
Distrib Parallel Databases (2008) 23: 235–270
DOI 10.1007/s10619-008-7028-1

A survey on the history of transaction management:
from flat to grid transactions

Ting Wang · Jochem Vonk · Benedikt Kratz ·
Paul Grefen

Published online: 24 April 2008
© The Author(s) 2008

Abstract Transactions have been around since the Seventies to provide reliable in-
formation processing in automated information systems. Originally developed for
simple ‘debit-credit’ style database operations in centralized systems, they have
moved into much more complex application domains including aspects like distri-
bution, process-orientation and loose coupling. The amount of published research
work on transactions is huge and a number of overview papers and books already
exist. A concise historic analysis providing an overview of the various phases of
development of transaction models and mechanisms in the context of growing com-
plexity of application domains is still missing, however. To fill this gap, this paper
presents a historic overview of transaction models organized in several ‘transaction
management eras’, thereby investigating numerous transaction models ranging from
the classical flat transactions, via advanced and workflow transactions to the Web
Services and Grid transaction models. The key concepts and techniques with respect
to transaction management are investigated. Placing well-known research efforts in
historical perspective reveals specific trends and developments in the area of transac-

Recommended by Ahmed K. Elmagarmid.

T. Wang · J. Vonk (�) · P. Grefen
Subdepartment of Information Systems, Department of Technology Management, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: j.vonk@tm.tue.nl

T. Wang
e-mail: t.wang@tm.tue.nl

P. Grefen
e-mail: p.w.p.j.grefen@tm.tue.nl

B. Kratz
Infolab, Department of Information Systems and Management, Tilburg University, P.O. Box 90153,
5000 LE Tilburg, The Netherlands
e-mail: B.Kratz@uvt.nl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81537003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10619-008-7028-1
mailto:j.vonk@tm.tue.nl
mailto:t.wang@tm.tue.nl
mailto:p.w.p.j.grefen@tm.tue.nl
mailto:B.Kratz@uvt.nl

236 Distrib Parallel Databases (2008) 23: 235–270

tion management. As such, this paper provides a comprehensive, structured overview
of developments in the area.

Keywords Transaction management · Transaction model · Workflow transaction ·
Web services transaction · Grid transaction · Historic survey

1 Introduction

Transactions have been generally around since the Seventies to provide reliable in-
formation processing in automated information systems. No real-world, multi-user
administrative information system can be thought to exist without a proper transac-
tion management subsystem that prevents the system from entering undesired states
as an effect of system failures, user errors or interference of concurrently executing
actions. Transaction mechanisms were originally developed to support simple ‘debit-
credit’ style database operations in centralized systems, often running applications
of a financial nature. From there, transactions have moved through the decades into
much more complex application domains including aspects like distribution, process-
orientation and loose coupling. Nowadays, transaction mechanisms are developed
that should support complex, interorganizational business processes that are executed
by dynamically composed business networks.

The amount of published research work on transactions is huge and a number
of overview papers and books already exist. Especially in the Nineties, some well-
known overview books were produced [25, 30, 43]. A concise but complete historic
analysis providing an overview of the various phases of development of transaction
models and mechanisms in the context of growing complexity of application domains
is still missing, however. The mentioned overview books, for example, were all writ-
ten before the ‘Internet age’ and therefore miss the development of Internet-based
transaction mechanisms. More recent work on Internet transactions is usually not
placed in enough historic perspective. To fill this gap, this paper presents a historic
overview of transaction models organized in several ‘transaction management eras’.

This paper investigates numerous transaction models ranging from the classical
flat transactions, via advanced and workflow transactions to the Web Services and
Grid transaction models. The key concepts and techniques with respect to transac-
tion management are investigated. This paper does, however, not focus on technical
details of each transaction model, protocol or framework (this would be infeasible in
one single paper). Rather, it stresses main ingredients and trends allowing to describe
important developments. Placing well-known research efforts in historical perspec-
tive reveals specific trends and developments in the area of transaction management.
The aim is not to be complete in describing all efforts (again, this would not be fea-
sible), but to bring an up-to-date picture and present a clear thread by analyzing and
comparing the works in the domain of transaction management. Within each era, an
illustrative example is given for a selected transaction model to clarify main aspects
of transaction management development representative of that era.

The goal of this paper is not to introduce new theories, models, or mechanisms.
Neither is its aim to redo the overview works that have appeared in the past. This

Distrib Parallel Databases (2008) 23: 235–270 237

paper does present a concise historical analysis of the field of transaction management
ranging from its earliest days to the latest current developments. As such, it provides
an overview that allows to understand various developments and easily interrelate
them.

1.1 Structure of this paper

This paper is structured as follows. First, the transaction concept is introduced in
Sect. 2. In this section, we also introduce the eras in which we have classified the
transaction models: the Stone Age, Classical History, Middle Ages, Renaissance and
Modern Times. The Stone Age is the age without transactions. Sections 3 to 7 present
the main classes of the transaction models, coupled to the other four eras. The first
three of these sections coincide with the first three eras. To the Modern Times (cov-
ering Web developments), we have devoted two sections. As such, Sects. 3 to 7 cover
respectively the classical flat transaction model, advanced transaction models, work-
flow transactions, Web Services transactions, and Grid transactions. As transaction
frameworks can be applied in a broader sense than transaction models, they cannot
be placed in the main classification of the eras. Therefore, they are discussed sepa-
rately in Sect. 8. The paper ends with conclusions and a brief look into the future.

2 Concept and history of transactions

Before transaction models can be classified into eras, this section first presents the
transaction concept and its early historic background, after which the separate ages
are introduced together with the reasoning why we have come to those ages.

2.1 The transaction concept

What exactly is a transaction? The concept of a transaction was invented as early as
6000 years ago, when Sumerians noted down and scribed on clay tablets in order to
keep records of the changes of royal possessions and trades [69]. A transaction is a
transformation from one state to another. Over several thousand years, the concept
has found its way into a broad range of disciplines. For example, in the business
world, a transaction is defined as an agreement between a buyer and a seller to ex-
change an asset for payment. While in the database world, the real state of the outside
world is abstracted from and modeled by a database where the transformation of the
state is reflected by an update of the database. From this perspective, a transaction
can be defined as a group of operations executed to perform some specific functions
by accessing and/or updating a database. These operations are in fact a kind of pro-
gram designed to consistently interact with a database system. Later, with the wider
use of transactional support in the IT domain, the original definition of a database
transaction was extended and generalized by using complex structures to support a
wide range of applications.

In this paper, we use the term ‘transaction’ to refer to a reliable and coherent
process unit interacting with one or more systems, independently of other transac-
tions, that provides a certain service or function for a running application. This defin-
ition reflects the requirements for transactions that are able to capture more complex

238 Distrib Parallel Databases (2008) 23: 235–270

semantics arising from a broader range of application areas such as workflow man-
agement, Web services and Grid computing.

In contrast to transaction support for corporate information systems, mobile trans-
actions deal with other aspects concerning transaction support, for example discon-
nected devices (considered as normal situations, instead of exceptional situations),
movement of transactions, and bandwidth variations. An elaborate survey on mobile
transactions can be found in [65]. As mobile devices have only recently become more
commonplace, mobile transactions are a recent development, much like the web and
grid transactions. It is therefore natural that the developments in the first three eras of
transaction management support serve as a basis for mobile transactions. For exam-
ple, the Moflex transaction model [44] expanded the flexible transaction model [24]
and Kangaroo transactions [20] are build on global transactions in a multidatabase
environment [12] and split transactions [61]. As we focus on corporate information
systems, the area of mobile transactions is considered out of scope for this paper.

2.2 The history of transaction management

In this paper, we provide a survey of transaction management from a temporal per-
spective, i.e., we follow the history of transaction management from the ‘early dark
days’ to the current state of the art. In doing so, we distinguish between the following
‘ages’ in transaction management:

• Stone age
In the stone age, no explicit transaction models and mechanisms were available.

Reliability of applications running on (database) systems was often not yet consid-
ered an issue at all. And if it was, its support was entirely the responsibility of
application logic. As this age is not too interesting from a transaction management
point of view, we do not pay attention to it in this paper.

• Classic history
During the classic history, people realized that reliability of applications in

multi-user, concurrent environments is an issue that deserves explicit attention—
or rather requires explicit attention in order to keep things running correctly. In
this age, the basic transaction model and mechanisms saw the light. Reliability of
(stored) data and its manipulation was the main focus of the transaction support in
this era. Definitions and common terminology related to the transaction model and
mechanisms can be found in standard work from that era, for example [19, 32].

• Middle ages
In the middle ages, business applications grew more complex and hence the re-

quirements on transaction management rapidly increased. The simple model and
mechanisms developed in the classic history were not sufficient anymore. Con-
sequently, a large variation of advanced transaction models and mechanisms sup-
porting these requirements were developed for various application domains. The
focus of transaction management changed from pure data towards functions. This
means that the semantics or function of the application determined the correct-
ness of executing state changes. Exceptions in application execution were handled
by transaction management which brought the application back into a consistent
state (while the data may not be). Explanations of common terminology from this

Distrib Parallel Databases (2008) 23: 235–270 239

era (e.g., distributed systems, multi-database systems, homogeneous and heteroge-
neous distributed database systems) can be found in standard works covering that
era, for [25, 66].

• Renaissance
The renaissance saw the combination of process control with transaction sup-

port, leading to numerous transaction models specially suited to support process
control systems, like workflow management systems (WfMS). Originating from
two different research areas, i.e., process control and transaction support, these
models are either referred to as transactional workflows or as workflow transac-
tions [33]. In this era, the focus of transaction management support changed from
functions to process. Reliability in process execution was the main issue. Def-
initions and descriptions of common terminology (e.g. process oriented systems,
intra-, cross-, and inter-organizational processes, workflow management) from this
era are presented in, for example [4, 43, 51].

• Modern times
In modern times, we see the emergence of new application domains, in which

the Internet usually plays a prominent role. To allow the proper operation of busi-
ness processes in this new environment, transaction management has to be ‘ported’
to the Internet as well. This means that the results from the previous transaction
management eras are made fit for applications in the Internet environment. Al-
though processes are still a key component in this era, the focus moved towards
transaction support for collaborative, autonomous parties. A frame of reference for
common terms, definitions and issues from this era, like services, Web services,
loosely coupled services, is for example presented in [3, 60].

Figure 1 illustrates the transaction ages in relation to each other positioned on a
timeline. The specific transaction models, mechanisms, and properties covered in the
sequel of this paper are listed under the specific age to which they belong.

3 Classic history: the classical transaction model

At the time in which databases became more commonplace and evolved into large
multi-user, concurrently accessible, repositories, people started realizing that a mech-
anism was necessary that automatically ensures and enforces the consistency of the
database.

3.1 ACID properties

Already identified in the beginning of the 1980s, see e.g., [32, 38] are the ACID prop-
erties for transactions. They were considered fundamental, at that time, to provide for
robust and reliable database operations in concurrent settings. The ACID properties
are:

• Atomicity: A transaction either runs completely or has no effect at all, which means
that, from an outside view, a transaction appears to have no observable intermediate
states or it has never left the initial state.

240 Distrib Parallel Databases (2008) 23: 235–270

Fig. 1 Ages in transaction management

• Consistency: A transaction is a correct program and preserves all the integrity con-
straints. After the execution, the new state of the database complies with all the
consistency constraints.

• Isolation: A transaction is executed as if there are no other concurrent transactions.
The effect of the concurrent transactions is the same as the effect when the trans-
actions are executed serially.

• Durability: A transaction completes successfully and thus makes a permanent
change to the state of the database. Consequently, the results from a transaction
must be able to be reestablished after any possible failures.

Transactions adhering to the ACID properties are guaranteed to be failure atomic
and serializable. This means that each transaction is guaranteed to execute in its en-
tirety or not at all and that the outcome of operations performed within a transaction
is the same as if these operations would be performed in a sequence (a series of exe-
cutions, one after the other).

3.2 VCRP properties

In fact, VCRP (Visibility; Consistency; Recovery; Permanence) represent ACID
properties in a more general way. Visibility represents the ability of an executing
transaction to see the results of other transactions. Consistency refers to the correct-
ness of the state of the database after a transaction is committed. Recovery means
the ability to recover the database to the previous correct state when failures occur.
Permanence is the ability of a successfully committed transaction to change the state
of the database without the loss of the results when encountering failures.

The VCRP properties can be used to evaluate transaction models. For example,
in [77], the authors use these four notions to analyze and compare some transaction

Distrib Parallel Databases (2008) 23: 235–270 241

Fig. 2 Flat transaction model
example

models such as nested transactions and sagas. By capturing the VCRP properties of
the transactions, the author provides a standard framework to evaluate them.

3.3 Flat transactions

When we apply VCRP to evaluate traditional transactions, which are also known as
flat transactions as they have no internal structures, we get the strict ACID properties
that are essential for these relatively simple transactions. The transaction processing
(TP) system is responsible for ensuring the ACID properties. A TP system generally
consists of [49]:

• a TP Monitor, which is an application to manage transactions and control access
to a Database Management System.

• one or more Database Management Systems (DBMS). However, for flat transac-
tions only one DBMS can be part of the TP system.

• a set of application programs containing transactions.

Atomicity and durability are guaranteed by the mechanism of recovery that is usu-
ally implemented by maintaining a log of update operations so that ‘redo’ and ‘undo’
actions can be performed when required. Isolation is guaranteed by the mechanism
of concurrency control, which is implemented by using locks during the transaction
process. A detailed overview of concurrency control and recovery techniques is avail-
able in [63]. Consistency is guaranteed by the integrity control mechanism usually
provided by the TP system, though not complete in a strict sense.1

An illustrative example for the usability of flat transactions is the classic Bank
Transfer scenario, see also Fig. 2. In this example, a client of a travel agency booked
a holiday trip for a cost of €500, to be paid by bank transfer. What happens in this
bank transfer is that the €500 are first debited from the client’s bank account and then
credited to the agency’s bank account. Both operations should succeed together or
none of the two should succeed, i.e., an atomic operation, resulting in a bank account
balance of €500 for the client and €10500 for the travel agency (successful transfer)
or €1000 for the client and €10000 for the travel agency (unsuccessful transfer).

1There are two approaches to guarantee consistency. One implementation is to incorporate integrity control
into DBMSs [27]. Another is to comply with the integrity constraints through the effort of application
designers instead of TP systems [30].

242 Distrib Parallel Databases (2008) 23: 235–270

Consistency is guaranteed by making sure that the total amount of money from both
accounts (€11000) are the same before and after the debit and credit operations.

During the operations, the intermediate results are ‘hidden’ to other concurrently
running transactions (concurrency control), so that it is not possible to observe a situ-
ation in which the client account is already debited (to €500), but the travel agency’s
account is not yet credited (still is €10000). After the operations have been per-
formed, i.e., the money is transferred, and the transaction commits, the result of the
money transfer is durable: whatever failures occur, the result of this money transfer
will always be represented in the system (requiring, for example, system recovery
techniques with backups and logs).

3.4 Conclusion on classic history

Flat transactions have proven to be very useful in traditional database applications
where the execution time is relatively short, the number of concurrent transactions is
relatively small and transactions execute on only one database system. However, they
lack the flexibility to meet the requirements of complex applications. For example,
multi-database operations need a certain level of transparency for the interactions
with each local database; a workflow system needs to support long-living transactions
etc. Even though the flat transaction model with its ACID properties is not suitable for
the complex application requirements, it is currently still the most used transaction
model. The reason for this is the simplicity of the flat transaction model.

4 Middle ages: advanced transaction models

Although the flat transaction model is very simple and secure, it lacks the ability
to support applications requiring long-living and/or complex transactions. Therefore,
since the ‘middle ages’ of the transaction management history, advanced transaction
models have appeared to address such needs.

The fundamental logic of advanced transaction models is to divide a transac-
tion into sub-transactions according to the semantics of the applications. These sub-
transactions, also referred to as component transactions, can again be divided if neces-
sary. The advanced transactions can perform more complex and longer-lasting tasks.
For instance, when a failure occurs during the execution of a long-living transactional
process, the system is able to restart from the middle of the transaction instead of the
very beginning.

4.1 Checkpoints and save points

Since databases usually contain a very large amount of data, a mechanism was re-
quired to support failure recovery, i.e., how to minimize the damage to a database
in case a failure occurs. For this reason checkpoints were introduced. When creat-
ing a database checkpoint, the entire state of a database is made persistent, e.g. all
operations stored in volatile memory (cache), are written to stable storage. In case
a (drastic) failure occurs, the state of the database created at the checkpoint can be

Distrib Parallel Databases (2008) 23: 235–270 243

restored, and operations performed thereafter can be redone using the information
stored in persistent logs. The mechanism of checkpointing is still used in current
database systems, such as Oracle Database [59], IBM DB2 [40], Berkeley DB [39].

The history of advanced transaction models can be traced back to the mechanism
of save point, a concept first introduced in [2], which enables a transaction to roll
back to an intermediate state. The authors suggest that during the execution of a
transaction, a save point can be marked which returns a save point number for subse-
quent reference. At each save point, special entries are stored containing the state of
the database context in use by the transaction, and the identity of the lock acquired
most recently. When a transaction fails, it can recover back to the recorded save point,
where it restores the corresponding context and releases locks acquired after this save
point. This way, rollback can return the database to a previous state in case of failures.

When applying the rollback mechanism using save points, we should be careful
about its constraints and limitations. For example, despite of the rollback of the data-
base to the previously recorded state, the transaction’s local variables are not rolled
back, which means the transaction actually follows another alternative execution path
after the rollback. Furthermore, after a rollback to one save point, the subsequently
created save points are lost. Although the idea of a persistent save point has been pro-
posed to overcome the deficiency, it is hard to implement this idea in reality [11]. For
example, the database content can be rolled back to a previous state, but the local pro-
gramming language variables will be lost. Another point to notice is that rollback is
different from abortion. When aborted, the transaction is returned back to the state in
which it started and the execution doesn’t continue anymore. In contrast, a transaction
which has rolled back to a save point still continues execution until it completes.

The save point mechanism led to later development of advanced transaction mod-
els, which emerged since the mid 1980s, e.g. distributed transactions, nested trans-
actions, chained transactions. These models are more or less application specific and
each of them addresses the need of a given situation. For example, if an organization
needs to integrate several database systems residing in different servers to perform
more comprehensive tasks in a multi-database system (MDBS), a distributed transac-
tion or sometimes referred to as a multi-database transaction is needed. If considering
complex-structured applications, a nested transaction properly addresses the need.
For a time-consuming application with long-lasting transaction processes, a chained
transaction is suitable to handle the problem. The above mentioned models are ex-
amples of applying the idea of save point in different cases. A chained transaction
is a variation of save points, while the nested transaction is a generalization of save
points [30].

4.2 Distributed and nested transactions

Distributed transactions consist of sub-transactions that may access multiple local
database systems. Consequently, in addition to meeting integrity constraints in lo-
cal systems, a Multi-database System (MDBS) imposes global integrity constraints
on a transaction. Also a MDBS addresses other concerns like global atomicity and
isolation. For instance, the whole transaction is aborted if any sub-transaction fails.
In [12], a most popular model at that time, the ‘base transaction model’ is introduced.

244 Distrib Parallel Databases (2008) 23: 235–270

The model defines two types of transactions: local transactions and global transac-
tions. Local transactions are executed under the control of the local DBMS, while the
MDBS is in charge of global transactions. Several approaches to realize transaction
atomicity and database consistency are discussed. [12] also proposes the possible ex-
tensions to this basic model and provides an overview of the most recent work until
then in the MDBS area and raises some open problems for future research such as
a need for the standardization of operating system, communication interfaces and
database systems.

The most influential work underlying distributed transactions is the X/Open Dis-
tributed Transaction Processing (X/Open DTP) model [83], a software architecture
developed by X/Open, a consortium of vendors who are working on portability stan-
dards for the UNIX environment. It allows multiple application programs to share
resources provided by multiple resource managers, e.g. databases, and allows their
work to be coordinated into global transactions [83]. The X/Open DTP model is a
standard for the Two Phase Commit (2PC) protocol, a key technology, already devel-
oped at the end of the Seventies, ensuring agreed outcome between participants in a
distributed transaction [31]. In the X/Open DTP model, the transaction manager is a
functional component managing global transactions and coordinating the decision to
start, commit or roll back, and ensures atomicity at a global level. Each participating
resource manager is responsible for the ACID properties of its own resources.

In contrast to distributed transactions, which use a bottom-up approach to di-
vide transactions into sub-transactions from a system topology point of view, nested
transactions adopt a top-down method to decompose a complex transaction into sub-
transactions or child transactions according to their functionalities. Moss [53] first
discussed this concept by programming transactions in a structured way. As the work
claims, nested transactions overcome the shortcomings of single-level transactions,
for example, by permitting parts of a transaction to fail without necessarily aborting
the entire transaction. The idea is that a transaction is composed of sub-transactions in
a hierarchical manner. A sub-transaction can be divided into further sub-transactions
if necessary, but only the leaf-level sub-transactions really perform database opera-
tions while others function as coordinators. A child transaction can only start after
its parent starts and a parent can only commit after all its children have been com-
pleted. The commit of a child transaction is conditional on the commit of its parent.
Each child is atomic, thus it can abort independently regardless of its parent and sib-
lings. When it aborts, the parent will take an action, for example triggering another
sub-transaction as an alternative. The aborted sub-transaction results as if it had not
executed. However, the aborted sub-transaction may have changed the state of the
database so it can make the database inconsistent while the whole nested transaction
still meets the consistency requirement. The mechanism of the model is very pow-
erful and has a strong relationship with the concept of modularization in software
engineering [30].

To illustrate nested transactions, consider the example shown in Fig. 3. The ex-
ample concerns a travel agency application for selling holiday trips. In this ‘Middle
Age’ era, the trip selling process would be implicit (hard-coded) inside the imple-
mentation of this application. However, for clarity, the left-hand side of the figure
shows a process view of the application to illustrate the different functions inside the

Distrib Parallel Databases (2008) 23: 235–270 245

Fig. 3 Nested transaction model example

application. The right-hand side of the figure shows the process in a tree structure
representation to illustrate the suitability of the nested transaction model.

Selling of holiday trips, consists of selecting an accommodation, a means of travel,
and an optional rental car. Then after the total cost is calculated, the trip can be booked
(another application, not shown in the figure) or changed. Selecting the three options
can be done in parallel, but each selection depends on the other, for example, if the
accommodation is located far from the beach, a rental car is required. Only after all
three selections are made and the calculation is performed, should the result of the trip
be made permanent (and thus visible to concurrent running transactions). Also, the
total selection is only successful when all three selections are made and the sales is
successful when the selection and calculation have succeeded. The nested transaction
model support these requirement, as explained above. The Select ‘function’ deter-
mines the outcome and possible failure resolvement of the three separate selection
‘functions’ and the Sales ‘function’ determines that for the selection and calculation
function.

Reference [80] proposes multilevel transactions (also called layered transactions)
and their generalization, open nested transactions, based on the idea of nested trans-
actions. A multilevel transaction is a variation of a nested transaction where a trans-
action tree has its levels corresponding to the layers of the underlying system archi-
tecture. Note that the leaf nodes are all at the bottom level, i.e. the depth levels of
these leaves are the same. Reference [80] also introduces the concept of pre-commit,
which allows for the early commitment of a sub-transaction before the root trans-
action actually commits, thereby making it impossible to roll back in a traditional
way. When a parent transaction needs to roll back a sub-transaction, it uses a com-
pensating sub-transaction to semantically undo the committed one instead of using
a state-based undo. Multi-level transactions differ with respect to nested transactions
in three aspects [49]. First, children are executed only sequentially, not concurrently.
Second, all the leaf-level sub-transactions are at the same level in the transaction tree.
Third, the commitment of a sub-transaction is unconditional, thereby making the re-
sult visible to other concurrently executing sub-transactions at the same level.

When the structure of the transaction tree is no longer restricted to having all
leaves at the same level (i.e., leaves at different levels are allowed), then multitrans-
actions evolve into open nested transactions. How the ACID properties of open nested
transactions are relaxed to achieve the ideal orthogonality, so that each of the ACID

246 Distrib Parallel Databases (2008) 23: 235–270

properties can be omitted without affecting the others, is investigated to some extent
in [80]. Compared to nested transactions that guarantee global level isolation, open
nested transactions relax the isolation property in the global level to achieve a higher
level of concurrency.

4.3 Chained transactions and sagas

Although the nested transaction and its extensions are more powerful than the clas-
sical flat transaction, they are only applicable in specific environments such as feder-
ated databases but are not suitable for environments requiring long-lived transactions.
In such cases, the idea of chained transactions by decomposing a long running trans-
action into small, sequentially-executing sub-transactions was adopted. According
to [30], the idea originates from IBM’s Information Management System (IMS) and
HP’s Allbase database products. This idea is a variation of the save point mecha-
nism that a sub-transaction in the chain roughly corresponds to a save point interval.
However, the essential difference is that each sub-transaction itself is atomic, while
traditionally each interval between every two save points is only part of an atomic
transaction. In the chain, a sub-transaction triggers the next upon commit, one by
one, until the whole chained transaction commit. When encountering a failure, the
previously committed sub-transactions would have already made durable changes to
the database so that only the results of the currently executing sub-transaction are lost.
This way the rollback only returns the system to the beginning of the most recently-
executing sub-transaction. Notably, from the application perspective, the atomicity
and isolation properties are no longer guaranteed by the whole chain. For example, in
the middle of execution, all the committed sub-transactions cannot be undone, which
leads to a problem in aborting the whole chain. Another case is that other concurrent
transactions can see the intermediate results generated during the execution of the
chain.

Based on the idea of chained transactions, Sagas were proposed which include a
compensation mechanism to roll back already completed subtransactions. The saga
model described in [29] is a classic transaction model used as a foundation of many
later transaction models. Sagas divide a long lasting transaction into sequentially ex-
ecuted sub-transactions and each sub-transaction, except the last one, has a corre-
sponding compensating sub-transaction. All these sub-transactions are atomic with
ACID properties. Unlike the non-atomic chained transactions that cannot undo the
committed sub-transactions in the case of an abort, sagas can use compensating sub-
transactions to return the whole transaction back to the very beginning. Note that the
recovered start state is not exactly the same as the original start state but only equiv-
alent to it from an application point of view. In this sense, sagas as a whole preserve
application-dependent atomicity, meaning that the application logic determines what
constitutes a failure in the saga and thus determines when a saga is fully compensated.
So, as with ACID transactions, a saga transaction successfully completes or is com-
pletely rolled back (compensated). Similar to chained transactions, other transactions
can be executed concurrently with a saga transaction. Because subtransactions of a
sage commit on successful completion, their results become visible to other trans-
actions even before the entire saga commits. Thus isolation is not guaranteed and

Distrib Parallel Databases (2008) 23: 235–270 247

consequently, consistency in sagas is not realized by serializability, a common tech-
nique to keep the database consistent when accessed by multiple transactions. The
saga model is an important transaction model which attracted a lot of attention. For
example, some extensions of sagas are introduced in [16] with more recovery options.

4.4 Conclusion on the middle ages

Advanced transaction models can be viewed as various extensions to flat transactions
that relax one or more ACID constraints to meet the specific requirements of complex
applications. Two strategies exist to achieve different structures inside a transaction.
One is to modularize a complex transaction with hierarchies. By this means, a large
transaction is divided into smaller components, which can in turn be decomposed.
This strategy has been applied in various transactions including distributed transac-
tions, nested transactions, multilevel transactions, and open nested transactions. With
the modularization of a complex transaction, the structure is clearer from a seman-
tic perspective. These kind of transaction models are most suitable for multi-database
systems and complexly structured applications. Another strategy is applied in chained
transactions, sagas etc, through decomposing a long-lasting transaction into shorter
sub-transactions. By means of splitting up the long processing time, each transaction
can be divided into a sequential series of smaller components that are operated in a
shorter time thus minimizing the work lost during a failure. These type of transaction
models are therefore most suitable for long-running applications, i.e., applications
with a long execution time span. An approach that combined both the component-
transaction and sub-transaction strategies was developed in the next era and is known
as the WIDE transaction model (see Sect. 5.5). It also combined concepts from the
save point approach with concepts from the saga transaction model.

Note that there are other proposals that belong to this era. We skip the description
of them because they do not exhibit an internal structure as typical as the above men-
tioned advanced transaction models. For example, Split-transaction [61] is proposed
for open ended applications where the finish time is unknown in advance so it has
a dynamic structure (split and join). The flex transaction model proposed in [24] for
MDBS applications can also be viewed as an advanced transaction model consist-
ing of an inexplicit hierarchy of local autonomous transactions, though it bears some
characteristics of workflow transactions.

However, the abundance of the advanced models does not mean that flat transac-
tions have been replaced by these more powerful models. On the contrary, because of
their simple structures and easily implemented ACID properties, flat transactions still
dominate the database world. From the transaction models covered in this section,
the nested transaction model (in both open and closed form) and the saga transac-
tion model have had the most influence: most of the transaction models that were
developed in the eras that followed the ‘Middle Ages’ are based on them.

5 Renaissance: workflow transactions

The renaissance era saw the advent and rise of the Workflow Management Systems
(WfMSs). The (research) focus in this era turned towards business process modeling,

248 Distrib Parallel Databases (2008) 23: 235–270

execution and redesign. WfMSs made the automated execution of business processes
possible, but did not offer any transactional support so that robustness, reliability and
consistency were not guaranteed by the system.

Based on the advanced transaction models discussed in the previous section, spe-
cific transaction models have been designed for the support of business processes,
usually identified as workflow transaction models or transactional workflows. Below,
we first explain the concept of transactional workflow, which we use interchangeably
with workflow transaction in this paper. Next, we review the ConTract model, an early
attempt in this area which is not specifically intended for workflow transactions but
in general for long-lasting and complex applications. Then we cover three transac-
tion models developed to support complex workflow processes (the first two focus on
intra-organizational processes, the third focuses on inter-organizational processes),
which are a good representation of the research done in the area of workflow transac-
tions.

5.1 Transactional workflow versus workflow transaction

The concept of transactional workflow was first introduced in [68] to clearly state
the relevance of transactions to workflows. Since the mid 1990s, two developments
have taken place in the area of workflow technologies. One is the development of
transaction models supporting workflows (workflow transactions) and the other is the
development of languages for workflow specification (transactional workflows).

From a transactional point of view, workflows are generalized extended transac-
tions which focus on the automation of the complex, long-lasting business processes
in distributed and heterogeneous systems. A workflow process may involve database
transactions or human activities, so the ACID properties would not be the major con-
cern anymore.

Similar to the decomposition mechanism of advanced transaction models, a work-
flow process can be modeled by decomposition into some sub-processes in a hierar-
chical or sequential way. From this perspective, a workflow process can be viewed
as a complex transaction hierarchically or sequentially consisting of sub-transactions
and/or non-transactional tasks. A thorough analysis of transactional workflows and
workflow transactions can be found in [34].

5.2 Activities/transaction model

One of the earliest approaches in transactional workflows is introduced in [21, 22],
in which a transaction model for long-running transactions, called ATM (Activi-
ties/Transaction Model) is presented. In ATM, each step of an activity is modeled
by a transaction.

At first, the control flow among the steps is expressed implicitly by rules. The rules
are triggered by an event or by the rule system detecting that some specified event
has occurred in the database. In the extension of the original model [21] the control
flow and data flow between the steps of an activity may be specified statically in the
activity’s script. A proposed architecture is based on a simple nested transaction im-
plementation and uses the services of a reliable queuing facility by which the atomic
steps are connected.

Distrib Parallel Databases (2008) 23: 235–270 249

5.3 ConTracts model

First proposed in [64] and finalized in [79], the ConTract model addresses the trans-
actional challenge for long-lasting and complex computations in a formal basis and
is aimed at the problem domain of large distributed applications. Although the Con-
Tract model is not labeled as a workflow transaction model it is applicable in the
workflow transaction area, because:

1. it uses workflow concepts. For example ‘step’, ‘flow’, and ‘script’
2. its basic idea is to model control flow by programming short ACID transactions

into large applications thereby guaranteeing reliability and correctness along the
execution.

Unlike the advanced transaction models mentioned before, the ConTract model
does not extend the ACID transactions in structure but embeds them in the applica-
tion environment and provides reliable execution control over them. It defines a unit
of work as a step which ensures the ACID properties but preserves only local consis-
tency. These steps are executed according to a script, which is an explicit control flow
description. A reliable and correct execution of the steps is called a ConTract. The
ConTract model offers control mechanisms like semantic synchronization, context
management and compensation at the script level to provide transaction support to a
long-lived and complex application.

5.4 Exotica

The approach developed in the Exotica project is based on compensation of workflow
processes [1]. Within this project, transaction support for workflow processes was de-
veloped as an extension to the Flowmark workflow management system. The Exotica
approach relies on statically computed compensation workflow patterns that are used
as extensions to the basic workflow specification. This means that all possible com-
pensation routes for a specific process are determined, which are then ‘infused’ into
the normal process specification. An obvious drawback is that the resulting process
specification becomes very complex. Even though this specification is only used by
the machine, the necessity exists that two process models/specifications are required,
one for a business modeler (an actual user of the system) and one to be processed
by the machine. This complicates maintenance and evolution of workflow process
models. Another drawback is that the approach does not handle loops (iteration) in
the process model.

The FlowBack software is a commercial implementation based on this ap-
proach [45].

5.5 The WIDE transaction model

In [36], a two-layer transaction model, known as the WIDE transaction model, is
presented. The model combines the concept of safe point with Sagas, so that more
flexibility is offered in compensation paths in case of exceptions. Note the difference
between ‘save’ point and ‘safe’ point. The former is a database operation in which

250 Distrib Parallel Databases (2008) 23: 235–270

Fig. 4 WIDE transaction model
example

(part of) the database is made persistent (saved to stable storage), while the latter is
a point in a business process that is considered to be safe, i.e., the business process
execution is known to be in a consistent state.

In the WIDE transaction model, the bottom layer consists of local transactions
with a nested structure that conform to the ACID properties, based on the nested
transaction model described in Sect. 4.2 [13]. The upper layer is based on an exten-
sion of Sagas that roll back the completed sub-transactions using the compensation
mechanism, thus relaxing the requirement of atomicity [74]. The semantics of the
upper layer have been formalized using simple set and graph theory [35]. The lo-
cal transaction layer is designed to model low-level, relatively short-living business
processes, whilst the global transaction is designed to model high-level long-living
business processes.

Figure 4 shows a high-level view of a travel booking process, used to illustrate the
WIDE transaction model. The entire travel booking process is a long-running process
that can last for several days or weeks, while some of the activities themselves have
a complex internal structure. The WIDE transaction model is very suitable for such
circumstances. Its two layers satisfy the long-running process requirement as well as
the complex structured activities. In the figure, the dark colored circles represent the
activities (or sub-transactions) supported by the upper layer, while the three activities,
i.e., Sales, Invoice, and Payment with an internal nested structure are supported by the
lower layer of the WIDE transaction model. Suppose the Book activity is considered
a safe point, then a failure in the process execution after that activity will result in
a rollback using compensating activities to (not including) the Book activity, after
which the process could continue its execution again.

Failures within the lower layer of the WIDE transaction model are resolved in a
similar manner as explained in the example shown in Fig. 3 illustrating the nested
transaction model, see Sect. 4.2.

The flexible approach of the WIDE transaction model is adopted later in [73] to
develop the X-transaction model, see next subsection. Note that these two models
address needs in different contexts. The WIDE transactional model caters for intra-
organizational workflows while the X-transaction model offers support for cross-
organizational (also called inter-organizational) workflows.

5.6 X-transactions

The X-transaction model is a three-level, compensation-based transaction model to
support cross-organizational workflow management. It has been developed in the

Distrib Parallel Databases (2008) 23: 235–270 251

CrossFlow project [28], where a contracted service outsourcing paradigm was pro-
posed [73]. The three levels in this model are the outsourcing level, the contract level
and the internal level, each with a different visibility to the consumer or the provider
organization.

The model views an entire cross-organizational workflow process as a transac-
tion. The involved intra-organizational processes are divided into smaller I-steps that
adhere to ACID properties. Each I-step has an associated compensating step that is
used to roll back (part of) the process in case of failures. Similar to this idea, the
contract-level cross-organizational process is divided into X-steps, each of which
corresponds to one or more I-steps. As with I-steps, compensating steps are asso-
ciated with X-steps and used in case of failures, which, in this case, involve the cross-
organizational process (and thus involve both parties, i.e., the consumer and provider
organization). With the components of I-steps, X-steps and compensating steps, the
X-transactional model realizes a flexible intra- or cross- organizational rollback ef-
fect so as to support all the scenarios with all combinations of rollback scopes and
rollback modes.

An architecture to support this model is also presented in [73]. The architecture
consists of three layers. The top layer supports the cross-organizational aspect of the
model. Its components are dynamically created whenever (part of) a process needs
to be outsourced. These components facilitate the searching of a suitable partner
(provider organization), the creation of an electronic contract and the execution of
the outsourced process, including required cooperative support services, like transac-
tion management, level of control, and quality of service monitoring [28]. After the
service outsourcing has finished (end of contract), these components are destroyed
again. The middle and bottom layer of the architecture are static (always available).
The bottom layer supports the execution of intra-organizational business processes
and therefore includes the workflow management system(s), as well as transaction
support. The middle layer isolates the bottom layer from the ‘outside world’ to pro-
vide portability with respect to specific WfMSs.

5.7 Conclusion on the renaissance

The focus of workflow applications is the control-flow, which is different from the
data-centric database applications. From the above discussion, we can see that trans-
action support for workflows is not restricted to ensure the ACID properties any-
more. Workflow transactions usually leverage the traditional transaction mechanisms
for recovery and concurrency control but meanwhile address more coordination re-
quirements. A limitation of workflow transaction is however the platform/software
dependency.

The transaction models in this section are covered in a chronological order. Some
of the newer transaction models therefore extend and improve upon the older models.
For example, the X-Transaction model improves upon the WIDE transaction model
by adding transaction support for inter-organizational processes (instead of only sup-
porting intra-organizational processes). The WIDE transaction model improves upon
the Exotica approach through the dynamic creation of compensating processes in-
stead of statically calculating and integrating all possible compensating process pos-
sibilities. It also added support for loops in processes executions.

252 Distrib Parallel Databases (2008) 23: 235–270

Fig. 5 Web services stack

With the development of Internet applications, transaction support for today’s
workflow processes has also evolved to put more attention to communication, dis-
tribution and coordination aspects. In the next era the focus moved from workflow
processes to services. Both processes and services are basically a dual view on the
same ‘thing’ [75]. Along with this trend, we discuss transaction management in the
Internet environment (with a focus on Web Services) in the next section.

6 Modern times: web services transactions

From the late 1990s until now, the area of transactions in the loosely-coupled Web ser-
vices (WS) world has received more and more attention. In addition to other accepted
standards such as SOAP [67], WSDL [81], UDDI [72] etc., a technique to guarantee
the consistency and reliability of WS applications is needed. Three competing stan-
dardization efforts have been taken in this era, which are described and compared in
the following subsections. Currently the WS-Transaction effort (see Sect. 6 has be-
come the de facto standard for Web Services transaction support (it also became an
OASIS standard), see also Sect. 6.4.

Figure 5 shows the Web Services stack to clarify the position of the Web service
transaction area amongst the numerous other Web service areas. As can be seen in the
figure, Web Services transactions are part of the Quality of Service aspect specified
for Web services.

6.1 Business transaction protocol

The Business Transaction Protocol (BTP) [14], developed by OASIS, is, as its name
indicates, not exclusively designed for Web services but also for non-Web services

Distrib Parallel Databases (2008) 23: 235–270 253

applications. BTP is an eXtensible Markup Language (XML) based protocol for rep-
resenting and seamlessly managing complex, multi-step business-to-business (B2B)
transactions over the Internet. BTP ensures consistent outcomes for parties that use
applications that are disparate in time, location and administration and participate in
long running business transactions [50].

In a BTP compliant Web service environment, Web services are the software
agents that contain business logic and handle request and response messages. Web
services usually use backend systems to store data, however, the Web service them-
selves are not in control over the backend systems and therefore cannot influence the
outcome of a request to the backend system. This is under the control of the trans-
action manager. Backend systems can have a role as participant within a transaction
if they are ‘wrapped’ as a Web Service, i.e., the backend system acts as a Web Ser-
vice. This enables communication between the transaction manager and the backend
systems (via the web service interface (ports) specified for the backend system).

BTP is a protocol with two distinct phases, geared towards the outcome of the
transaction. Every phase of a transaction within BTP stands on its own and may be
implemented in any way by a BTP compliant Web service (or application). In the
first phase of a transaction, the BTP participants are instructed to make provisional or
tentative state changes (called the provisional effect). In the second phase the partic-
ipants are instructed to complete the transactions either through confirmation (called
the final effect) or through cancellation (called the counter effect). How the mentioned
effects are implemented is fully dependent on the participants. Counter effect for ex-
ample could be implemented by compensation techniques or by traditional database
rollback approaches.

To reflect the differences with the traditional 2PC protocol, the commands used
in BTP are different and extended from 2PC, thereby also abstracting from specific
background implementations. In phase one of the BTP protocol, ‘prepare’ is used to
ask the participants to make the provisional effect and in phase two, ‘confirm’ and
‘cancel’ are used to ask for either the final effect or the counter effect. BTP there-
fore guarantees atomicity of decision [23] (i.e., ensuring that a valid transaction is
conducted) whilst at the same time abstracting from implementation specific details.

What makes BTP unique in comparison with the traditional 2PC protocol is that
in BTP, the application controls the time between the two phases. In traditional 2PC,
the second phase of the protocol starts immediately after the first phase ends. In BTP,
the application, using business logic (knowing the semantics of the application), can
determine when to start the second phase of the protocol. Also, instead of the trans-
action manager, it is the application that can determine which participants to commit
(called a ‘consensus group’) and which to cancel.

BTP specifies two extended business transactions types [14]:

1. Atoms. If a consensus group is specified as an atom, it is guaranteed that the
transaction outcome of this consensus group is atomic, meaning that either all
participants confirm or all participants cancel.

2. Cohesions. If a consensus group is specified as a cohesion, the atomicity property
of the group is relaxed (compared to an atom). The application itself determines
(using business logic) which participants to confirm or cancel.

254 Distrib Parallel Databases (2008) 23: 235–270

Participants of a cohesion that are confirmed, i.e., should commit their results form
a ‘confirm set’. The confirm set itself is in turn an atom, as all members of this set
should complete successfully (they are confirmed). Cohesions are used to model long
running transactions in which participants enroll in atoms which may be canceled or
prepared, depending on certain conditions. It may take considerable time (several
hours or days) for the cohesion to arrive at a confirm set.

6.2 Web services transactions

The second candidate is the combined Web Services Transactions specifications,
collectively indicated by WS-Tx, consisting of WS-Coordination (WS-C), WS-
AtomicTransaction (WS-AT), and WS-BusinessActivity (WS-BA) [55–57].

The WS-Tx specifications define mechanisms for transactional interoperability be-
tween Web services domains and provide a means to compose transactional qualities
of service into WS applications. The specifications are aimed at the reliable and con-
sistent execution of web based business transactions using different interconnected
Web services.

6.2.1 WS-coordination

A lot of issues related to Web services require coordination, for example security,
transaction management, replication, work flow, and caching. As opposed to BTP, in
which coordination is interwoven with transaction management, WS-Coordination
(WS-C) defines a framework that solely focuses on outcome determination and
processing. This way WS-C provides a generic coordination infrastructure for Web
services, making it possible to plug in specific coordination protocols [26, 52].

The coordination framework specifies three services necessary to support coordi-
nation protocols.

• The Activation Service, which creates a new activity coordinator that uses a spe-
cific coordination protocol for a particular application instance.

• The Registration Service, which is responsible for the enrollment of new partici-
pants and selection of the coordination protocol.

• The Coordination Service ensures that the registered Web services are driven
through completion by using the selected protocol. The protocol defines the be-
havior and the operations that are required for the completion of an activity.

Currently, the WS-Transaction specifications (WS-AT and WS-BA) are the first
and only protocol specifications based on WS-Coordination.

6.2.2 WS-AtomicTransaction

The WS-AtomicTransaction specification is focused on existing transaction systems
and protocols with strict ACID requirements. Existing transaction systems that re-
quire an all-or-nothing outcome, form an important part of the companies’ backend
infrastructure. Traditionally, these systems are heterogeneous and coupling these sys-
tems together within one organization is the first step towards interoperability.

Distrib Parallel Databases (2008) 23: 235–270 255

However, enabling interoperability between systems of different organizations is
not just a matter of coupling systems, as this introduces the well-known interoper-
ability problems related to semantic differences, autonomy, non-disclosure, etc. Pre-
senting the backend systems/applications as services, i.e. wrapping them as a Web
Services, is a valid solution for most of the problems mentioned.

The WS-AT specification introduces an extension to the Web Services Descrip-
tion Language (WSDL), with which it is then possible to offer an application as a
Web Service, but also to specify its transactional behavior (ACID behavior) in case
the service is involved in an intra-organizational process that assumes the WS-AT
transaction protocol.

Participants in an WS-AT should support the following requirements that are as-
sumed by the protocol [57]:

• Updates are isolated until they are committed.
• There is a single all or nothing decision for all participants.
• Any participating systems in the transaction can abort the entire transaction.

This requires a high mutual trust between the participants in such a transaction, mak-
ing it hard to use this protocol for inter-business transactions.

The following protocols are specified in WS-AT: Completion, TwoPhase Commit
(2PC) with two variants, Volatile 2PC, and Durable 2PC. Details of these protocols
can be found in the WS-AT specification [57].

Figure 6 shows an example scenario in which WS-AT is used. This example is
(again) a travel booking process, with the sales part modified compared to the exam-
ple given in Sect. 4.2. Here the three selection activities are replaced by Web services,
each dealing with the specific selection topic. These three services are participants in
a WS-AT transaction to guarantee that all three selection services successfully com-
plete (commit) or none of the three. Details on the transaction specification of these
services and the protocol execution with the exchanged messages are rather verbose
and therefore left out of this paper, but similar details can be found in the WS-Tx
specifications [7, 57] or in [60].

6.2.3 WS-BusinessActivity

As the WS-AT specification resembles very much traditional 2PC ACID transactions,
it suffers from the same problems. To circumvent these problems and to support long
running business transactions, the business activity coordination type has been intro-
duced [56].

As seen before, atomic transactions handle system generated exceptions transpar-
ently from the application that drives the transaction. The application that drives the
business activity, which spans multiple atomic transactions and tries to move from
one consistent state to the other, therefore does not need to care about those system
generated exceptions, but can focus on the handling of application generated excep-
tions (i.e., business exceptions). To handle these kinds of exceptions and the overall
coordination, business logic within the application that drives the overall business
transaction is required. WS-BA uses atomic transactions to preserve the autonomy
of participating organizations whilst at the same time providing mechanisms to reach
overall agreement.

256 Distrib Parallel Databases (2008) 23: 235–270

F
ig

.6
W

S-
A

T
ex

am
pl

e

Distrib Parallel Databases (2008) 23: 235–270 257

Some characteristics of business activities in WS-BA are:

• Business activities may be partitioned into hierarchical nested scopes. Compen-
sating actions may be registered with the parent activity to undo completed child
tasks. Exception handlers make use of application logic so that the overall business
activity can continue (i.e., forward recovery).

• Results of completed tasks (e.g., transactions) within a WS-BA can be seen prior
to the completion of the business activity, thereby relaxing isolation.

• Participants are autonomous and can exit activities at will, thereby delegating
processing to other scopes (participants) or exiting without knowing the outcome
of the protocol.

• A participant may specify its outcome directly to the coordinator without being
asked for it. In case the outcome is negative (participants activity failed), the excep-
tion handler can take this into account and adapt the business activity to circumvent
this failure.

• The state of the business activity is made persistent between steps in order to reach
a desired goal, even if exceptions occur.

The WS-Business Activity specification defines two coordination types for a co-
ordinator, namely the atomic outcome type and mixed outcome type. The first type
requires the coordinator to drive all participants to the same final state. The latter type
allows a coordinator to choose which participants need to commit or compensate. The
behavior of the coordinator is determined by the application driving the activity. Be-
sides the two coordination types, the following two coordination protocols are spec-
ified: BusinessAgreementWithParticipantCompletion and BusinessAgreementWith-
CoordinatorCompletion. The reader is referred to the specification for details on these
protocols [56].

The WS-BA specification does not specify how the ‘knowledge’ of the coordina-
tor is communicated to the application that drives the business activity, so that it can
make decisions based on that knowledge. This is left to the implementers of the spec-
ification. The responsibility of the coordinator is to ensure that participants and the
coordinator itself are in the same state. The WS-BA specification contains state ta-
bles that specify the behavior for certain circumstances, e.g. how to handle duplicate
messages.

6.3 Web services composite application framework

The third Web Services transaction candidate is the Web Services Composite Ap-
plication Framework (WS-CAF) [8]. The purpose of WS-CAF is to provide an in-
teroperable, ‘easy-to-use’ and ‘easy-to-implement’ framework for composite Web
Services applications. It is composed of a series of specifications: WS Context [6],
WS Coordination Framework [7] and WS Transaction Management [9]. Each spec-
ification covers a certain level of the overall architecture required to build reliable
business applications that span multiple systems and use Web service technology.

6.3.1 Web services context

The Web Service Context specification [6] defines a generic context management
mechanism for sharing common system data (i.e., context) across multiple Web ser-

258 Distrib Parallel Databases (2008) 23: 235–270

vices [54]. This in contrast to the context specifications in WS-Tx and BTP, where
the context is combined with coordination (WS-Coordination in WS-Tx) or combined
with coordination as well as transaction management (BTP).

However, context information is not just relevant for transactions, for example,
Web services security relies heavily on context exchange. Also correlation of differ-
ent Web services that share certain data (ID’s, tokens, etc.) to establish relationships
between them is of importance within web applications. The WS Context specifi-
cation (WS-CTX) [6] provides for this functionality making it possible to connect
multiple Web services into one activity (scope) by correlating them using specific
context information that is not managed by a coordinator.

6.3.2 Web services coordination framework

The second level in the WS-CAF specification is the Web Service Coordination
Framework (WS-CF) which provides a coordination service that is plugged into WS-
CTX. It manages and coordinates multiple Web services that are grouped together in
one or more activities to perform some task together.

WS-CF supports, just like WS-C, different coordination protocols. However, the
specification of WS-CF is more thorough than WS-C. Also, the architecture is spec-
ified very exhaustively with respect to the requirements imposed on the participants
of a coordinated activity. The WS-CF architecture has three main components.

1. The Coordinator, at which participants can register so that they receive the context
and outcome of an activity.

2. The Participant of an activity, which offers operation(s) that are executed during
the coordination sequence processing. The role of coordinator and participant is
used to define the protocols and related messages between them.

3. The Coordination Service, which defines the behavior for a specific coordination
model. The coordination service provides a processing pattern that is used for
outcome processing [6]. How the service is implemented is not defined in WS-CF,
but depends on higher level protocols (of which WS-Transaction Management
(WS-TXM) defines several related to transaction management).

When using coordination within an activity, there will be two distinct message
flows. One application message flow between participating Web services and one
coordination message flow between the coordinator and the participants to handle
context propagation and exception handling [54].

6.3.3 Web services transaction management

The Web Service Transaction Management (WS-TXM) specification defines three
protocols that are plugged into WS-CF [9]. These protocols can be used together with
a coordinator to negotiate a set of actions for all participants that are to be executed
based on the outcome of a series of related Web services executions [8]. To reach
an agreement of outcome among the participants of a transaction in a consistent way,
the transaction protocols can use context information and coordination protocols. The
Web service executions are linked together in scopes by the overall context and can

Distrib Parallel Databases (2008) 23: 235–270 259

be nested and executed concurrently [52]. WS-TXM binds the scope of an activity
to the lifetime of a transaction.

Three specific transaction models are defined in WS-TXM, which can be used for
different situations:

1. ACID transaction. This model resembles the traditional ACID transactions but
applies it to Web services, enabling tightly-coupled network-based transactions,
which are most suitable (just like WS-AT) to achieve interoperability between
existing transaction systems within one organization.

Participants of an ACID transaction (registered at a coordinator) can only be
removed when the transaction terminates (either successful or unsuccessful). The
coordinator uses the 2PC protocol to control the registered participants, but some
optimizations to this protocol are available.

2. Long Running Action (LRA). This model is designed to cover transactions that
have a long duration. In this model, an activity is seen as a set of business in-
teractions for which compensations should be possible (comparable to Sagas, see
Sect. 4.3). How services compensate is implementation specific and depends on
the activity itself.

The LRA model only defines a protocol identifying the trigger for compensa-
tion actions and the conditions under which the triggers come into effect. Similar
to ACID transactions, LRAs are bound to the scope of the activity. If the work
done within an activity is finished, the termination will cause the LRA protocol to
be executed. The protocol will either accept or compensate the work. In contrast
to the ACID transactions, the LRA protocol defined by WS-TXM is a one-phase
protocol.

The LRA model allows nesting. But for the enclosing activity it must be pos-
sible to compensate the work of the nested activity until it terminates as well.
Recovery mechanisms (like for example checkpointing) defined in WS-CF can be
used to recover participants. Services can register as a compensator at the coor-
dinator. The compensator can be instructed by the coordinator to undo the work
performed by a service or to compensate work that could not be completed by a
service. Compensation may also be carried out by other LRAs (which can also
have compensators). A compensator can be invoked at any point in time during a
LRA by a coordinator.

3. Business Process transaction model (BP model). The aim of this model is to inte-
grate different heterogeneous transaction systems (e.g., using ACID transactions
and messaging) from different business domains into one overall business to busi-
ness transaction [52].

The business process is managed and controlled by an overall business transac-
tion manager (i.e., the coordinator) that communicates (a)synchronously with the
individual tasks. If all tasks have completed, the business process can terminate in
a confirmed manner. If not, it will terminate in a canceled manner and all the work
performed in the process will be rolled back. In the BP model the failures that can
occur are handled either by replay, void, compensation or human intervention.

Interposition is an important concept in the BP model. Every domain (party),
which has its own transaction systems and protocols, is hidden behind an inter-
posed coordinator. This interposed coordinator translates the BP protocol mes-
sages into the specific protocols (e.g., like ACID, BTP, LRAs) used within the

260 Distrib Parallel Databases (2008) 23: 235–270

domains. The root coordinator (the business transaction manager) has a parent-
child relationship with the subordinate coordinators. This coordinator keeps track
of the domains and the state they are in. The exact definition of a domain and what
services belong to a domain is not covered in the specification.

Depending on the situation in which the business process is to take place, and
the specific transactional requirements of the business process, a suitable transaction
model is available from the WS-TXM specification.

The next subsection presents a comparison of the three different web services
transaction specifications, i.e., BTP, WS-Tx, and WS-CAF.

6.4 Conclusion

In [52], a comparison between BTP and WS-Tx is given. This paper shows how these
two specifications both attempt to address the problems of running transactions with
Web services. With a clear list of pros and cons, the authors make a comparative
analysis of the two competitors in a table. In the end, they conclude that the two
specifications differ in some critical areas such as transaction interoperability. It also
concludes that BTP lacks ‘the ability to use existing enterprise infrastructures and
applications and for Web services transactions to operate as the glue between differ-
ent corporate domains’. Considering the fact that large strongly-coupled corporate
infrastructures exist behind those loosely-coupled Web services, the authors call for
the attention of leveraging ACID transactions, which underlies the internal corporate
infrastructures, instead of replacing them with new models to design WS transactions.

Another comparison of the above mentioned three specifications is presented
in [46]. This technical report gives a detailed overview of the three specifications
and highlights the differences between the three candidates. In the end, the author
points out the need for one open standard to realize the interoperability both in Web
services and business areas, possibly by integrating the existing ones within the WS-
CAF framework. However, since then, the WS-Tx specification has become the de
facto standard (supported by the OASIS standardization organization) for Web ser-
vice transactions.

In [42], it is stated that BTP is the most appropriate candidate to be an Inter-
net transaction standard. The authors present an Agent Based Transactional (ABT)
model by applying the ‘Shadowboard Agent Architecture’ to the wrapping of the
existing services as Web services. They claim that using agent technology for trans-
action management is the right choice in the Web services environment. The benefit
of the ABT model, according to the authors, is that it can flexibly choose alternative
participants to reduce the rollback and compensation chances. This is a novel attempt
to combine Web services with agent technologies. However, it is still in a preliminary
stage. The implementation is only based on a simple scenario, which can be real-
ized by existing technologies. As already stated above, the WS-Tx is the ‘winner’ of
the three Web service transactions standardization efforts. The BTP standardization
effort has since been closed.

Distrib Parallel Databases (2008) 23: 235–270 261

7 Modern times: grid transactions

Grid computing is a form of distributed computing that involves coordinating and
sharing computing resources across the web globally, thereby making the exclusive
immense computing power previously only available to a few organizations now
available to everyone. This emerging technology has been gaining a lot of atten-
tion, however, the focus is mostly towards infrastructure and middleware. Less effort
is spent in the area of Grid transactions. Below, we describe a few efforts currently
ongoing in this area.

7.1 Global grid forum

The TM-RG (GGF Transaction Management Research Group), initiated in Europe,
is working on Grid transactions with the goal of investigating how to apply transac-
tion management (TM) techniques to Grid systems. It is stated in the charter [70] that
‘a common grid transaction service would contribute a useful building block for pro-
fessional grid systems’. The group is trying to implement possible Grid transaction
approaches that may develop on the basis of Web services transactions as discussed
in Sect. 6.

7.2 GridTP

In Shanghai Jiang Tong University, a group is working on a new service-oriented Grid
Transaction Processing architecture called GridTP based on the Open Grid Services
Architecture (OGSA) platform and the X/Open DTP model [62]. The authors claim
that GridTP provides a consistent and effective way of making existing autonomously
managed databases available within Grid environments.

7.3 Unnamed grid transaction approach

Some of the significant questions that arise when applying transactions into a grid
environment are tackled in [71]. A protocol ensuring correct execution of concurrent
applications on the global level with the absence of a global coordinator is proposed
to realize the concept of distributed, peer-to-peer grid transactions. The approach in
this paper is based on some known concepts and techniques, such as the recover-
ability criterion, serialization graph testing and partial rollback. The main idea of the
approach is that dependencies between transactions are managed by the transactions,
so globally correct executions can be achieved even without the complete knowledge
gained from communications between dependent transactions and the peers they have
accessed. The idea is innovative in the sense that it combines old concepts and tech-
niques for a new purpose.

7.4 Conclusion on modern times

It is hard to evaluate and compare the above approaches at this early stage of this
relatively new area. We can expect that with the development of the Grid technology,

262 Distrib Parallel Databases (2008) 23: 235–270

the need for a standard protocol to provide transactional support will result in more
and more effort as Grid computing does require a reliable way to coordinate and
communicate. In what way, if (part of) the results from the Web Services transaction
area can be reused remains to be seen at this moment.

8 Transaction frameworks

Besides the transaction models covered in Sects. 3 to 7, transaction frameworks exist
that encompass more than a single transaction model. This section covers some of
these frameworks.

We first present two conceptual transaction frameworks, followed by two middle-
ware technical transaction frameworks.

8.1 Conceptual transaction frameworks

The following subsections discuss two transactional frameworks defined on a con-
ceptual level, one older (ACTA) and one new (BTF).

8.1.1 Meta transaction model (ACTA)

A novel approach was used in [15], in which a comprehensive framework named
ACTA is developed, by unifying existing models to capture the semantics and reason
about the concurrency and recovery properties of complex transactions. Later, more
elaborate extensions to this ACTA model were described in [16–18].

In the ACTA framework, the behavior of active components (transactions) and
passive components (objects) represents the behavior of a transaction system. Interac-
tions among transactions are expressed in terms of effects, i.e. effects of transactions
on other transactions and effects of transactions on objects they access.

Two types of effects that transactions can have on other transactions are specified
as ‘commit-dependency’ and ‘abort-dependency’. Commit-dependency describes the
relationship of one transaction T1 to another transaction T2. This dependency rule
regulates that T1 cannot commit until T2 either commits or aborts. Abort-dependency
describes the relationship of T1 to T2, which means if T2 aborts, T1 should also abort.

The framework captures the effects of transactions on objects by two objects sets
and the concept of delegation. Every transaction is associated with objects contained
in a ‘view set’ or ‘access set’. The view set contains all the objects potentially ac-
cessible to the transaction while the access set contains the objects that have already
been accessed by the transaction. Transactions make changes to the objects through
three forms of delegation, i.e. ‘delegation of state’, ‘delegation of status’ and ‘limited
delegation’. Delegation of state describes the ability of a delegator (delegating trans-
action) to move the objects from its access set to the delegatee’s (delegated transac-
tion) access set. Delegation of status represents the ability of the delegator to undo
the changes on the objects before those objects are moved to the access set of the
delegatee. Limited delegation implies the ability to make the changes to the objects
persistent in the view set before adding them to the access set of the target transaction.
Through the delegation mechanism, the visibility of objects can be controlled.

Distrib Parallel Databases (2008) 23: 235–270 263

When combining delegation mechanism with commit and abort dependencies, it is
possible to specify the recovery properties of a transaction model. This way, via for-
malized expressions describing the dependencies, object sets and delegations, ACTA
allows for the specification of the structure and behavior of transactions as well as
reasoning their concurrency and recovery properties.

From the above description, ACTA is a meta-model that can be used to flexibly
develop new transaction models. This approach inspired the later ASSET model pro-
posed in [10], which uses primitives at a programming language level based on ACTA
building blocks such as ‘history’, ‘delegation’, ‘dependency’, ‘conflict set’.

8.1.2 Business transaction framework

The XTC (eXecution of Transactional Contracted electronic services) project aims
at laying a generic foundation to the transactional support for processes in a
service-oriented environment. Within this project, a Business Transaction Framework
(BTF) is being developed to support contract-driven, inter-organizational business
processes. The basic idea of the BTF is to extract and group existing transaction
models into an Abstract Transaction Construct (ATC) library and select the required
ATCs to compose a transaction hierarchy on demand [78].

The architecture of the Business Transaction Framework is a multi-level, multi-
phase design [48]. Three phases exist along the BTF life-cycle; definition phase,
composition phase and execution phase. During the definition phase, the ATCs are
abstracted from the classic and widely-adopted transaction models based on a tax-
onomy, which covers and classifies the existing work in transaction management do-
main. After the design of an ATC library, one can easily make use of these constructs
to build a transaction plan for a complex process within the composition phase. The
BTF also offers the flexibility to adjust the transaction plan to accommodate changes
in business processes that can occur (quite frequently) in a dynamic business envi-
ronment. The abstract plans resulting from the composition phase are instantiated to
form concrete, executable business transactions, which can then be executed during
the execution phase [47, 76].

The BTF has two distinctive features. First, it achieves flexibility by leveraging
the existing models in the transaction management domain and abstracting them as
the building blocks with which to construct transaction plans that support business
processes. Second, it proposes to use contractual agreements to specify transactional
qualities for today’s business processes therefore business trustworthiness is guaran-
teed [82].

8.2 Middleware transaction frameworks

The following two subsection cover two middleware transaction frameworks that are
defined within two well-known software platforms: CORBA and Java 2 Enterprise
Edition (J2EE).

8.2.1 CORBA activity service framework

The CORBA Activity Service Framework has been developed to support ad-
vanced transactions (also called extended transactions) from within the middle-

264 Distrib Parallel Databases (2008) 23: 235–270

ware layer [37]. It thereby complements the CORBA Object Transaction Service
(OTS) [58].

Because the ACID transaction model is too restrictive in some application do-
mains and it is unmanageable to ‘hardwire’ specific transaction mechanisms in the
applications themselves, the CORBA middleware layer was extended. The extension,
implemented as the CORBA Activity Service Framework (ASF), offers an event sig-
naling mechanism with which it should be possible to enable activities to coordinate
amongst each other in such a way that the extended transaction model required is
simulated.

Using specific implementations of the framework, different extended transaction
models are supported and can be mapped to these implementations. A specific im-
plementation contains a signal set and associated actions. A signal set contains those
signals needed to simulate (or represent) an extended transaction model. The specific
implementation contains the protocol specification for the transaction model simu-
lated and generates the required signals that are sent to the actions (i.e. activities in
workflow terms) and processes the returned result to determine which signal to send
next.

Thus the framework does not need to know the semantics (and operations) of an
activity, but merely manages the coordination between activities following a certain
protocol that represents an extended transaction model.

8.2.2 J2EE transaction framework

The Java 2 Enterprise Edition (J2EE) Transaction Framework started as a funda-
mental element within the J2EE Architecture [5]. It was developed to offer transac-
tion primitives to developers using J2EE, including the Java Transaction API (JTA).
Transactions in the framework adhered strictly to the ACID properties, albeit in a
distributed component-based environment (using the Two-Phase Commit Protocol
for example).

Two ways of specifying transactions exist:

1. Pragmatic. The application developer is responsible for delineating the beginning
and ending of a transaction in the application.

2. Declarative. A component as a whole can be marked as being transactional, which
means that the system itself is responsible for ensuring correct transactional exe-
cution of that component.

Realizing that the ACID properties are too limited in modern, advanced appli-
cations, the framework was (and is) extended further. For example the Java Activity
Service [41] offers support for extended transaction models using similar mechanisms
(SignalSets) as described for the CORBA Activity Service Framework, see previous
subsection.

8.3 Conclusion on transaction frameworks

Two different approaches towards a transaction framework exist. The first approach
treats transaction models on a conceptual level, thereby abstracting from specific

Distrib Parallel Databases (2008) 23: 235–270 265

technicalities of those transaction models. In ACTA, transaction models are analyzed
based on the dependencies between transaction operations. The resulting framework
can then be used to create new transaction models as well. The focus of the Business
Transaction Framework is on the abstraction of transaction models (ATCs) so that
transactional properties can be identified that can subsequently be applied to support
transactional requirements of business processes. New transaction models can be cre-
ated in the BTF, i.e., by combining different ATCs, as well, but that is not a main goal
of the BTF.

The second approach takes a bottom-up view; creating a mechanism, e.g., signals
in CORBA ASF, that should then suffice to support existing and future transaction
models as long as they can be mapped onto that specific mechanism. The usefulness
of this approach needs to be proven in practice, as a specific implementation (of the
signal sets and actions) is required for each (advanced) transaction model. A limita-
tion of the approach is the coupling of coordination of activities and the transaction
model, i.e., the coordination of activities is prescribed by the transaction model. This
limits the suitability of this approach within the business process domain, in which
routing (coordination) of activities is prescribed by the business process specification
and not by a transaction model (which should merely support the execution of the
business process).

9 Conclusions

From the discussion of transaction management in this paper, a clear historical thread
from the classic age to modern times is revealed reflecting the transition from data-
base transactions to workflow transactions to grid transactions.

The evolution and relationships between (most of) the transaction models covered
in this paper is depicted in Fig. 7. This figure makes clear if and on which other trans-
action model a specific transaction model is based. For example, the WIDE trans-
action model is based on the Saga model, which in turn is based on the (abstract)
Chained transaction model. The right-hand side of the figure positions the transaction
frameworks in the specific ‘eras’ and also shows that the Java Transaction Framework
is based on the CORBA Activity Service Framework.

All transaction models positioned in the ‘Modern Times’ era have two other trans-
action models as a basis. The Web Services transaction models (as well as the GridTP
approach) have their roots in the 2-Phase Commit (2PC) protocol/model as well as the
Saga transaction model (compensation based support for long-running transactions).
The grid transaction approach by the GGF in turn is based on the Web Services trans-
action models.

We notice that, with the development of information technology towards a broader
geographical scope and larger scale, the future trend of transaction management is
correspondingly following a direction to address the need for more functionalities
and better performance in a distributed, heterogeneous, cross-organizational environ-
ment. This need is essentially prominent in an era witnessing a rapidly increasing
e-business, which often involves multiple organizations all across the world dynami-
cally establishing business relationships over the Internet.

266 Distrib Parallel Databases (2008) 23: 235–270

Fig. 7 Relations in transaction models

More concretely, we see that the Web service transactions and the mobile trans-
actions might converge as they are both supporting thin, small clients (Web services
and mobile device respectively) which represent autonomous ‘parties’ of which the
accessibility cannot be determined beforehand. Also the area of process and service
compositions requires the support for transaction composition. This means that it
should become possible to compose transaction models in such a way that the trans-
action requirements of each (part of) a process can be satisfied by a component from
the composed transaction. These are the challenging research areas that should and
will be addresses in the future.

However, despite the complex requirements developed through all these years, the
fundamental idea that a transaction provides a reliable approach to achieve mutually
agreed goals remains the same when designing new transaction models or frame-
works.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Alonso, G., Agrawal, D., Abbadi, A.E., Kamath, M., Günthör, R., Mohan, C.: Advanced transac-
tion models in workflow contexts. In: Su, S.Y.W. (ed.) International Conference on Data Engineering
(ICDE), pp. 574–581. IEEE Computer Society, Los Alamitos (1996)

2. Astrahan, M.M., Blasgen, M.W., Chamberlin, D.D., Eswaran, K.P., Gray, J., Griffiths, P.P.,
King III, W.F., Lorie, R.A., McJones, P.R., Mehl, J.W., Putzolu, G.R., Traiger, I.L., Wade, B.W.,
Watson, V.: System r: relational approach to database management. ACM Trans. Database Syst. 1(2),
97–137 (1976)

Distrib Parallel Databases (2008) 23: 235–270 267

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures and Applica-
tions. Springer, Berlin (2004)

4. van der Aalst, W.M.P., van Hee, K.: Workflow Management: Models, Methods, and Systems. MIT
Press, Cambridge (2004)

5. Baksi, D.: J2EE transaction frameworks: Building the framework. ONJava.com (2001). http://www.
onjava.com/pub/a/onjava/2001/04/26/j2ee.html

6. Bunting, D., Chapman, M., Hurley, O., Little, M., Mischkinsky, J., Newcomer, E., Webber, J., Swen-
son, K.: Web service context (WS-CTX), July 2003. http://www.oasis-open.org/committees/ws-caf/

7. Bunting, D., Chapman, M., Hurley, O., Little, M., Mischkinsky, J., Newcomer, E., Webber, J.,
Swenson, K.: Web service coordination framework (WS-CF), July 2003. http://www.oasis-open.org/
committees/ws-caf/

8. Bunting, D., Chapman, M., Hurley, O., Little, M., Mischkinsky, J., Newcomer, E., Webber, J.,
Swenson, K.: Web services composite application framework (WS-CAF), July 2003. http://www.
oasis-open.org/committees/ws-caf/

9. Bunting, D., Chapman, M., Hurley, O., Little, M., Mischkinsky, J., Newcomer, E., Webber, J., Swen-
son, K.: Web services transaction management (WS-TXM), July 2003. http://www.oasis-open.org/
committees/ws-caf/

10. Biliris, A., Dar, S., Gehani, N.H., Jagadish, H.V., Ramamritham, K.: Asset: a system for support-
ing extended transactions. In: Snodgrass, R.T., Winslett, M. (eds.) SIGMOD Conference, pp. 44–54.
ACM, New York (1994)

11. Bernstein, P.A.: Principles of Transaction Processing. Morgan Kaufmann, San Fransisco (1997)
12. Breitbart, Y., Garcia-Molina, H., Silberschatz, A.: Overview of multidatabase transaction manage-

ment. VLDB J. 1(2), 181–239 (1992)
13. Boertjes, E., Grefen, P.W.P.J., Vonk, J., Apers, P.M.G.: An architecture for nested transaction support

on standard database systems. In: Quirchmayr, G., Schweighofer, E., Bench-Capon, T.J.M. (eds.)
Database and Expert Systems Applications (DEXA). Lecture Notes in Computer Science, vol. 1460,
pp. 448–459. Springer, Berlin (1998)

14. Ceponkus, A., Dalal, S., Fletcher, T., Furniss, P., Green, A., Pope, B.: Business transaction protocol
version 1.0, June 2002. http://www.oasis-open.org/committees/business-transactions/

15. Chrysanthis, P.K., Ramamritham, K.: ACTA: a framework for specifying and reasoning about trans-
action structure and behavior. In: SIGMOD Conference, pp. 194–203 (1990)

16. Chrysanthis, P.K., Ramamritham, K.: ACTA: the SAGA continues. In: Database Transaction Models
for Advanced Applications, pp. 349–397. Morgan Kaufmann, San Mateo (1992)

17. Chrysanthis, P.K., Ramamritham, K.: Delegation in ACTA to control sharing in extended transactions.
IEEE Data Eng. Bull. 16(2), 16–19 (1993)

18. Chrysanthis, P.K., Ramamritham, K.: Synthesis of extended transaction models using ACTA. ACM
Trans. Database Syst. 19(3), 450–491 (1994)

19. Date, C.J.: An Introduction to Database Systems, vol. I, 4th edn. Addison-Wesley, Reading (1986)
20. Dunham, M.H., Helal, A., Balakrishnan, S.: A mobile transaction model that captures both the data

and movement behavior. Mobile Netw. Appl. 2(2), 149–162 (1997)
21. Dayal, U., Hsu, M., Ladin, R.: Organizing long-running activities with triggers and transactions. In:

SIGMOD Conference, pp. 204–214 (1990)
22. Dayal, U., Hsu, M., Ladin, R.: A transactional model for long-running activities. In: Lohman, G.M.,

Sernadas, A., Camps, R. (eds.) VLDB Conference, pp. 113–122. Morgan Kaufmann, San Mateo
(1991)

23. Dalal, S., Temel, S., Little, M., Potts, M., Webber, J.: Coordinating business transactions on the web.
IEEE Internet Comput. 7(1), 30–39 (2003)

24. Elmagarmid, A.K., Leu, Y., Litwin, W., Rusinkiewicz, M.: A multidatabase transaction model for
interbase. In: McLeod, D., Sacks-Davis, R., Schek, H.-J. (eds.) VLDB Conference, pp. 507–518.
Morgan Kaufmann, San Mateo (1990)

25. Elmagarmid, A.K. (ed.): Database Transaction Models for Advanced Applications. Morgan Kauf-
mann, San Mateo (1992)

26. Freund, T., Story, T.: Transactions in the world of web services, part 1. IBM DeveloperWorks, August
2002. http://www.ibm.com/developerworks/library/ws-wstx1/

27. Grefen, P.W.P.J., Apers, P.M.G.: Integrity control in relational database systems—an overview. Data
Knowl. Eng. 10, 187–223 (1993)

28. Grefen, P.W.P.J., Aberer, K., Ludwig, H., Hoffner, Y.: CrossFlow: cross-organizational workflow man-
agement for service outsourcing in dynamic virtual enterprises. IEEE Data Eng. Bull. 24(1), 52–57
(2001)

http://www.onjava.com/pub/a/onjava/2001/04/26/j2ee.html
http://www.onjava.com/pub/a/onjava/2001/04/26/j2ee.html
http://www.oasis-open.org/committees/ws-caf/
http://www.oasis-open.org/committees/ws-caf/
http://www.oasis-open.org/committees/ws-caf/
http://www.oasis-open.org/committees/ws-caf/
http://www.oasis-open.org/committees/ws-caf/
http://www.oasis-open.org/committees/ws-caf/
http://www.oasis-open.org/committees/ws-caf/
http://www.oasis-open.org/committees/business-transactions/
http://www.ibm.com/developerworks/library/ws-wstx1/

268 Distrib Parallel Databases (2008) 23: 235–270

29. Garcia-Molina, H., Salem, K.: Sagas. In: Dayal, U., Traiger, I.L. (eds.) SIGMOD Conference,
pp. 249–259. ACM, New York (1987)

30. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San Ma-
teo (1993)

31. Gray, J.: Notes on data base operating systems. In: Flynn, M.J., Gray, J., Jones, A.K., Lagally, K.,
Opderbeck, H., Popek, G.J., Randell, B., Saltzer, J.H., Wiehle, H.-R. (eds.) Operating Systems, an
Advanced Course. Lecture Notes in Computer Science, vol. 60, pp. 393–481. Springer, Berlin (1978)

32. Gray, J.: The transaction concept: virtues and limitations (invited paper). In: VLDB Conference,
pp. 144–154 (1981)

33. Grefen, P.W.P.J.: Advanced architectures for transactional workflows-or-advanced transactions in
workflow architectures. In: International Process Technology Workshop (1999)

34. Grefen, P., Vonk, J.: A taxonomy of transactional workflow support. Int. J. Coop. Inf. Syst. 15(1),
87–118 (2006)

35. Grefen, P.W.P.J., Vonk, J., Apers, P.M.G.: Global transaction support for workflow management sys-
tems: from formal specification to practical implementation. VLDB J. 10(4), 316–333 (2001)

36. Grefen, P.W.P.J., Vonk, J., Boertjes, E., Apers, P.M.G.: Two-layer transaction management for work-
flow management applications. In: Database and Expert Systems Applications (DEXA), pp. 430–439
(1997)

37. Houston, I., Little, M.C., Robinson, I., Shrivastava, S.K., Wheater, S.M.: The CORBA activity service
framework for supporting extended transactions. Softw. Pract. Exp. 33(4), 351–373 (2003)

38. Härder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM Comput. Surv.
15(4), 287–317 (1983)

39. Berkeley DB website (2007). http://www.sleepycat.com/products/bdb.html
40. IBM DB2 website (2007). http://www.ibm.com/db2
41. JSR-095 J2EE activity service for extended transactions 1.0 final release. java.sun.com (May 2006)
42. Jin, T., Goschnick, S.: Utilizing web services in an agent-based transaction model (abt). In: Interna-

tional Workshop on Web Services and Agent-Based Engineering (2003)
43. Jajodia, S., Kerschberg, L. (eds.): Advanced Transaction Models and Architectures. Kluwer, Dor-

drecht (1997)
44. Ku, K.-I., Kim, Y.-S.: Moflex transaction model for mobile heterogeneous multidatabase systems. In:

Research Issues in Data Engineering (RIDE), pp. 39–46 (2000)
45. Kiepuszewski, B., Mühlberger, R., Orlowska, M.E.: Flowback: Providing backward recovery for

workflow systems. In: Haas, L.M., Tiwary, A. (eds.) SIGMOD Conference, pp. 555–557. ACM, New
York (1998)

46. Kratz, B.: Protocols for long running business transactions. Infolab technical report series, No. 17,
Infolab, Tilburg University (2004)

47. Kratz, B.: A business aware transaction framework for service oriented environments. In: Hanemann,
A. (ed.) Proceedings of IBM PhD Student Symposium at the 3rd International Conference on Service
Oriented Computing (ICSOC). IBM Research Report RC23826, IBM Research Division (2005)

48. Kratz, B., Wang, T., Grefen, P.W.P.J., Vonk, J.: Flexible business transaction composition in service-
oriented environments. Beta Technical Report WP 140, Eindhoven University of Technology (2005)

49. Lewis, P.M., Bernstein, A.J., Kifer, M.: Databases and Transaction Processing: an Application-
Oriented Approach. Addison-Wesley, Reading (2001)

50. Little, M.: Business transaction protocol: transactions for a new age. Web Serv. J. 2(11), 50–55 (2002)
51. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice Hall, New York

(1999)
52. Little, M., Webber, J.: Introducing WS-CAF—more than just transactions. Web Serv. J. 3(12), 52–55

(2003)
53. Moss, J.E.B.: Nested transactions: an approach to reliable distributed computing. PhD thesis, MIT,

April 1981. Also available as Technical Report MIT/LCS/TR-260
54. Newcomer, E.: Context, coordinators, and transactions—the importance of WS-CAF, January 2004.

http://www.webservices.org
55. Newcomer, E., Robinson, I., Feingold, M., Jeyaraman, R.: Web services coordination (WS-

Coordination) version 1.1. OASIS, April 2007. http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.
1-spec-os.pdf

56. Newcomer, E., Robinson, I., Freund, T., Little, M.: Web services business activity framework (WS-
BusinessActivity) version 1.1. OASIS, April 2007. http://docs.oasis-open.org/ws-tx/wstx-wsba-1.
1-spec-os.pdf

http://www.sleepycat.com/products/bdb.html
http://www.ibm.com/db2
http://www.webservices.org
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf

Distrib Parallel Databases (2008) 23: 235–270 269

57. Newcomer, E., Robinson, I., Little, M., Wilkinson, A.: Web services atomic transaction (WS-
AtomicTransaction) version 1.1. OASIS, April 2007. http://docs.oasis-open.org/ws-tx/wstx-wsat-1.
1-spec-os.pdf

58. OMG—Object Management Group: Corbaservices: common object services specification. OMG doc-
ument formal/97-07-04 (1997)

59. Oracle database website (2007). http://www.oracle.com/
60. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson Education/Prentice Hall, New

York (2007)
61. Pu, C., Kaiser, G.E., Hutchinson, N.C.: Split-transactions for open-ended activities. In: Bancilhon, F.,

DeWitt, D.J. (eds.) VLDB Conference, pp. 26–37. Morgan Kaufmann, San Mateo (1988)
62. Qi, Z., Xie, X., Zhang, B., You, J.: Integrating x/open dtp into grid services for grid transaction

processing. In: International Workshop on Future Trends in Distributed Computing Systems (FT-
DCS), pp. 128–134. IEEE Computer Society, Los Alamitos (2004)

63. Ramamritham, K., Chrysanthis, P.K.: Advances in Concurrency Control and Transaction Processing.
IEEE Computer Society, Los Alamitos (1997)

64. Reuter, A.: ConTracts: a means for extending control beyond transaction boundaries. In: Third Inter-
national Workshop on High Performance Transaction Systems (1989)

65. Serrano-Alvarado, P., Roncancio, C., Adiba, M.E.: A survey of mobile transactions. Distrib. Parallel
Databases 16(2), 193–230 (2004)

66. Simon, E.: Distributed Information Systems: From Client/Server to Distributed Multimedia. McGraw-
Hill, New York (1996)

67. Simple object access protocol (SOAP) version 1.2 part 0: Primer, June 2003. http://www.w3.org/TR/
2003/REC-soap12-part0-20030624/

68. Sheth, A.P., Rusinkiewicz, M.: On transactional workflows. IEEE Data Eng. Bull. 16(2), 37–40
(1993)

69. Sumerians: language and writing. wikipedia.org (2007). http://en.wikipedia.org/wiki/Sumerians
70. Steinbach, T., Webber, J., Türker, C.: Proposed grid transaction rg-charter. http://www.data-grid.org/

tm-rg-charter.html
71. Türker, C., Haller, K., Schuler, C., Schek, H.-J.: How can we support grid transactions? towards

peer-to-peer transaction processing. In: Conference on Innovative Data Systems Research (CIDR),
pp. 174–185 (2005)

72. Universal description, discovery and integration (UDDI) (2006). http://www.uddi.org/
73. Vonk, J., Grefen, P.W.P.J.: Cross-organizational transaction support for e-services in virtual enter-

prises. Distrib. Parallel Databases 14(2), 137–172 (2003)
74. Vonk, J., Grefen, P.W.P.J., Boertjes, E., Apers, P.M.G.: Distributed global transaction support for

workflow management applications. In: Bench-Capon, T.J.M., Soda, G., Min, A. (eds.) Database and
Expert Systems Applications (DEXA). Lecture Notes in Computer Science, vol. 1677, pp. 942–951.
Springer, Berlin (1999)

75. Vonk, J., Wang, T., Grefen, P.W.P.J.: A dual view to facilitate transactional qos. In: International Work-
shops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 381–
382. IEEE Computer Society, Los Alamitos (2007)

76. Wang, T.: Towards a transaction framework for contract-driven, service-oriented business processes.
In: Hanemann, A. (ed.) Proceedings of IBM PhD Student Symposium at the 3rd International Con-
ference on Service Oriented Computing (ICSOC). IBM Research Report RC23826, IBM Research
Division (2005)

77. Warne, J.: An extensible transaction framework: technical overview. Technical report, ANSA Archi-
tecture for Open Distributed Systems Project (1993)

78. Wang, T., Grefen, P.W.P.J., Vonk, J.: Abstract transaction construct: building a transaction framework
for contract-driven, service-oriented business processes. In: Dan, A., Lamersdorf, W. (eds.) ICSOC
Conference. Lecture Notes in Computer Science, vol. 4294, pp. 434–439. Springer, Berlin (2006)

79. Wächter, H., Reuter, A.: The contract model. In: Database Transaction Models for Advanced Appli-
cations, pp. 219–263. Morgan Kaufmann, San Mateo (1992)

80. Weikum, G., Schek, H.-J.: Concepts and applications of multilevel transactions and open nested trans-
actions. In: Database Transaction Models for Advanced Applications, pp. 515–553. Morgan Kauf-
mann, San Mateo (1992)

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os.pdf
http://www.oracle.com/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://en.wikipedia.org/wiki/Sumerians
http://www.data-grid.org/tm-rg-charter.html
http://www.data-grid.org/tm-rg-charter.html
http://www.uddi.org/

270 Distrib Parallel Databases (2008) 23: 235–270

81. Web services description language (WSDL) version 2.0 part 0: Primer, August 2005. http://www.w3.
org/TR/2005/WD-wsdl20-primer-20050803/

82. Wang, T., Vonk, J., Grefen, P.W.P.J.: TxQoS: a contractual approach for transaction management.
In: International EDOC Enterprise Computing Conference (EDOC), pp. 327–338. IEEE Computer
Society, Los Alamitos (2007)

83. X/Open Company Ltd: Distributed transaction processing: reference model, version 3 (1996)

http://www.w3.org/TR/2005/WD-wsdl20-primer-20050803/
http://www.w3.org/TR/2005/WD-wsdl20-primer-20050803/

	A survey on the history of transaction management: from flat to grid transactions
	Abstract
	Introduction
	Structure of this paper

	Concept and history of transactions
	The transaction concept
	The history of transaction management

	Classic history: the classical transaction model
	ACID properties
	VCRP properties
	Flat transactions
	Conclusion on classic history

	Middle ages: advanced transaction models
	Checkpoints and save points
	Distributed and nested transactions
	Chained transactions and sagas
	Conclusion on the middle ages

	Renaissance: workflow transactions
	Transactional workflow versus workflow transaction
	Activities/transaction model
	ConTracts model
	Exotica
	The WIDE transaction model
	X-transactions
	Conclusion on the renaissance

	Modern times: web services transactions
	Business transaction protocol
	Web services transactions
	WS-coordination
	WS-AtomicTransaction
	WS-BusinessActivity

	Web services composite application framework
	Web services context
	Web services coordination framework
	Web services transaction management

	Conclusion

	Modern times: grid transactions
	Global grid forum
	GridTP
	Unnamed grid transaction approach
	Conclusion on modern times

	Transaction frameworks
	Conceptual transaction frameworks
	Meta transaction model (ACTA)
	Business transaction framework

	Middleware transaction frameworks
	CORBA activity service framework
	J2EE transaction framework

	Conclusion on transaction frameworks

	Conclusions
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

