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Abstract This paper employs an efficacious analytical

tool, adaptive simplified human learning optimization

(ASHLO) algorithm, to solve optimal power flow (OPF)

problem in AC/DC hybrid power system, considering

valve-point loading effects of generators, carbon tax, and

prohibited operating zones of generators, respectively.

ASHLO algorithm, involves random learning operator,

individual learning operator, social learning operator and

adaptive strategies. To compare and analyze the compu-

tation performance of the ASHLO method, the proposed

ASHLO method and other heuristic intelligent optimiza-

tion methods are employed to solve OPF problem on the

modified IEEE 30-bus and 118-bus AC/DC hybrid test

system. Numerical results indicate that the ASHLO method

has good convergent property and robustness. Meanwhile,

the impacts of wind speeds and locations of HVDC

transmission line integrated into the AC network on the

OPF results are systematically analyzed.

Keywords Adaptive simplified human learning

optimization algorithm, Optimal power flow, AC/DC

hybrid power system, Valve-point loading effects of

generators, Carbon tax, Prohibited operating zones

1 Introduction

With the increasingly wide use of high-voltage direct

current (HVDC) transmission line as well as large scale

sustainable energy integration, the operation of modern

power system becomes as more complex and changeable

than ever before. Therefore, how to analyze the impacts of

HVDC transmission line and sustainable energy integration

on the optimal power flow (OPF) results has been drawn

great attention.

Currently, there are a lot of researchers and scholars to

study the OPF problem considering HVDC transmission line

[1–3] or sustainable energy integration [4–6], separately.

The AC/DC OPF problem with voltage source converter

based multi-terminal DC networks is proposed in [1], which

is to minimize the transmission loss of the whole AC/DC

network with two different voltage source converter control

strategies considered. In [2], based on information gap

decision theory, the OPF model of AC/DC hybrid system

with high penetration of offshore wind farms is developed.

A method for solving the OPF and security constrained OPF

problem in AC/DC hybrid system is proposed in [3]. By

using improved levenberg-marquardt method [4] and inte-

rior point method [5], the OPF problem including wind farm
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integration is solved. And, variational key issues, wind

speed, wind turbine number and wind power penetration

level, to influence the static performance of power system

are analyzed in [4]. To take the random characteristic of

wind speed into account, a dividing-stage strategy and a

multi-period dynamic OPF model are presented in [6].

However, it is difficult to find the literatures about OPF

problem considering both HVDC transmission line and

sustainable energy integration simultaneously. Besides, the

OPF model becomes more and more complex due to taking

the practical operation condition into account, such as

prohibited operating zones [7, 8], valve-point loading

effects of generators [9–14] and carbon tax [15–17]. Under

the complex circumstance, the objective function in the

constructed OPF model becomes as discontinuous, non-

convex and non-differentiable. Therefore, the derivative-

based mathematical optimization method [4, 5] can not be

employed to solve the OPF problem. To find a method with

good convergent property and robustness to solve OPF

problem considering those critical conditions above is the

primary job of this paper.

Luckily, an adaptive simplified human learning opti-

mization (ASHLO) method emerges [18], which updates

new solutions and searches for the optimal solution by

mimicking the human learning process. The random learn-

ing operator, individual learning operator, social learning

operator and adaptive strategies are involved in the ASHLO

method. The excellence of global search ability and the

robustness for various problems [18] are the primary char-

acteristics of the ASHLO method. Therefore, application of

ASHLO method to solve OPF problem in AC/DC hybrid

power system including wind farms integration is main

contribution of this paper. Meanwhile, comparison and

analysis of the computation performances of the ASHLO

method compared to other heuristic intelligent optimization

method, e.g., genetic algorithm (GA), discrete binary parti-

cle swarm optimization (DBPSO) method, binary harmony

search (BHS) algorithm and simple HLO method, are made

in this paper. The impacts of wind speeds and locations of

HVDC transmission line into the power system on the OPF

results are also systematically analyzed.

This paperfirstly presents theOPFmodel ofAC/DChybrid

power system with wind farms integration in Section 2, con-

sidering prohibited operating zones, valve-point loading

effects of generators and carbon tax. Section 3 gives a brief

descriptionof theASHLOmethod, involving randomlearning

operator, individual learning operator, social learning opera-

tor and adaptive strategies. The proposed ASHLO method to

solve AC/DC OPF problem on the modified IEEE 30-busand

118-bus test system, and the analysis of the impacts of wind

speeds and locations of HVDC line into the power system on

the OPF results are reported in Section 4, followed by the

conclusions in Section 5.

2 OPF model of AC/DC hybrid power system
with wind farms integration

2.1 Objective function of OPF problem

Taking minimum fuel costs of the conventional gener-

ators as the expected target as well as taking the valve-

point loading effects of generators, prohibited operating

zones and carbon tax into account, the objective function of

OPF model can be described in (1) [8, 15],

min
XNG

i¼1

a2iP
2
Gi þ a1iPGi þ a0i þ ei sin½fiðPmin

Gi � PGiÞ�
�� ��

þ PiðsiP2
Gi þ riPGi þ qiÞ

( )

ð1Þ

where NG is the set of conventional generators; a2i, a1i, a0i
are the fuel cost coefficients of generators; ei, fi are the fuel

consumption coefficients considering valve-point loading

effects of generators; pi is the price of carbon emission; si,

ri, qi are the carbon emission coefficients of generators; PGi

is the real power of the ith generator; Pmin
Gi is the lower

bound of the real power of the ith generator, respectively.

Meanwhile, the control variables, output of the generators,

become discontinuous due to considering the prohibited

operating zones [8], which are shown in (2):

PGi 2 ½Pmin
Gi ; P

l
Gi;1� [ ½Pu

Gi;1; P
l
Gi;2� [ � � � [ ½Pu

Gi;K ; P
max
Gi �

ð2Þ

where Pmax
Gi is the upper bound of the real power of the ith

generator; Pu
Gi;j and Pl

Gi;jþ1 are the upper and lower bound

of the jth and j?1th prohibited operating zones of the ith

generator, respectively.

2.2 Equality constraints of OPF problem

The wind farm is assumed to connect with node i. The

double-fed induction generator (DFIG) is applied to the

wind turbine generator, and the consumption of reactive

power can be compensated by the controller. Therefore, the

control mode with the constant power factor of wind tur-

bine generator can remain unchanged [19–21]. In order to

avoid the influence of reactive power consumption of wind

turbines on OPF results, the power factor is maintained at

1.0 in this paper, which means that the reactive power

output of wind farm can be as 0 approximately. Pwi is the

active powers provided by wind generators. The relation-

ship between Pwi and wind speed V is shown in Fig. 1,

where Vci, Vr and Vco are the cut-in wind speeds, rated wind

speeds and cut-out wind speeds, Pr is the rated active

power of wind generators, respectively.

For the AC node, the AC power flow equations are

written as:
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DPi ¼ PGi þ Pwi � PDi � Ui

P
j2i

UjðGij cos hij þ Bij sin hijÞ ¼ 0

DQi ¼ QGi � QDi � Ui

P
j2i

UjðGij sin hij � Bij cos hijÞ ¼ 0

8
<

:

ð3Þ

where QGi is the reactive power by generator; PDi, QDi are

real and reactive load; Ui is the amplitude of node voltage;

Gij, Bij are conductance and susceptance between node i

and j; hij is the difference of phase angle of node voltage

between node i and j, respectively.

For the DC node, the DC transmission power should be

added into the power flow equations, and the power flow

equations should be modified as:

DPi ¼ PGi � PDi � Ui

X

j2i
UjðGij cos hij þ Bij sin hijÞ

� UdkIdksignðiÞ þ Pwi ¼ 0

DQi ¼ QGi � QDi � Ui

X

j2i
UjðGij sin hij � Bij cos hijÞ

� UdkIdk tan/k ¼ 0

8
>>>>>>><

>>>>>>>:

ð4Þ

where Idk is the DC current; Udk is the DC voltage; /k is

the power factor angle; signðiÞ ¼ 1 for the rectifier,

signðiÞ ¼ �1 for the inverter, respectively.

Meanwhile, the DC system includes converter voltage

equations, Dd1k and Dd2k, DC network equations Dd3k and
control equations Dd4k and Dd5k, which are expressed in (5)
[22–24]:

Dd1k ¼ Udk � kTkUi cos hdk þ XckIdk

Dd2k ¼ Udk � kckTkUi cos/k

Dd3k ¼ signðkÞIdk �
Xnc

j¼1

gdkjUdj k ¼ 1; 2; . . .;nc

Dd4k ¼ d4kðIdk;Udk; cos hdk; kTkÞ
Dd5k ¼ d5kðIdk;Udk; cos hdk; kTkÞ

8
>>>>>>>>><

>>>>>>>>>:

ð5Þ

where nc is the number of converters; kTk is the ratio of

converter transformer; Xck is commutation reactance; hdk is
the trigger angle ar for the rectifier; hdk is the extinction

angle ci for the inverter; kc is the constant [24]; gdkj is the

elements of node conductance matrix in the DC network

after eliminating the contact node.

2.3 Inequality constraints of OPF problem

The inequality constraints of the OPF problem contain

two categories, the security constraints for AC part and

Pmin
Gi �PGi �Pmax

Gi i 2 NG

Qmin
Gi �QGi �Qmax

Gi i 2 NG

tmin
ij � tij � tmax

ij ði; jÞ 2 NT

Umin
i �Ui �Umax

i i 2 f1; 2; . . .; ng
0� I2ij �ðI2ijÞ

max ði; jÞ 2 NL

0�Qci �Qmax
ci i 2 Nc

Umin
dk �Udk �Umax

dk k 2 f1; 2; . . .; ncg
Imin
dk � Idk � Imax

dk k 2 f1; 2; . . .; ncg
kmin
Tk � kTk � kmax

Tk k 2 f1; 2; . . .; ncg
hmin
dk � hdk � hmax

dk k 2 f1; 2; . . .; ncg

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð6Þ

that for DC part. In short, the whole security constraints

can be written as in (6), where Pmax
Gi , Qmax

Gi , tmax
ij , Umax

i ,

ðI2ijÞ
max

, Qmax
ci , Umax

dk , Imax
dk , kmax

Tk , hmax
dk are the upper bound of

the real power, reactive power of generator, ratio of

transformer, amplitude of node voltage, line currents, shunt

capacitor, DC voltage, DC current, ratio of converter

transformer, trigger angle or extinction angle, respectively;

NT, NL, Nc are the set of the transformer, the restricted line

and shunt capacitors, respectively. Besides, line current of

branch i - j can be expressed as in (7):

I2ij ¼ ðG2
ij þ B2

ijÞ½ðUi cos hi � Uj cos hjÞ2

þ ðUi sin hi � Uj sin hjÞ2�
ð7Þ

Hence, the OPF calculation in AC/DC hybrid power

system can be simplified as the nonlinear optimization

problem in (8):

min zf ðxÞ
s:t: gðxÞ ¼ 0

hðxÞ� 0

8
><

>:
ð8Þ

where x ¼ ½PT
G;Q

T
G; t

T;UT;QT
c ; ðI2ijÞ

T;UT
dk; I

T
dk; k

T
Tk; h

T
dk� 2

Rn is the vector of control variables and state variables;

f ðxÞ is the objective function; gðxÞ is the equality con-

straints, including AC node power flow equations, DC node

power flow equations, and DC system equations; hðxÞ is

the inequality constraints, including AC security con-

straints and DC security constraints, respectively.

Pwi

Pr

o
Vr VcoVci V

Fig. 1 Wind speed and active power curve of wind generators
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3 Adaptive simplified human learning
optimization algorithm

Adaptive simplified human learning optimiza-

tion(ASHLO) algorithm involves the random learning

operator, individual learning operator, social learning

operator [25–27], and adaptive strategies [18], which are

mimicking human learning process, to find the optimal

solution of the optimization problem. The remarkable

feature of the ASHLO method is not easy falling into the

local optima.

Suppose that the ith solution, based on decimal base, of

the optimization problem is composed of N elements in (9):

xdecimal
i ¼ ½xdi;1; xdi;2; . . .; xdi;N � ð9Þ

Then, by using the binary encoding technique, the solution

in (9) can be extended as in (10), where each M binary bits

in (10) represents an element in (9), and the relationship is

P ¼ N �M. Besides, the transformation relationship

between one element xdi;j in (9) and M bits in (10) can be

expressed in (11):

x
binary
i ¼ ½xbi;1; . . .; xbi;M; xbi;Mþ1; . . .; x

b
i;2M ; . . .; x

b
i;ðN�1Þ�Mþ1; . . .; x

b
i;P�

ð10Þ

xdi;j ¼ x
d;min
i;j þ

ðxd;max
i;j � x

d;min
i;j Þ

2M � 1

XM

l¼1

xbi;l2
ðM�lÞ

� �( )
ð11Þ

where x
d;min
i;j and x

d;max
i;j are the lower and upper bound of

the jth element in (9).

By initializing all the individuals, the population of

ASHLOmethod is obtained in (12), where O is the number of

population; P is the dimension of solution encoded by binary

encoding technique; xi is the ith individual, respectively.

X ¼

x1

x2

..

.

xi

..

.

xO

2

66666666664

3

77777777775

¼

x11 x12 � � � x1j � � � x1P

x21 x22 � � � x2j � � � x2P

..

. ..
. ..

. ..
.

xi1 xi2 � � � xij � � � xiP

..

. ..
. ..

. ..
.

xO1 xO2 � � � xOj � � � xOP

2

66666666664

3

77777777775

xij 2 f0; 1g; 1 � i � O; 1 � j � P

ð12Þ

3.1 Random learning operator

Random learning is defined as the process that indi-

viduals can explore new strategies randomly to escape

from the local optima. New individuals can be generated

in (13) when ASHLO method performs random learning

operator.

xij ¼ Randð0; 1Þ ¼
0; 0� randð Þ\0:5

1; 0:5� randð Þ� 1

(
ð13Þ

where randðÞ is a stochastic number between 0 and 1.

3.2 Individual learning operator

BIKDi
¼

bi1

bi2

..

.

bir

..

.

biL

2
66666666664

3
77777777775

¼

bi1;1 bi1;2 � � � bi1;j � � � bi1;P

bi2;1 bi2;2 � � � bi2;j � � � bi2;P

..

. ..
. ..

. ..
.

bir;1 bir;2 � � � bir;j � � � bir;P

..

. ..
. ..

. ..
.

biL;1 biL;2 � � � biL;j � � � biL;P

2
66666666664

3
77777777775

1� i�O; 1� r� L; 1� j�P; bir;j 2 f0; 1g
ð14Þ

Individuals learn to search for the optima by the individual

learning operator based on their individual knowledge

database (BIKD), which is used to store personal best

experience, where BIKDi
in (14) is the individual knowledge

database of person i, bir is the r
th best solution of person i, L

is the size of the BIKDi
. New individuals can be updated in

(14) based on the knowledge in the BIKDwhen ASHLO

method performs individual learning.

xij ¼ bir;j ð15Þ

3.3 Social learning operator

Like individual learning operator, a social knowledge

database (DSKD) is also constructed in (16) to store the best

individual of the population. Therefore, social learning is

defined as the process that all the individuals learn from the

best individual of the population.

DSKD ¼

d1

d2

..

.

ds

..

.

dT

2

66666666664

3

77777777775

¼

d1;1 d1;2 � � � d1;j � � � d1;P

d2;1 d2;2 � � � d2;j � � � d2;P

..

. ..
. ..

. ..
.

ds;1 ds;2 � � � ds;j � � � ds;P

..

. ..
. ..

. ..
.

dT ;1 dT ;2 � � � dT ;j � � � dT ;P

2

66666666664

3

77777777775

1� s� T; 1� j�P; 1� T �O; ds;j 2 f0; 1g
ð16Þ

where T is the size of the DSKD; ds is the sth best individual

of the population in the DSKD. Based on the knowledge in

the DSKD, new individuals can be updated in (17) when

ASHLO method performs social learning.

xij ¼ ds;j ð17Þ
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3.4 Adaptive strategies

According to the random learning operator, individual

learning operator, and social learning operator, new indi-

viduals can be updated in (18) iteratively based on the

experience knowledge stored in the BIKD and DSKD.

xij ¼
randð0; 1Þ 0 � randð Þ � pr

bir;j pr \ randð Þ � pi
ds;j pi \ randð Þ � 1

8
<

: ð18Þ

where parameters pr, pi � pr, 1� pi are the probabilities to

perform random learning, individual learning, and social

learning, respectively. To avoid falling into the local

optima and improve the robustness of the ASHLO method,

adaptive strategies are proposed in [18] to improve the

search efficiency and relieve the effort of the parameters

setting, since pr and piinfluence the computation

performance of the algorithm. Therefore, the adaptive

strategies put forward in (19), which involves updating pr
and pi adaptively.

pr ¼ pmax
r � pmax

r � pmin
r

NIte
max

NIte
i

pi ¼ pmin
i þ pmax

i � pmin
i

NIte
max

NIte
i

8
>>><

>>>:
ð19Þ

where NIte
i and NIte

max are the current iteration number and

maximum iteration number; pmin
r and pmin

i are the minimum

value of pr and pi; p
max
r and pmax

i are the maximum value of

pr and pi, respectively. Therefore, during the early stage of

the iteration process, the individuals will move in the

direction towards the optimal individual of the initial

population, which can speed up the convergent speed.

Meanwhile, the large probability pr to perform random

learning at the early stage of the iteration process is also to

keep population diversity and avoid falling into the local

optima. In contrast, during the end of stage of the iteration

process, the individuals will primarily move in the direc-

tion towards the optima of each individual, which can

effectively obtain stable optimal solution.

In short, according to the description of the ASHLO

method, the flowchart of the ASHLO method to solve OPF

problem in AC/DC hybrid power system is given in Fig. 2.

4 Numerical results and discussion

The AC/DC OPF problem considering valve-point

loading effects of generators, prohibited operating zones,

and carbon tax, is tested on the modified IEEE 30-bus[4]

and IEEE 118-bus [22, 23] AC/DC hybrid test system. The

test is operated on an advanced micro devices (ADM)

3.20 GHz with 4.00 GB of RAM. Without specification, all

data are taken as per-unit value and base value is

100 MVA. A computer program is implemented in

MATLAB to solve the AC/DC OPF problem.

4.1 ModifiedIEEE 30-bus AC/DC hybrid test system

The modified IEEE 30-bus AC/DC hybrid test system

derives from the IEEE 30-bus system [4], adding one DC

transmission line into AC network connecting node 10 and

Termination: 
?

Start

Initialization. Idividual x, BIKD, DSKD; Set the 
parameters:            ,    

,           ,           ,               , and

Operate AC/DC power flow by 
levenberg-marquardt method [22]-

[23], and calculate the value of 
objective function f. If the variables 
beyond the security constraints, a 

penalty term is added into f

Update new individuals by 
random learning, individual 

learning, social learning from 
(18), based on BIKD and DSKD

Update    ,      based on adaptive 
strategies from (19)

Output AC/DC OPF 
results

End

Y

N

Operate AC/DC power flow calculation, 
and calculate the value of objective 

function f of each new individual. If the 
variables in new solution beyond the 
security constraints, a penalty term is 

added into f

Update BIKD and DSKD

max
rp

min
rp

max
ip

min
ip Ite 1iN = Ite

maxN

Ite Ite
maxiN N==

rp ip

Fig. 2 Flow chart of the ASHLO method to solve AC/DC OPF

problem
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23. The converter connected to node 10 is rectifier and to

23 is inverter. The corresponding parameters and control

mode of HVDC transmission line are given in Table 1

[22, 23]. Besides, the upper bound of the line currents

ðI2ijÞ
max

is set three times as large as that in the original

IEEE 30-bus test system due to adding one HVDC trans-

mission line.

Meanwhile, the parameters in ASHLO method are set as

the number of population O = 50, the dimension of solu-

tion based on binary encoding P = 300, including 15

control variables and 20 binary bits for each variable due to

the coupling relationship between AC variables and DC

variables as well as the specified control mode for HVDC

line, the probability pmax
r ¼ 10=P, pmin

r ¼ 1=P,

pmax
i ¼ 0:9þ 1=P, pmin

i ¼ 0:8þ 1=P [18], the penalty

multiplier k ¼ 10000, respectively. To test the computation

performance of the proposed ASHLO method, the genetic

algorithm (GA), discrete binary particle swarm optimiza-

tion method (DBPSO), human learning optimization

method without adaptive strategies (HLO), and binary

harmony search algorithm (BHS) are also employed to

solve AC/DC OPF problem. In order to simplify the

solution procedure, the value of r and s in (19) is identical

to 1. Table 2 gives the fuel cost coefficients and the

coefficients of valve-point loading effects of generators.

Table 3 and Table 4 give the carbon tax coefficients and

upper and lower bound of the real and reactive power of

generators.

To begin with, we do the research on the impacts of

maximal iteration number, NIte
max, on the OPF results

obtained by ASHLO method, since the probabilities pr and

pi are associated with NIte
max. At this time, no wind farms are

assumed to integrate with this hybrid power system, and

fifty times independent repeated experiments are carried

out by ASHLO method under different NIte
max. The rela-

tionship between NIte
max and the objective function obtained

by ASHLO method is given in Table 5, including the

minimum, maximum, mean, and standard deviation of the

objective function. From the Table 5, the impacts of NIte
max

on the OPF results exist. Within a certain range, the more

stable solutions can be obtained with the increasing of

NIte
max. However, the stability of the ASHLO method will be

deteriorated if the NIte
max is beyond 200. So, we take NIte

max ¼
200 as the parameter in the ASHLO method.

Meanwhile, to compare the computation performance of

the ASHLO method, fifty times independent repeated

experiments are also carried out by HLO method, GA

method, DBPSO method, and BHS method, respectively.

Figure 3 shows the objective function of different methods

under different run times, and Table 6 summarizes the

Table 1 Parameter and control mode of HVDC line

HVDC line Line parameters Control mode

Rectifier Inverter

10 23 Xc1 = Xc2=0.013

R = 0.0388

Rectifier: ar, Pdr

Inverter: ci, Udi

Table 2 Cost coefficients of fuel and valve-point loading effects of

generators

Generator number a2i a1i a0i ei fi

1 384.32 2000 0 1800 3.7

2 2500 2000 0 1600 3.8

3 100 4000 0 1400 4.0

4 100 4000 0 1200 4.5

5 100 4000 0 1300 4.2

6 100 4000 0 1350 4.1

Table 3 Carbon tax coefficients

Generator number pi si ri qi

1 320 0.004 0.25 0

2 320 0.005 0.25 0

3 320 0.004 0.25 0

4 185 0.500 4.0 0

5 185 0.500 4.0 0

6 285 0.010 2.0 0

Table 5 Relationship between NIte
max and objective function obtained

by ASHLO method

NIte
max

fmin fmax fmean fdeviation

50 12710 25046 17928 4461

100 11945 23878 16364 4359

200 11471 23738 14773 4216

300 11484 23346 14405 4332

Table 4 Upper and lower bound of the real and reactive power of

generators

Generator

number

Pmax Pmin Qmax Qmin Prohibited operating

zones

1 3.602 0 0.1 0 [1.65, 2.05]

2 1.4 0 0.5 -0.4 [0.65, 0.85]

3 1.0 0 0.4 -0.4 [0.45, 0.65]

4 1.0 0 0.4 -0.1 [0.45, 0.65]

5 1.0 0 0.24 -0.06 [0.45, 0.65]

6 1.0 0 0.24 -0.06 [0.45, 0.65]
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minimum, maximum, mean, and standard deviation of the

objective function by different methods during the fifty

times independent repeated experiments. It can be observed

from the Table 6 that, all the computation performances,

including minimum, maximum, mean, and standard devi-

ation of objective function, obtained by ASHLO method

are less than that by other methods. It is noted that the

maximal objective function obtained by DBPSO method

reaches 34025 $/hr, which is caused by one of the control

variables or state variables in the solution beyond the

constraints and adding additional penalty term, k ¼ 10000.

Moreover, from the Fig. 3, compared to other methods, the

ASHLO method also gets the slightest fluctuation of

objective function, which implies that the ASHLO method

has good convergent property and robustness.

Furthermore, based on the good computation perfor-

mances of the ASHLO method, we can take wind farms to

integrate with this AC/DC hybrid test system, and research

the impacts of wind speeds on the OPF results. There are

assumed 20 identical wind generators in each wind farm,

and each wind generator has the nominal capacities equal

to 600 kW. The equivalent wind farms are connected to

nodes 7, 17, 21, and 30 of this modified IEEE 30-bus AC/

DC hybrid test system. The identical cut-in wind speed,

cut-out wind speed and rated wind speed of wind farm are

set as 3, 20, 13.5 m/s, respectively. Figs. 4, 5, 6, 7, 8, 9 and

10 describe the corresponding solutions under different

wind speeds, including objective function, real and reactive

power of generators, amplitude of AC node voltage, ratio

of transformers and shunt capacitors, and DC variables,

respectively.

It can be seen from the Fig. 4 that the total cost is

decreased with the increasing of wind speed V, which is

from 11471 $/hr at wind speed V = 0 to 9061.6 $/hr at

rated wind speed Vr. That demonstrates the wind farm

integration plays a positive role in reducing the total cost.

Compared to the total cost, the valve-point cost is increased

with the increasing of wind speed and decreased

Table 6 Results of objective function of different methods

Method fmin fmax fmean fdeviation

HLO 12124 24999 18496 4765

GA 13678 26891 21076 4938

DBPSO 13175 34025 21244 4718

BHS 12483 24690 19406 4631

ASHLO 11471 23738 14773 4216
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afterwards, which also indicates the introduction of wind

farm will not always decrease the valve-point cost.

Because, according to (1), the valve-point cost is deter-

mined by its function property.

From the Fig. 5, except the generator 2, there are no

obvious change in the real power of other generators,

which implies the decreasing of total cost is mainly caused

by reducing output of the generator 2 with the increasing of

wind speed. Because, with the wind farm integration, it is

priority to reduce the output of generator 2 from the eco-

nomic point of view due to its large power generation cost

coefficient. From the Fig. 6, different reactive power of

generators under variational wind speeds are obtained,

which are mainly used to the consumption of the reactive

load and the converter in this AC/DC hybrid system.

Meanwhile, it can be seen from the Figs. 7–8 that, the

amplitude of AC node voltage varies from the different

wind speed due to the different power flow distribution,

including the different output of generators, ratio of

transformers, shunt capacitors and DC transmission

power.

Furthermore, from the Fig. 9, the DC transmission real

power in rectifier Pdr and inverter Pdi fluctuates in the

vicinity of 1.0 and 0.97 p.u., respectively. In contrast, the

reactive power consumption Qdr by rectifier fluctuates

greatly, which also causes the different reactive power of

generators under the variational wind speeds. It can be

observed from the Fig. 10, compared to the trigger angle ai,

Pdr; Qdr; Pdi; Qdi
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there are no significant fluctuations in other calculation

results of DC part. That is mainly caused by the specified

control mode as well as the coupling relationship between

AC system and HVDC transmission line, based on the

voltage U on the converter AC bus.

4.2 Modified IEEE 118-bus AC/DC hybrid test

system

The modified IEEE 118-bus AC/DC hybrid test system

originates from the IEEE 118-bus test system [22, 23],

substituting DC transmission line for AC transmission line

connecting nodes 30 and 38, and adding shunt capacitor on

node 30. The corresponding parameters and control mode

of HVDC transmission line, and the coefficients of valve-

point loading effects of every six generators as well as their

carbon tax coefficients, are the same as that in 4.1. Besides,

the upper bound of the line currents is set three times as

large as that in the original test system, and the upper

bound of reactive output by some generators are also

expanded due to adding one HVDC line. The penalty

multiplier reset as k ¼ 100000 in this test system.

Firstly, no wind farms are assumed to integrate with this

hybrid power system, and fifty times independent repeated

experiments are carried out by ASHLO method, HLO

method, GA method, DBPSO method, and BHS method.

Fig. 11 shows the objective function of different methods

under different run times, and Table 7 summarizes the

minimum, maximum, mean, and standard deviation of the

objective function by different methods during the fifty

times independent repeated experiments.

It can be observed from the Table 7 and Fig. 11 that,

compared to other heuristic intelligent optimization

method, ASHLO method obtains the least standard devia-

tion of the objective function, which implies that the

ASHLO method has good convergent property and

robustness again. Moreover, the least mean value of the

objective function obtained by ASHLO method also shows

its excellent feature, not easy falling into the local

optima.

Then, in order to research the impacts of locations of

HVDC transmission line on the AC/DC OPF results, four
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Fig. 11 Objective function of different methods under different run

times

Table 7 Results of objective function of different methods

Method fmin fmax fmean fdeviation

HLO 76495 88004 80307 2216.9

GA 76249 90302 80895 2709.9

DBPSO 81867 94727 88099 2872.7

BHS 78582 90880 82334 2405.9

ASHLO 67152 72598 69341 1227.2

Table 8 Calculation results of DC part under different cases

Variables Udr Udi Idr Idi kTr

Case1 0.9675 0.9251 1.0944 1.0944 1.0659

Case2 0.9615 0.9105 1.3143 1.3143 1.0119

Case3 0.9432 0.9018 1.0672 1.0672 1.0709

Variables kTi ar ci ur ui

Case1 1.0140 17.1900 16.3651 18.8790 18.2487

Case2 1.0372 15.3886 24.5256 17.8075 26.1670

Case3 1.0278 22.1139 16.2377 23.4225 18.1341

Wind speed (m/s)
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cases are considered. Case1 means the HVDC transmission

line connecting nodes 30 and 38. Case2 means the HVDC

transmission line connecting nodes 63 and 64. Case3

means the HVDC transmission line connecting nodes 94

and 95. Case4 means there are noHVDC transmission line

adding to this modified power system. The ASHLO method

is employed to solve the OPF problem under different

cases. Tables 8 and Figs. 12, 13, 14, 15 and 16 give the

corresponding optimal solutions, including DC variables,

outputs of generators, real and reactive powers of rectifier

and inverter, fuel cost, valve-point cost, carbon tax cost,

amplitude of AC node voltage, respectively.

From the Table 8 and Fig. 12, according to the simple

calculation, the maximal DC transmission real power in

Case2 can reach 1.2637 p.u. while that only 1.0588 p.u. in

Case1 and 1.0066 p.u. in Case3. What’s more, it can be

observed from the Figs. 13–14, although the total real

power of generators, 46.1939 p.u. in Case2, is larger than

that 45.9030 p.u. in Case1, 46.0223 p.u. in Case3, and

45.9133 p.u. in Case4, the total cost 65942 $/hr in Case2, is

lower than that 67152 $/hr in Case1, and 71047 $/hr in

Case4. That also indicates the impacts of variational

locations of HVDC transmission line on the OPF results

exist again. Besides, the total costs obtained by Case1,

Case2 and Case3, are all less than that by Case4, which

justifies the improvement of adding HVDC transmission
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line to this modified test system over the original system

standing from the economic point of view.

Meanwhile, it can be seen from the Fig. 13 that the total

cost of each Case is in terms of fuel cost, valve-point cost,

and carbon tax cost. Although the total cost in Case3,

64903 $/hr, is lower than that in other Cases, the carbon tax

cost in Case3, 29520 $/hr, is larger than that in Case1,

27819 $/hr. The fuel cost and valve-point cost in Case3 are

decreased to 22364 $/hr and 13019 $/hr, which demon-

strates that the minimal total cost in Case3 is obtained at

the cost of increasing carbon tax cost and decreasing fuel

cost as well as valve-point cost.

From Figs. 15–16, it is clear to see that the different

reactive power of generators and amplitude of AC node

voltage under different Cases exist due to the variational

locations of HVDC transmission line integration into the

AC network and its different optimal HVDC transmission

powers. Although the converters in Case2 consumes great

reactive power, the total reactive power of generators in

Case2, 13.5647 p.u., is lower than that in Case1,

14.2331 p.u., and Case3, 14.7018 p.u. That because a lot of

shunt capacitors, 2.8716 p.u., are required for this Case,

which can also compensate for lacking of reactive powers

on the corresponding node and maintain the voltage level.

5 Conclusion

This paper aims at application of the adaptive simplified

human learning optimization method (ASHLO) to solve

AC/DC OPF problem, which takes the valve-point loading

effects of generators, carbon tax, and prohibited operating

zones into account. To simulate the human learning pro-

cess, the random learning operator, individual learning

operator, social learning operator, and adaptive strategies

are involved in the proposed ASHLO method. The ASHLO

method and other heuristic intelligent optimization meth-

ods are tested on the modified IEEE 30-bus and 118-bus

AC/DC hybrid test system. Some important conclusions

can be drawn from the simulation results.

1) Compared to the GA method, HLO method, BHS

method and DBPSO method, ASHLO method has

good convergent property and robustness. Escaping

from the local optima is also the obvious characteristic

of the ASHLO method.

2) The impacts of wind speeds on the AC/DC OPF results

exist, which indicates that the wind power integration

plays a positive role in reducing the total cost.

Whereas, the integration of wind power will not

always decrease the valve-point cost due to its

function property.

3) The impacts of locations of HVDC transmission line

into the AC network on the AC/DC OPF results also

exist. Although the Case3 obtains the least total cost,

the DC transmission power in Case3 is also minimal.

Besides, the minimal total cost in Case3 is obtained at

the cost of increasing carbon tax cost and decreasing

fuel cost as well as valve-point cost.
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