
multiple-set split feasibility problem for asymptotically strict pseudocontraction in the
framework of infinite-dimensional Hilbert spaces.

Definition . [] Let H be a real Hilbert space. A mapping T : D(T) ⊂ H → H is said
to be a k-asymptotically strict pseudocontraction if there exist a constant k ∈ [, ) and a
sequence {kn} ⊂ [,∞) with kn →  (n→ ∞) such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖ + k

∥∥x – Tnx –
(
y – Tny

)∥∥

holds for all x, y ∈D(T).

http://www.fixedpointtheoryandapplications.com/content/2014/1/104
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Definition . Let C be a nonempty subset of a real Hilbert space H . A mapping T :
C → C is said to be k-asymptotically strictly pseudononspreading if there exist a constant
k ∈ [, ) and a sequence {kn} ⊂ [,∞) with kn →  (n→ ∞) such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖ + k

∥∥x – Tnx –
(
y – Tny

)∥∥ + 
〈
x – Tnx, y – Tny

〉
,

∀x, y ∈ C. (.)

It is easy to see that the class of k-asymptotically strictly pseudononspreading map-
pings is more general than the classes of k-strictly pseudononspreading mappings and
k-asymptotically strict pseudocontractions.

Example . Let X = l with the norm ‖ · ‖ defined by

‖x‖ =
√√√√ ∞∑

i=

xi , ∀x = (x,x, . . . ,xn, . . .) ∈ X,

and C = {x = (x,x, . . . ,xn, . . .)|xi ∈ R, i = , , . . .} be an orthogonal subspace of X (i.e.,
∀x, y ∈ C, we have 〈x, y〉 = ). It is obvious that C is a nonempty closed convex subset of X.
For each x = (x,x, . . . ,xn, . . .) ∈ C, we define the mapping T : C → C by

Tx =

{
(x,x, . . . ,xn, . . .) if

∏∞
i= xi < ;

(–x, –x, . . . , –xn, . . .) if
∏∞

i= xi ≥ .
(.)

Next we prove that T is a k-asymptotically strictly pseudononspreading mapping.
In fact, for any x, y ∈ C.
Case . If

∏∞
i= xi <  and

∏∞
i= yi < , then we have Tnx = x, Tny = y, and so inequality

(.) holds for any k ∈ [, ).
Case . If

∏∞
i= xi <  and

∏∞
i= yi ≥ , then we have that Tnx = x, Tny = (–)ny. This

implies that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖Tnx – Tny‖ = ‖x – (–)ny‖ = ‖x‖ + ‖y‖;
kn‖x – y‖ = kn(‖x‖ + ‖y‖);
‖x – Tnx – (y – Tny)‖ = [ – (–)n]‖y‖;
〈x – Tnx, y – Tny〉 = .

Therefore inequality (.) holds for any k ∈ [, ).
Case . If

∏∞
i= xi ≥  and

∏∞
i= yi < , then we have that Tnx = (–)nx, Tny = y. Therefore

we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖Tnx – Tny‖ = ‖(–)nx – y‖ = ‖x‖ + ‖y‖;
kn‖x – y‖ = kn(‖x‖ + ‖y‖);
‖x – Tnx – (y – Tny)‖ = [ – (–)n]‖x‖;
〈x – Tnx, y – Tny〉 = .

So, inequality (.) holds for any k ∈ [, ).

http://www.fixedpointtheoryandapplications.com/content/2014/1/104
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Case . If
∏∞

i= xi ≥  and
∏∞

i= yi ≥ , then we have Tnx = (–)nx, Tny = (–)ny. Hence
we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

‖Tnx – Tny‖ = ‖(–)nx – (–)ny‖ = ‖x – y‖ = ‖x‖ + ‖y‖;
kn‖x – y‖ = kn(‖x‖ + ‖y‖);
‖x – Tnx – (y – Tny)‖ = [ – (–)n]‖x – y‖ = [ – (–)n](‖x‖ + ‖y‖);
〈x – Tnx, y – Tny〉 = .

Thus inequality (.) still holds for any k ∈ [, ). Therefore the mapping defined by (.)
is a k-asymptotically strictly pseudononspreading mapping.
A mapping T : C → C is said to be uniformly L-Lipschitzian if there exists a constant

L >  such that for all (x, y) ∈H ×H ,

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖. (.)

A Banach space E is said to satisfy Opial’s condition if, for any sequence {xn} in E, xn ⇀ x
implies that lim supn→∞ ‖xn – x‖ < lim supn→∞ ‖xn – y‖ for all y ∈ E with y �= x. It is well
known that every Hilbert space satisfies Opial’s condition.
A mapping T with domain D(T) and range R(T) in E is said to be demiclosed at p if

whenever {xn} is a sequence in D(T) such that {xn} converges weakly to x∗ ∈ D(T) and
{Txn} converges strongly to p, then Tx∗ = p.
T is said to be semi-compact if for any bounded sequence {xn} ⊂ H with limn→∞ ‖xn –

Txn‖ = , there exists a subsequence {xni} of {xn} such that {xni} converges strongly to a
point x∗ ∈ H .
Recently, Zhao and Chang [] proposed the following algorithm for solving k-strictly

pseudononspreading mappings and equilibrium problem in Hilbert spaces.{
F(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,
xn+ = α,nun +

∑∞
i= αi,nSi,βun,

(.)

where Si,β := βI + ( – β)Si, αi,n ⊂ (, ). Under some suitable conditions, they proved that
the sequences {xn}, {yn} weakly and strongly converge to a solution of the problem x∗ ∈⋂∞

i= F(Si)∩ EP(F).
For finding a split feasibility problem for k-strictly pseudononspreading mappings in a

Hilbert space, in [], Quan and Chang presented the following iterative method:⎧⎪⎨⎪⎩
x ∈H chosen arbitrarily,
un = xn + γA∗(Tn(modN) – I)Axn,
xn+ = ( – αn)un + αnSn(modN)un,

(.)

where γ is a constant and γ ∈ (, –κ
λ
), λ is the spectral of the operator A∗A, κ =

max{κ,κ, . . . ,κN }, and {αn} is a sequence in (,  – 	] with 	 = max{	,	, . . . ,	N }. Un-
der some suitable conditions, they proved that {xn} weakly and strongly converges to a
split fixed point x∗ ∈ 
.

Inspired and motivated by the recent works of Zhao and Chang [], Quan and Chang
[], etc., in this paper, we propose an iterative scheme to approximate a common ele-
ment of the set of solutions of k-asymptotically strictly pseudononspreading mappings

http://www.fixedpointtheoryandapplications.com/content/2014/1/104


Ma and Wang Fixed Point Theory and Applications 2014, 2014:104 Page 5 of 20
http://www.fixedpointtheoryandapplications.com/content/2014/1/104

and mixed equilibrium problem in infinite-dimensional Hilbert spaces. Some weak and
strong convergence theorems are proved. At the same time, the demiclosed principle of
a k-asymptotically strictly pseudononspreading mapping is shown. The results presented
in this paper improve and extend some recent corresponding results.

2 Preliminaries
Throughout this paper, we denote the strong convergence and weak convergence of a se-
quence {xn} to a point x ∈ X by xn → x, xn ⇀ x, respectively.
Let H be a Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, let C be a

nonempty closed convex subset of H . For every point x ∈H , there exists a unique nearest
point of C, denoted by PCx, such that ‖x– PCx‖ ≤ ‖x– y‖ for all y ∈ C. Such a PC is called
the metric projection from H onto C. It is well known that PC is a firmly nonexpansive
mapping from H to C, i.e.,

‖PCx – PCy‖ ≤ 〈PCx – PCy,x – y〉, ∀x, y ∈H .

Further, for any x ∈H and z ∈ C, z = PCx if and only if

〈x – z, z – y〉 ≥ , ∀y ∈ C. (.)

For solving mixed equilibrium problems, we assume that the bifunction F : C ×C → R
satisfies the following conditions:
(A) F(x,x) = , ∀x ∈ C;
(A) F(x, y) + F(y,x)≤ , ∀x, y ∈ C;
(A) For all x, y, z ∈ C, limt↓ F(tz + ( – t)x, y)≤ F(x, y);
(A) For each x ∈ C, the function y �−→ F(x, y) is convex and lower semi-continuous.

Lemma . [] Let C be a nonempty closed convex subset of a Hilbert space H . Let F be
a bifunction from C × C to R satisfying (A)-(A), and let ϕ : C → R ∪ {+∞} be a proper
lower semi-continuous and convex function such that C ∩ domϕ �= ∅. For r >  and x ∈ C,
define a mapping Tr :H → C as follows:

Tr(x) =
{
z ∈ C : F(z, y) + ϕ(y) – ϕ(z) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
, ∀x ∈H . (.)

Then
() For each x ∈H , Tr(x) �= ∅;
() Tr is single-valued;
() Tr is firmly nonexpansive, that is, ∀x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

() F(Tr) =MEP(F ,ϕ);
() MEP(F ,ϕ) is closed and convex.

Lemma . [] Let H be a real Hilbert space. Then the following results hold:

http://www.fixedpointtheoryandapplications.com/content/2014/1/104
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(i) For all x, y ∈H and for all t ∈ [, ],

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖.

(ii) ‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉.
(iii) If {xn}∞n= is a sequence in H which converges weakly to z ∈H , then

lim sup
n→∞

‖xn – y‖ = lim sup
n→∞

‖xn – z‖ + ‖z – y‖, ∀y ∈H .

The demiclosed principle and the closeness and convexity of the set of fixed points of a
nonlinear mapping play very important roles in investigating many nonlinear problems.
We now show the demiclosed principle of k-asymptotically strictly pseudononspreading
mapping and the closeness and convexity of the set of fixed points of such a mapping,
respectively.

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space H and
let T : C → C be a continuous k-asymptotically strictly pseudononspreading mapping. If
F(T) �= ∅, then it is closed and convex.

Proof Let {xn}∞n= ⊂ F(T) be a sequence which converges to x ∈ C, we show that x ∈ F(T).

∥∥Tnx – x
∥∥ =

∥∥Tnx – xn + xn – x
∥∥ ≤ ∥∥Tnx – Tnxn

∥∥ + ‖xn – x‖. (.)

Since T is k-asymptotically strictly pseudononspreading, we have

∥∥Tnx – Tnxn
∥∥ ≤ kn‖x – xn‖ + k

∥∥(
Tnxn – xn

)
–

(
Tnx – x

)∥∥

+ 
〈
x – Tnx,xn – Tnxn

〉
= kn‖xn – x‖ + k

∥∥Tnx – x
∥∥

≤ (√
kn‖xn – x‖ +√

k
∥∥Tnx – x

∥∥). (.)

Using (.) in (.), we obtain

∥∥Tnx – x
∥∥ ≤ √

kn‖xn – x‖ +√
k
∥∥x – Tnx

∥∥ + ‖xn – x‖,

so

( –
√
k)

∥∥Tnx – x
∥∥ ≤ (

√
kn + )‖xn – x‖,

∥∥Tnx – x
∥∥ ≤

√
kn + 

 –
√
k

‖xn – x‖.

Since kn →  and ‖xn – x‖ →  as n → ∞, we get that limn→∞ ‖Tnx – x‖ = . Since T is
continuous, which implies that x = limn→∞ Tnx = limn→∞ T(Tn–x) = T(limn→∞ Tn–x) =
Tx. Hence, x ∈ F(T).
Now, we show that F(T) is convex.

http://www.fixedpointtheoryandapplications.com/content/2014/1/104
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For x, y ∈ F(T) and t ∈ (, ), put z = tx + ( – t)y. We show that z = Tz. In fact, we have∥∥z – Tnz
∥∥ = ‖z‖ – 

〈
z,Tnz

〉
+

∥∥Tnz
∥∥

= ‖z‖ – 
〈
tx + ( – t)y,Tnz

〉
+

∥∥Tnz
∥∥

= ‖z‖ – t
〈
x,Tnz

〉
– ( – t)

〈
y,Tnz

〉
+

∥∥Tnz
∥∥

= ‖z‖ + t‖x‖ – t
〈
x,Tnz

〉
+ t

∥∥Tnz
∥∥ + ( – t)‖y‖

– ( – t)
〈
y,Tnz

〉
+ ( – t)

∥∥Tnz
∥∥ – t‖x‖ – ( – t)‖y‖

= ‖z‖ + t
∥∥x – Tnz

∥∥ + ( – t)
∥∥y – Tnz

∥∥ – t‖x‖ – ( – t)‖y‖

≤ ‖z‖ + t
[
kn‖x – z‖ + k

∥∥x – Tnx –
(
z – Tnz

)∥∥ + 
〈
x – Tnx, z – Tnz

〉]
+ ( – t)

[
kn‖y – z‖ + k

∥∥y – Tny –
(
z – Tnz

)∥∥

+ 
〈
y – Tny, z – Tnz

〉]
– t‖x‖ – ( – t)‖y‖

≤ ‖z‖ + tkn‖x – z‖ + tk
∥∥z – Tnz

∥∥ + ( – t)kn‖y – z‖

+ ( – t)k
∥∥z – Tnz

∥∥ – t‖x‖ – ( – t)‖y‖

= ‖z‖ + tkn‖x – z‖ + ( – t)kn‖y – z‖

+ k
∥∥z – Tnz

∥∥ – t‖x‖ – ( – t)‖y‖.

So,

( – k)
∥∥z – Tnz

∥∥ ≤ ‖z‖ + tkn〈x – z,x – z〉
+ ( – t)kn〈y – z, y – z〉 – t‖x‖ – ( – t)‖y‖

≤ (kn – )
[
t‖x‖ + ( – t)‖y‖ + ‖z‖].

Since kn →  as n → ∞, we obtain that limn→∞ ‖z – Tnz‖ = , which implies that
limn→∞ Tnz = z, z = limn→∞ Tnz = T limn→∞(Tn–z) = Tz. Hence, z ∈ F(T), which means
that F(T) is convex. �

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space H , and let T :
C → C be a k-asymptotically strictly pseudononspreading and uniformly L-Lipschitzian
mapping. Then, for any sequence {xn} in C converging weakly to a point p and {‖xn –Txn‖}
converging strongly to , we have p = Tp.

Proof Since limn→∞ ‖xn – Txn‖ = , by induction we can prove that

lim
n→∞

∥∥xn – Tmxn
∥∥ =  for eachm ≥ .

In fact, it is obvious that the conclusion is true for m = . Suppose that the conclusion
holds form > , now we prove that the conclusion is also true form + .
Indeed, since T is uniformly L-Lipschitzian, we have∥∥xn – Tm+xn

∥∥ ≤ ∥∥xn – Tmxn
∥∥ +

∥∥Tmxn – Tm+xn
∥∥ ≤ ∥∥xn – Tmxn

∥∥ + L‖xn – Txn‖.

So, limn→∞ ‖xn – Tm+xn‖ = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/104
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For each x ∈H , define f :H → [,∞) by

f (x) := lim sup
n→∞

‖xn – x‖. (.)

Then from Lemma . we have

f (x) = lim sup
n→∞

‖xn – p‖ + ‖p – x‖, ∀x ∈H . (.)

Thus, for any x ∈H , f (x) = f (p) + ‖p – x‖ and

f
(
Tmp

)
= f (p) +

∥∥p – Tmp
∥∥, (.)

f
(
Tmp

)
= lim sup

n→∞

∥∥xn – Tmp
∥∥

= lim sup
n→∞

∥∥xn – Tmxn + Tmxn – Tmp
∥∥

= lim sup
n→∞

∥∥Tmxn – Tmp
∥∥

≤ lim sup
n→∞

[
km‖xn – p‖ + k

∥∥xn – Tmxn –
(
p – Tmp

)∥∥

+ 
〈
xn – Tmxn,p – Tmp

〉]
= lim sup

n→∞
km‖xn – p‖ + k

∥∥p – Tmp
∥∥

= kmf (p) + k
∥∥p – Tmp

∥∥. (.)

It follows from (.) and (.) that

( – k)
∥∥p – Tmp

∥∥ ≤ (km – )
∥∥f (p)∥∥. (.)

That is,

lim
m→∞

∥∥p – Tmp
∥∥ = . (.)

Hence we have

‖Tp – p‖ ≤ ∥∥Tp – Tmp
∥∥ +

∥∥Tmp – p
∥∥

≤ L
∥∥p – Tm–p

∥∥ +
∥∥Tmp – p

∥∥.
This is p = Tp, as desired. The proof is completed. �

Lemma . [] Let the number sequences {an} and {αn} satisfy

an+ ≤ ( + αn)an, ∀n≥ ,

where an ≥ , αn ≥  and
∑∞

n= αn < ∞. Then
() limn→∞ an exists;
() if lim infn→∞ an = , then limn→∞ an = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/104
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3 Main results
Theorem . Let C be a nonempty and closed convex subset of a real Hilbert space H ,
let F be a bifunction from C × C to R satisfying (A)-(A), and let ϕ : C → R ∪ {+∞}
be a proper lower semi-continuous and convex function such that C ∩ domϕ �= ∅. Let Ti :
C → C be a uniformly Li-Lipschitzian and τi-asymptotically strictly pseudononspreading
mapping with the sequence {kn} ⊂ [, +∞) such that

∑∞
n=(kn – ) < ∞, let Si : C → C be

a uniformly L̃i-Lipschitzian and li-asymptotically strictly pseudononspreading mapping
with the sequence {ρn} ⊂ [, +∞) such that

∑∞
n=(ρn – ) < ∞, i = , , . . . ,N . Let {xn} be a

sequence generated by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀x ∈ C,
F(un, y) + ϕ(y) – ϕ(un) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,
yn = ( – βn)un + βnTn

n(modN)un,
xn+ = ( – αn)yn + αnSnn(modN)yn,

(.)

where {αn} is a sequence in (, ) with lim infn→∞ αn > , {βn} is a sequence in (,  – k)
with lim infn→∞ βn > , k = max{τ, τ, . . . , τN } ∈ (, ), and the sequence {rn} ⊂ (,∞)
satisfies that lim infn→∞ rn >  and limn→∞ |rn+ – rn| = . If 
 :=

⋂N
i= F(Si)

⋂N
i= F(Ti) ∩

MEP(F ,ϕ) �= ∅, then the sequence {xn} converges weakly to a point x∗ ∈ 
.

Proof The proof is divided into four steps.
Step . Firstly, we prove that limn→∞ ‖xn – p‖ exists for any p ∈ 
.
Taking p ∈ 
 and putting ρ = max{l, l, . . . , lN } ∈ (, ), it follows from Lemma . that

un = Trnxn, p = Trnp, we have

‖un – p‖ ≤ ‖Trnxn – Trnp‖ ≤ ‖xn – p‖, (.)

‖xn+ – p‖ = ∥∥yn – p + αn
(
Snn(modN)yn – yn

)∥∥

= ‖yn – p‖ + αn
〈
yn – p,Snn(modN)yn – yn

〉
+ α

n
∥∥yn – Snn(modN)yn

∥∥. (.)

Since∥∥Snn(modN)yn – p
∥∥ =

∥∥Snn(modN)yn – Snn(modN)p
∥∥

≤ ρn‖yn – p‖ + ρ
∥∥(
I – Snn(modN)

)
yn

∥∥ (.)

and

∥∥Snn(modN)yn – p
∥∥ =

∥∥Snn(modN)yn – yn + yn – p
∥∥

=
∥∥Snn(modN)yn – yn

∥∥ + ‖yn – p‖

+ 
〈
Snn(modN)yn – yn, yn – p

〉
, (.)

from (.) and (.) we have


〈
Snn(modN)yn – yn, yn – p

〉 ≤ (ρn – )‖yn – p‖ + (ρ – )
∥∥Snn(modN)yn – yn

∥∥. (.)
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Substituting (.) into (.) and simplifying, we have

‖xn+ – p‖ ≤ ‖yn – p‖ + αn(ρn – )‖yn – p‖

+ αn(ρ – )
∥∥Snn(modN)yn – yn

∥∥ + α
n
∥∥yn – Snn(modN)yn

∥∥

=
[
 + αn(ρn – )

]‖yn – p‖ – αn( – ρ – αn)
∥∥Snn(modN)yn – yn

∥∥. (.)

On the other hand,

‖yn – p‖ ≤ ‖un – p‖ + βn
〈
un – p,

(
Tn
n(modN) – I

)
un

〉
+ β

n
∥∥Tn

n(modN) – I)un
∥∥

= ‖un – p‖ + βn
〈
un – p,

(
Tn
n(modN) – I

)
un

〉
+ β

n
∥∥Tn

n(modN) – I)un
∥∥. (.)

Since Ti is a τi-asymptotically strictly pseudononspreading mapping, we have

∥∥Tn
n(modN)un – p

∥∥ ≤ kn‖un – p‖ + k
∥∥un – Tn

n(modN)un
∥∥. (.)

Again since

∥∥Tn
n(modN)un – p

∥∥ =
∥∥Tn

n(modN)un – un
∥∥ + ‖un – p‖

+ 
〈
Tn
n(modN)un – un,un – p

〉
, (.)

so we have


〈
Tn
n(modN)un – un · un – p

〉
≤ (kn – )‖un – p‖ + (k – )

∥∥un – Tn
n(modN)un

∥∥. (.)

From (.) and (.), we have

‖yn – p‖ ≤ ‖un – p‖ + βn(kn – )‖un – p‖ + βn(k – )
∥∥un – Tn

n(modN)un
∥∥

+ β
n
∥∥Tn

n(modN) – I)un
∥∥

≤ [
 + βn(kn – )

]‖un – p‖ – βn( – k – βn)
∥∥un – Tn

n(modN)un
∥∥. (.)

By using (.) and (.), we have

‖xn+ – p‖ ≤ [
 + αn(ρn – )

]{[
 + βn(kn – )

]‖un – p‖

– βn( – k – βn)
∥∥un – Tn

n(modN)un
∥∥}

– αn( – ρ – αn)
∥∥Snn(modN)yn – yn

∥∥

=
[
 + αn(ρn – )

][
 + βn(kn – )

]‖un – p‖

– βn
[
 + αn(ρn – )

]
( – k – βn)

∥∥un – Tn
n(modN)un

∥∥
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– αn( – ρ – αn)
∥∥Snn(modN)yn – yn

∥∥

≤ {
 + βn(kn – ) + αn(ρn – )

[
 + βn(kn – )

]}‖xn – p‖

– βn
[
 + αn(ρn – )

]
( – k – βn)

∥∥un – Tn
n(modN)un

∥∥

– αn( – ρ – αn)
∥∥Snn(modN)yn – yn

∥∥. (.)

Let Mn := βn(kn – ) + αn(ρn – )[ + βn(kn – )]. Since
∑

(ρn – ) < ∞ and
∑

(kn – ) < ∞,
so

∑
Mn < ∞, we have

‖xn+ – p‖ ≤ ( +Mn)‖xn – p‖ – αn( – ρ – αn)
∥∥Snn(modN)yn – yn

∥∥

– βn
[
 + αn(ρn – )

]
( – k – βn)

∥∥un – Tn
n(modN)un

∥∥

≤ ( +Mn)‖xn – p‖. (.)

Using Lemma ., we show that limn→∞ ‖xn – p‖ exists. Further, it follows from (.) and
(.) that {yn} and {un} are bounded.
On the other hand, from (.) we have

βn
[
 + αn(ρn – )

]
( – k – βn)

∥∥un – Tn
n(modN)un

∥∥ + αn( – ρ – αn)
∥∥Snn(modN)yn – yn

∥∥

≤ ( +Mn)‖xn – p‖ – ‖xn+ – p‖. (.)

Since limn→∞ ‖xn – p‖ exists and by the fact that Mn → , taking limit on both sides of
inequality (.), we get

lim
n→∞

∥∥(
Tn
n(modN) – I

)
un

∥∥ = , (.)

lim
n→∞

∥∥yn – Snn(modN)yn
∥∥ = . (.)

Step . Now, we prove that limn→∞ ‖xn+ – xn‖ = , limn→∞ ‖yn+ – yn‖ =  and
limn→∞ ‖xn – un‖ = .
It follows from Lemma . that un = Trnxn, p = Trnp, so

‖un – p‖ = ‖Trnxn – Trnp‖

≤ 〈xn – p,un – p〉

=


(‖xn – p‖ + ‖un – p‖ – ‖xn – un‖

)
. (.)

This shows that

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – un‖. (.)

By (.) and (.), we obtain

‖xn+ – p‖ ≤ ‖xn – p‖ – ‖xn – un‖ +Mn‖xn – p‖. (.)
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So,

‖xn – un‖ ≤ ‖xn – q‖ – ‖xn+ – q‖ +Mn‖xn – p‖. (.)

Thus, we obtain

lim
n→∞‖xn – un‖ = . (.)

In fact, it follows from (.) that

‖xn+ – xn‖ =
∥∥( – αn)yn + αnSnn(modN)yn – xn

∥∥
=

∥∥( – αn)
(
un + βn

(
Tn
n(modN) – I

)
un

)
+ αnSnn(modN)yn – xn

∥∥
=

∥∥( – αn)βn
(
Tn
n(modN) – I

)
un + αn

(
Snn(modN)yn – un

)
+ (un – xn)

∥∥
=

∥∥( – αn)βn
(
Tn
n(modN) – I

)
un + αn

(
Snn(modN)yn – yn

)
+ αn(yn – un) + (un – xn)

∥∥
=

∥∥( – αn)βn
(
Tn
n(modN) – I

)
un + αn

(
Snn(modN)yn – yn

)
+ αnβn

(
Tn
n(modN) – I

)
un + (un – xn)

∥∥
=

∥∥βn
(
Tn
n(modN) – I

)
un + αn

(
Snn(modN)yn – yn

)∥∥ + ‖un – xn‖
≤ ∥∥βn

(
Tn
n(modN) – I

)
un

∥∥ + αn
∥∥Snn(modN)yn – yn

∥∥ + ‖un – xn‖. (.)

From (.), (.) and (.) we have

lim
n→∞‖xn+ – xn‖ = . (.)

Similarly, it follows from (.) that

‖yn+ – yn‖ =
∥∥un+ + βn+

(
Tn+
n+(modN) – I

)
un+ – un + βn

(
Tn
n(modN) – I

)
un

∥∥
≤ ‖un+ – un‖ + βn+

∥∥(
Tn+
n+(modN) – I

)
un+

∥∥
+ βn

∥∥(
Tn
n(modN) – I

)
un

∥∥, (.)

where

‖un+ – un‖ = ‖Trn+xn+ – Trnxn‖
≤ ‖Trn+xn+ – Trn+xn‖ + ‖Trn+xn – Trnxn‖
≤ ‖xn+ – xn‖ + ‖Trn+xn – Trnxn‖. (.)

On the other hand, it follows from Lemma . that un = Trnxn and un+ = Trn+xn+. We
have

F(un+, y) + ϕ(y) – ϕ(un+) +


rn+
〈y – un+,un+ – xn+〉 ≥ , ∀y ∈ C,
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and

F(un, y) + ϕ(y) – ϕ(un) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C.

Particularly, we have

F(un+,un) + ϕ(un) – ϕ(un+) +


rn+
〈un – un+,un+ – xn+〉 ≥ , ∀y ∈ C, (.)

and

F(un,un+) + ϕ(un+) – ϕ(un) +

rn

〈un+ – un,un – xn〉 ≥ , ∀y ∈ C. (.)

Summing up (.) and (.) and using (A), we obtain


rn+

〈un – un+,un+ – xn+〉 + 
rn

〈un+ – un,un – xn〉 ≥ .

Thus,〈
un+ – un,

un – xn
rn

–
un+ – xn+

rn+

〉
≥ ,

which implies that

 ≤
〈
un+ – un,un – xn –

rn
rn+

(un+ – xn+)
〉

=
〈
un+ – un,un – un+ + un+ – xn –

rn
rn+

(un+ – xn+)
〉
.

Therefore,

‖un+ – un‖ ≤
〈
un+ – un,xn+ – xn +

(
 –

rn
rn+

)
(un+ – xn+)

〉
≤ ‖un+ – un‖ ·

[
‖xn+ – xn‖ +

∣∣∣∣ – rn
rn+

∣∣∣∣ · ‖un+ – xn+‖
]
.

Thus, we have

‖un+ – un‖ ≤ ‖xn+ – xn‖ +
∣∣∣∣ – rn

rn+

∣∣∣∣ · ‖un+ – xn+‖. (.)

It follows from (.), (.), (.), (.) and (.) that

lim
n→∞‖un+ – un‖ =  (.)

and

lim
n→∞‖yn+ – yn‖ = . (.)
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Put L = {L,L, . . . ,LN , L̃, L̃, . . . , L̃N }. Since

‖un – Tn(modN)un‖ ≤ ∥∥un – Tn
n(modN)un

∥∥ +
∥∥Tn

n(modN)un – Tn(modN)un
∥∥

≤ ∥∥un – Tn
n(modN)un

∥∥ + L
∥∥Tn–

n(modN)un – un
∥∥

≤ ∥∥un – Tn
n(modN)un

∥∥ + L
[∥∥Tn–

n–(modN)un – Tn–
n–(modN)un–

∥∥
+

∥∥Tn–
n–(modN)un– – un–

∥∥ + ‖un– – un‖
]

≤ ∥∥un – Tn
n(modN)un

∥∥ + L‖un – un–‖
+ L

∥∥Tn–
n–(modN)un– – un–

∥∥ + L‖un– – un‖, (.)

from (.), (.), (.) and (.) we get

lim
n→∞‖Tn(modN)un – un‖ = . (.)

Similarly, we have

‖yn – Sn(modN)yn‖ ≤ ∥∥yn – Snn(modN)yn
∥∥ +

∥∥Snn(modN)ynyn – Sn(modN)yn
∥∥

≤ ∥∥yn – Snn(modN)yn
∥∥ + L

[∥∥Sn–n–(modN)yn – Sn–n–(modN)yn–
∥∥

+
∥∥Sn–n–(modN)yn– – yn–

∥∥ + ‖yn– – yn‖
]

≤ ∥∥yn – Tn
n(modN)yn

∥∥ + L‖yn – yn–‖
+ L

∥∥Tn–
n–(modN)yn– – yn–

∥∥ + L‖yn– – yn‖.

This implies that

lim
n→∞‖yn – Sn(modN)yn‖ = . (.)

Since ‖xn+ – yn‖ = αn‖yn – Snn(modN)yn‖, so

lim
n→∞‖xn+ – yn‖ = . (.)

By (.) and (.), we have

lim
n→∞‖xn – yn‖ = . (.)

It follows from (.) and (.) that

lim
n→∞‖yn – un‖ = . (.)

Since limn→∞ ‖xn –p‖ exists for any p ∈ 
 and ‖xn –p‖–‖xn – yn‖ ≤ ‖yn –p‖ ≤ ‖xn –p‖+
‖xn – yn‖, it follows from (.) that limn→∞ ‖yn – p‖ = limn→∞ ‖xn – p‖ holds. Similarly,
limn→∞ ‖un – p‖ = limn→∞ ‖xn – p‖ holds for any p ∈ 
.
Step . We show that x∗ ∈ 
 :=

⋂N
i= F(Si)

⋂N
i= F(Ti)∩MEP(F ,ϕ).

Firstly, we show that x∗ ∈ ⋂N
i= F(Si)

⋂N
i= F(Ti).
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In fact, since {yn} is bounded, there exists a subsequence {yni} ⊂ {yn} such that {yni} ⇀

x∗ ∈ C. Hence, for any positive integer j = , , . . . ,N , there exists a subsequence {ni(j)} ⊂
{ni} with ni(j)(modN) = j such that {yni(j)} ⇀ x∗. Again, by (.) we know that ‖yiN+j –
SjuiN+j‖ →  as i→ ∞, therefore we have that limni(j)→∞ ‖yni(j) – Sjyni(j)‖ = .
Since Sj is demiclosed at zero, it follows from Lemma . that x∗ ∈ F(Sj). By the arbi-

trariness of j = , , . . . ,N , we have

x∗ ∈
N⋂
i=

F(Si).

On the other hand, since limn→∞ ‖yn – un‖ = , we know that uni ⇀ x∗, too. Similarly,
it follows from (.) and Lemma . that x∗ ∈ F(Tj). By the arbitrariness of j = , , . . . ,N ,
we have

x∗ ∈
N⋂
i=

F(Ti).

Now, we show that x∗ ∈MEP(F ,ϕ).
By Lemma ., since un = Trnxn, we have

F(un, y) + ϕ(y) – ϕ(un) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈ K . (.)

From (A), we obtain

ϕ(y) – ϕ(un) +

rn

〈y – un,un – xn〉 ≥ –F(un, y) ≥ F(y,un), (.)

and hence

ϕ(y) – ϕ(uni ) +

rni

〈y – uni ,uni – xni〉 ≥ F(y,uni ). (.)

By lim infn→∞ rn > , we have limi→∞
‖uni–xni‖

rni
= . Since uni ⇀ x∗, it follows from (A) and

the weak lower semicontinuity of ϕ that

F
(
y,x∗) – ϕ(y) + ϕ

(
x∗) ≤ . (.)

Put zt = ty + ( – t)x∗ for all t ∈ (, ] and y ∈ C. Consequently, we get zt ∈ C. Hence

F(zt ,p) – ϕ(zt) + ϕ
(
x∗) ≤ . (.)

From (A) and (A), and the convexity of ϕ, we have

 = F(zt , zt) – ϕ(zt) + ϕ(zt)

≤ tF(zt , y) + ( – t)ϕ
(
zt ,x∗) + tϕ(y) + ( – t)ϕ

(
x∗) – ϕ(zt)

≤ t
[
F(zt , y) + ϕ(y) – ϕ(zt)

]
.
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Therefore

F(zt , y) + ϕ(y) – ϕ(zt) ≥ .

Letting t → , and from the weak lower semicontinuity of ϕ, we have

F
(
x∗, y

)
+ ϕ(y) – ϕ

(
x∗) ≥ .

This implies that x∗ ∈MEP(F ,ϕ). Hence x∗ ∈ 
.
Step . Finally, we prove that xn ⇀ x∗ and un ⇀ x∗, x∗ ∈ 
.
Due to uni ⇀ x∗, we know that xni ⇀ x∗ from (.). Suppose that there exists another

subsequence {xnj} of {xn} such that {xnj} ⇀ y∗ ∈ 
 with y∗ �= x∗. Using the same proof
method as in Step , we know that y∗ ∈ 
. Consequently, limn→∞ ‖xn – y∗‖ exists. By using
Opial’s property of a Hilbert space, we have

lim inf
ni→∞

∥∥xni – x∗∥∥ < lim inf
ni→∞

∥∥xni – y∗∥∥ = lim inf
n→∞

∥∥xn – y∗∥∥
= lim inf

nj→∞
∥∥xnj – y∗∥∥ < lim inf

nj→∞
∥∥xnj – x∗∥∥

= lim inf
n→∞

∥∥xn – x∗∥∥ = lim inf
ni→∞

∥∥xni – x∗∥∥.
This is a contradiction. Therefore xn ⇀ x∗. By (.) and (.), we have un ⇀ x∗. Therefore,
the conclusion follows.
This completes the proof of Theorem .. �

Taking ϕ = , N =  in Theorem ., we have the following result.

Corollary . Let C be a nonempty and closed convex subset of a real Hilbert space H , let
F be a bifunction from C×C to R satisfying (A)-(A), and let T : C → C be a uniformly L-
Lipschitzian and k-asymptotically strictly pseudononspreading mapping with the sequence
{kn} ⊂ [, +∞) such that

∑∞
n=(kn–) < ∞, let S : C → C be a uniformly L̃-Lipschitzian and

ρ-asymptotically strictly pseudononspreading mapping with the sequence {ρn} ⊂ [, +∞)
such that

∑∞
n=(ρn – ) < ∞. Let {xn} be a sequence generated by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀x ∈ C,
F(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,
yn = ( – βn)un + βnTnun,
xn+ = ( – αn)yn + αnSnyn,

(.)

where k ∈ (, ), ρ ∈ (, ), {αn} is a sequence in (, ) with lim infn→∞ αn > , {βn} is
a sequence in (,  – k) with lim infn→∞ βn >  and the sequence {rn} ⊂ (,∞) with
lim infn→∞ rn >  and limn→∞ |rn+ – rn| = . If 
 := F(S) ∩ F(T) ∩ EP(F) �= ∅, then the se-
quence {xn} converges weakly to a point x∗ ∈ 
.

Corollary . Let C be a nonempty and closed convex subset of a real Hilbert space H ,
let F be a bifunction from C × C to R satisfying (A)-(A), and let ϕ : C → R ∪ {+∞}
be a proper lower semi-continuous and convex function such that C ∩ domϕ �= ∅. Let Ti :
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C → C be a uniformly Li-Lipschitzian and τi-asymptotically strictly pseudononspreading
mapping with the sequence {kn} ⊂ [, +∞) such that

∑∞
n=(kn – ) < ∞, let Si : C → C be

a uniformly L̃i-Lipschitzian and li-asymptotically strictly pseudononspreading mapping
with the sequence {ρn} ⊂ [, +∞) such that

∑∞
n=(ρn – ) < ∞, i = , , . . . ,N . Let {xn} be a

sequence generated by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀x ∈ C,
F(un, y) + ϕ(y) – ϕ(un) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,
yn = ( – βn)un + βnTn

n(modN)un,
xn+ = ( – αn)yn + αnSn(modN)yn,

(.)

where k = max{τ, τ, . . . , τN } ∈ (, ), ρ = max{l, l, . . . , lN } ∈ (, ), {αn} is a sequence in
(, ) with lim infn→∞ αn > , {βn} is a sequence in (,  – k) with lim infn→∞ βn >  and
the sequence {rn} ⊂ (,∞) with lim infn→∞ rn >  and limn→∞ |rn+ – rn| = . If 
 :=⋂∞

i= F(Si)
⋂∞

i= F(Ti) ∩ MEP(F ,ϕ) �= ∅, and there exists a positive integer j such that Sj is
semi-compact, then the sequence {xn} converges strongly to a point x∗ ∈ 
.

Proof Without loss of generality, we can assume that S is semi-compact. It follows from
(.) that

‖yni() – Syni()‖ → , ni() → ∞.

Therefore, there exists a subsequence of {yni()} (for the sake of convenience we still denote
it by {yni()}) such that yni() → y∗ ∈H. Since yni() ⇀ y∗, x∗ = y∗, and so yni() → x∗ ∈ 
. By
virtue of the fact that limn→∞ ‖yn – p‖ exists, we know that

lim
n→∞

∥∥yn – x∗∥∥ = lim
n→∞

∥∥un – x∗∥∥ = lim
n→∞

∥∥xn – x∗∥∥ = .

That is, {xn}, {un} and {yn} converge strongly to the point x∗ ∈ 
. This completes the
proof. �

4 Applications
4.1 Application to a convex minimization problem
It is well known that mixed equilibrium problem (.) reduces to the convex minimiza-
tion problem as F = . Therefore, Theorem . can be used to solve convex minimization
problem (.), and the following result can be directly deduced from Theorem ..

Theorem . Let C be a nonempty and closed convex subset of a real Hilbert space H ,
let ϕ : C → R ∪ {+∞} be a proper lower semi-continuous and convex function such that
C∩domϕ �= ∅. Let Ti : C → C be a uniformly Li-Lipschitzian and τi-asymptotically strictly
pseudononspreadingmappingwith the sequence {kn} ⊂ [, +∞) such that

∑∞
n=(kn–) < ∞,

let Si : C → C be a uniformly L̃i-Lipschitzian and li-asymptotically strictly pseudonon-
spreading mapping with the sequence {ρn} ⊂ [, +∞) such that

∑∞
n=(ρn – ) < ∞, i =

http://www.fixedpointtheoryandapplications.com/content/2014/1/104
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, , . . . ,N . Let {xn} be a sequence generated by⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀x ∈ C,
ϕ(y) – ϕ(un) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,
yn = ( – βn)un + βnTn

n(modN)un,
xn+ = ( – αn)yn + αnSnn(modN)yn,

(.)

where k = max{τ, τ, . . . , τN } ∈ (, ), ρ = max{l, l, . . . , lN } ∈ (, ), {αn} is a sequence
in (, ) with lim infn→∞ αn > , {βn} is a sequence in (,  – k) with lim infn→∞ βn > ,
and the sequence {rn} ⊂ (,∞) with lim infn→∞ rn >  and limn→∞ |rn+ – rn| = . If⋂N

i= F(Si)
⋂N

i= F(Ti) ∩ CMP(ϕ) �= ∅, then the sequence {xn} converges weakly to a point
x∗ ∈ ⋂N

i= F(Si)
⋂N

i= F(Ti)∩CMP(ϕ).

4.2 Application to a convex feasibility problem
The so-called convex feasibility problem for a family of mappings {Ti}ωi= (where ω may
be a finite positive integer or +∞) is to find a point of the nonempty intersection

⋂ω
i=Ci,

where Ci is the fixed point set of mapping Ti, i = , , . . . ,ω.
In Theorem . if F = , ϕ = , then the condition ‘un ∈ C such that ∀y ∈ C, 〈y – un,un –

xn〉 ≥ ’ is equivalent to un = PC(xn). Therefore, the following result can be directly ob-
tained from Theorem ..

Theorem . Let C be a nonempty and closed convex subset of a real Hilbert space H , let
Ti : C → C be a uniformly Li-Lipschitzian and τi-asymptotically strictly pseudononspread-
ing mapping with the sequence {kn} ⊂ [, +∞) such that

∑∞
n=(kn – ) < ∞, let Si : C → C

be a uniformly L̃i-Lipschitzian and li-asymptotically strictly pseudononspreading mapping
with the sequence {ρn} ⊂ [, +∞) such that

∑∞
n=(ρn – ) < ∞, i = , , . . . ,N . Let {xn} be a

sequence generated by⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀x ∈ C,
un = PC(xn),
yn = ( – βn)un + βnTn

n(modN)un,
xn+ = ( – αn)yn + αnSnn(modN)yn,

(.)

where {αn} is a sequence in (, ) with lim infn→∞ αn >  and {βn} is a sequence in (,  – k)
with lim infn→∞ βn > , k =max{τ, τ, . . . , τN } ∈ (, ). If
 :=

⋂N
i= F(Si)

⋂N
i= F(Ti) �= ∅, then

the sequence {xn} converges weakly to a point x∗ ∈ 
, which is a solution of the convex
feasibility problem for mappings {Ti}Ni= and {Si}Ni=.

4.3 Application to the mixed variational inequality problem of Browder type
A variational inequality problem (VIP) is formulated as a problem of finding a point x∗

with property x∗ ∈ C, 〈Ax∗, z – x∗〉 ≥ , ∀z ∈ C. We will denote the solution set of VIP by
VI(A,C). We know that given a mapping T : C → C, let F(x, y) = 〈Tx, y– x〉 for all x, y ∈ C.
Then x∗ ∈ EP(F) if and only if x∗ ∈ C is a solution of the variational inequality 〈Tx, y– x〉 ≥
 for all y ∈ C, i.e., x∗ is a solution of the variational inequality.
In [], the mixed variational inequality of Browder type (VI) is shown to be equivalent

to finding a point u ∈ C such that

〈Au, y – u〉 + ϕ(y) – ϕ(u) ≥ , ∀y ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2014/1/104
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We will denote the solution set of a mixed variational inequality of Browder type by
VI(A,C,ϕ).
A mapping A : C → H is said to be an α-inverse-strongly monotone mapping if there

exists a constant α >  such that 〈Ax – Ay,x – y〉 ≥ α‖Ax – Ay‖ for any x, y ∈ C. Setting
F(x, y) = 〈Ax, y – x〉, it is easy to show that F satisfies conditions (A)-(A) as A is an α-
inverse-strongly monotonemapping. Then it follows fromTheorem . that the following
result holds.

Theorem . Let C be a nonempty and closed convex subset of a real Hilbert space H ,
let A : C → H be an α-inverse-strongly monotone mapping, and let ϕ : C → R ∪ {+∞}
be a proper lower semi-continuous and convex function such that C ∩ domϕ �= ∅. Let Ti :
C → C be a uniformly Li-Lipschitzian and τi-asymptotically strictly pseudononspreading
mapping with the sequence {kn} ⊂ [, +∞) such that

∑∞
n=(kn – ) < ∞, let Si : C → C be

a uniformly L̃i-Lipschitzian and li-asymptotically strictly pseudononspreading mapping
with the sequence {ρn} ⊂ [, +∞) such that

∑∞
n=(ρn – ) < ∞, i = , , . . . ,N . Let {xn} be a

sequence generated by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀x ∈ C,
〈Aun, y – un〉 + ϕ(y) – ϕ(un) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,
yn = ( – βn)un + βnTn

n(modN)un,
xn+ = ( – αn)yn + αnSnn(modN)yn,

(.)

where {αn} is a sequence in (, ) with lim infn→∞ αn > , {βn} is a sequence in (, – k) with
lim infn→∞ βn > , k = max{τ, τ, . . . , τN } ∈ (, ), and the sequence {rn} ⊂ (,∞) satisfies
lim infn→∞ rn >  and limn→∞ |rn+ – rn| = . If 
 :=

⋂N
i= F(Si)

⋂N
i= F(Ti)∩VI(A,C,ϕ) �= ∅,

then the sequence {xn} converges weakly to a point x∗ ∈ 
.
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