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Abstract

Background: In investigating differentially expressed genes or other selected features, researchers conduct
hypothesis tests to determine which biological categories, such as those of the Gene Ontology (GO), are enriched for
the selected features. Multiple comparison procedures (MCPs) are commonly used to prevent excessive false positive
rates. Traditional MCPs, e.g., the Bonferroni method, go to the opposite extreme: strictly controlling a family-wise error
rate, resulting in excessive false negative rates. Researchers generally prefer the more balanced approach of instead
controlling the false discovery rate (FDR). However, the q-values that methods of FDR control assign to biological
categories tend to be too low to reliably estimate the probability that a biological category is not enriched for the
preselected features. Thus, we study an application of the other estimators of that probability, which is called the local
FDR (LFDR).

Results: We considered five LFDR estimators for detecting enriched GO terms: a binomial-based estimator (BBE), a
maximum likelihood estimator (MLE), a normalized MLE (NMLE), a histogram-based estimator assuming a theoretical
null hypothesis (HBE), and a histogram-based estimator assuming an empirical null hypothesis (HBE-EN). Since NMLE
depends not only on the data but also on the specified value of π0, the proportion of non-enriched GO terms, it is
only advantageous when either π0 is already known with sufficient accuracy or there are data for only 1 GO term. By
contrast, the other estimators work without specifying π0 but require data for at least 2 GO terms. Our simulation
studies yielded the following summaries of the relative performance of each of those four estimators. HBE and HBE-EN
produced larger biases for 2, 4, 8, 32, and 100 GO terms than BBE and MLE. BBE has the lowest bias if π0 is 1 and if the
number of GO terms is between 2 and 32. The bias of MLE is no worse than that of BBE for 100 GO terms even when
the ideal number of components in its underlying mixture model is unknown, but has high bias when the number of
GO terms is small compared to the number of estimated parameters. For unknown values of π0, BBE has the lowest
bias for a small number of GO terms (2-32 GO terms), and MLE has the lowest bias for a medium number of GO terms
(100 GO terms).

Conclusions: For enrichment detection, we recommend estimating the LFDR by MLE given at least a medium
number of GO terms, by BBE given a small number of GO terms, and by NMLE given either only 1 GO term or precise
knowledge of π0.
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Background
The development of microarray techniques and high-
throughput genomic, proteomic, and bioinformatics
scanning approaches (such as microarray gene expres-
sion profiling, mass spectrometry, and ChIP-on-chip) has
enabled researchers to simultaneously study tens of thou-
sands of biological features (e.g., genes, proteins, single-
nucleotide polymorphisms [SNPs], etc.), and to identify
a set of features for further investigation. However, there
remains the challenge of interpreting these features bio-
logically. For a given set of features, the determination of
whether some biological information terms are enriched
(i.e., differentially represented), compared to the reference
feature set, is termed the feature enrichment problem. The
biological information term may be, for instance, a Gene
Ontology (GO) term [1,2] or a pathway in the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [3]. We call this
problem the feature enrichment problem.
This problem has been addressed using a number

of high-throughput enrichment tools, including DAVID,
MAPPFinder, Onto-Express and GoMiner [4-7]. Huang
et al. [8] reviewed 68 distinct feature enrichment analysis
tools. These authors further classified feature enrichment
analysis tools into 3 categories: singular enrichment anal-
ysis (SEA), gene set enrichment analysis (GSEA), and
modular enrichment analysis (MEA). In this article, we
propose empirical Bayes solutions to the SEA problem
using genes as archetypal features. Without loss of gener-
ality, we consider whether some specific biological cate-
gories are enriched for differentially expressed genes with
respect to the reference genes.
Indeed, like other enrichment-detection methods, our

methods apply much more broadly. They can assess
enrichment given any sub-list of features selected for
future study, not just a list of genes considered differen-
tially expressed. An anonymous referee pointed out these
examples of such lists of candidate features that arise in
the context of whole genome sequencing:

• genes with SNPs
• genes with copy number variations
• genes with loss of heterozygosity

These examples and those of our first paragraph do
not exhaust contemporary applications, and the feature
enrichment problem may occur in unforeseen domains of
study. Thus, our illustrative use of differential gene expres-
sion as a running example should not be interpreted as a
limitation.
Existing enrichment tools mainly address the feature

enrichment problem using a p-value obtained from an
exact or approximate statistical test (e.g., Fisher’s exact
test, the hypergeometric test, binomial test, or the χ2

test). For each GO term or other biological category, the

null hypothesis tested and its alternative hypothesis are as
follows:

H0 : the GO term is not enriched for the preselected genes
H1 : the GO term is enriched for the preselected genes

(1)

Here and in the remainder of the paper, we use GO
terms as concrete examples of biological categories with-
out excluding applications of the methods to categories
from other relevant databases. The general process begins
as follows:

• For each GO term, construct Table 1 based on the
preselected genes (e.g., differentially expressed (DE)
genes) and reference genes (e.g., all genes measured
in a microarray experiment).

• Compute the p-value for each GO term using a
statistical test that can detect enrichment for the
preselected genes.

Multiple comparison procedures (MCPs) are then
applied to the resulting p-values to prevent excessive false
positive rates. The false discovery rate (FDR) [9] is fre-
quently used to control the expected proportion of incor-
rectly rejected null hypotheses in gene enrichment studies
[10-12] because it has lower false negative rates than Bon-
ferroni correction and other methods of controlling the
family-wise error rate. Methods of FDR control assign q-
values [13] to biological categories, but q-values are too
low to reliably estimate the probability that the biologi-
cal category is not enriched for the preselected features.
Thus, we study application of better estimators of that
probability, which is technically known as the local FDR
(LFDR). Hong et al. [14] used an LFDR estimator to solve
a GSEA problem and pointed out that this was less biased
than the q-value for estimating the LFDR, the posterior
probability that the null hypothesis is true.
Efron [15,16] devised reliable LFDR estimators for a

range of applications in microarray gene expression anal-
ysis and other problems of large-scale inference. How-
ever, whereas microarray gene expression analysis takes
into account tens of thousands of genes, the feature
enrichment problem typically concerns a much smaller

Table 1 The number of differentially expressed (DE) and
equivalently expressed (EE) genes in a GO category

DE genes EE gene Total

In GO category x1 x2 x1 + x2

Not in GO category n − x1 N − n − x2 N − x1 − x2

Total n N − n N

Here, xi (i = 1, 2) is the number of DE (i = 1) or EE genes (i = 2) in the GO
category; n is the total number of DE genes; N is the total number of reference
genes.
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number of GO terms. While these methods are appro-
priate for microarray-scale inference, they are less reli-
able for enrichment-scale inference [17-19]. Thus, we will
specifically adapt LFDR estimators that are appropriate
for smaller-scale inference to address the SEA problem.
Again, we will focus on genes and GO terms for the sake
of concreteness. Nevertheless, the estimators used can be
applied to other features and to other biological terms
(e.g., metabolic pathways).
The sections of this paper are arranged as follows. We

first introduce some preliminary concepts in the feature
enrichment problem. Next, two previous LFDR estimators
and three new LFDR estimators are described. Following
this, we compare the LFDR estimators by means of a sim-
ulation study and an application to breast cancer data.
Finally, we draw conclusions and make recommendations
on the basis of our results.

Preliminary concepts
The feature enrichment problem described in the Back-
ground section is stated here more formally for the appli-
cation of LFDR methods in the next section.

Likelihood functions
In Table 1, x1 and x2 are the observed numbers DE
genes and EE genes in a given GO category, respectively.
Whereas n is the total number of DE genes, N is the total
number of reference genes. Thus,N−n is the total number
of EE genes. The columns gives the numbers of DE genes
and EE genes, and the rows give the numbers of genes in
the GO category and outside the GO category.
Let X1 and X2, respectively, denote the random num-

bers of DE and EE genes in a GO category. The observed
values x1 and x2 are modeled as realizations of X1 and X2.
X1 and X2 follow binomial distributions, namely, X1 ∼
Binomial(n,�1) and X2 ∼ Binomial(N − n,�2), where
�1 and �2 are the probabilities that a gene is DE and EE,
respectively, given that it is in the GO category. Under the
assumption that X1 and X2 are independent, the uncondi-
tional likelihood is

L(�1,�2; x1, x2, n,N) (2)
= Pr(X1 = x1,X2 = x2;�1,�2, n,N)

=
(
n
x1

)(
N − n
x2

)
�

x1
1 (1 − �1)

n−x1�x2
2 (1 − �2)

N−n−x2 ,

where 0 ≤ x1 ≤ n, 0 ≤ x2 ≤ N − n, and 0 ≤ �i ≤ 1,
i = 1, 2.
If we define

λ = ln[�2/(1 − �2)] , (3)

and

θ = ln[�1/(1 − �1)]−λ (4)

then θ is the parameter of interest, representing the log
odds ratio of the GO term, and λ is a nuisance param-
eter. Under the new parametrization, the unconditional
likelihood function (2) is

L(θ , λ; x1, x2, n,N) =
( n
x1

)(N−n
x2

) × ex1(θ+λ)ex2λ

(1 + eθ+λ)n(1 + eλ)N−n , (5)

where 0 ≤ x1 ≤ n and 0 ≤ x2 ≤ N − n.
In equation (5), we take the interest parameter θ and

also the nuisance parameter λ into consideration. Con-
sider statistics T and S, functions of X1 and X2, such that
T(X1,X2) = X1 and S(X1,X2) = X1 + X2. Thus, T rep-
resents the number of DE genes in a GO category, and S
represents the number of total genes in a GO category. Let
t and s be the observed values of T and S. The probabil-
ity mass function of T(x1, x2) = t evaluated at S(x1, x2) =
x1 + x2 = s, say Pr(T = t|S = s; θ , λ,N , n), does not
depend on the nuisance parameter λ [19]. See also Exam-
ple 8.47 of Severini[20]. Thus, we derive the conditional
probability mass function

fθ (t|s) = Pr(T = t|S = s; θ , n,N)

=
(n
t
)(N−n

s−t
)
etθ∑min(s,n)

j=max(0,s+n−N)

(n
j
)(N−n

s−j
)
ejθ

(6)

understood as a function of t.
By eliminating the nuisance parameter λ, we can reduce

the original data x1 and x2 by considering the statistic
T = t. However, the use of the conditional probability
mass function requires some justification because of con-
cerns about losing information during the conditioning
process. Unfortunately, in the presence of the nuisance
parameter, the statistic S(X1,X2) = X1 + X2 is not an
ancillary statistic for the parameter of interest. In other
words, the probability mass function of the conditional
variable S(X1,X2) may contain some information about
parameter θ [20]. However, following the explanation of
Barndor-Nielsen and Cox ([21], §2.5), the expectation
value of statistic S(X1,X2) equals the nuisance param-
eter. Hence, from the observation of S(X1,X2) alone,
the distribution of S(X1,X2) contains little information
about θ [21]. S(X1,X2) satisfies the other 3 conditions
of an ancillary statistic defined by Barndor-Nielsen and
Cox [21]: parameters θ and λ are variation independent;
(T(X1,X2), S(X1,X2)) is the minimal sufficient statistic;
and the distribution of T(X1,X2), given S(X1,X2) = s,
is independent of the parameter of interest, θ , given the
nuisance parameter λ. Therefore, the probability mass
function of S(X1,X2) contains little information about the
value of θ .
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Hypotheses and LFDRs
Considering GO term i, we denote the T, S, t, s, and θ

used in equation (6) as Ti, Si, ti, si, and θi. From Table 1,
hypothesis comparison (1) of GO term i is equivalent to

H0 : θi = 0 versus H1 : θ �= 0. (7)

Let S = 〈S1, S2, · · · , Sm〉 and s = 〈s1, s2, · · · , sm〉. Let BFi
denote the Bayes factor of GO term i:

BFi = Pr(Ti = ti|S = s, θi �= 0)
Pr(Ti = ti|S = s, θi = 0)

. (8)

It is called the Bayes factor because it yields posterior odds
when multiplied by prior odds. More precisely, the pos-
terior odds of the alternative hypothesis corresponding to
GO term i is

ωi = Pr(θi �= 0|ti)
Pr(θi = 0|ti) = BFi × (1 − π0)

π0
, (9)

where π0 is the prior conditional probability that a GO
term is not enriched for the preselected genes given s, i.e.,
π0 = Pr(θi = 0|S = s). Thus, (1−π0)/π0 is the prior odds
of the alternative hypothesis of enrichment. According to
Bayes’ theorem, the LFDR of GO term i is

LFDRi = Pr(θi = 0|ti) = 1
1 + ωi

, (10)

where ωi is defined in equation (9).

Methods
This section is divided into two parts:

1. Previous LFDR estimators.While not unique to
this paper, these methods are included for
comparison.

2. New LFDR estimators. Our main methodological
innovations are the uses of a conditional probability
mass function and of normalized maximum
likelihood for LFDR estimation.

The other original contributions of this paper are the esti-
mator comparisons of the next section. The comparisons
are made by simulation and by a case study.

Previous LFDR estimators
Binomial-based LFDR estimator
The version of the FDR that generalizes the LFDR
is the nonlocal FDR, which is defined as the ratio
of the expected number of false discoveries to the
expected total number of discoveries [17]. In our
running example, a discovery of enrichment is a
rejection of the null hypothesis of non-enrichment
at some significance level α, and a false discov-
ery of enrichment is a discovery of enrichment
corresponding to a case of no actual enrichment.
(This FDR has been called the “Bayesian FDR” [22]

to distinguish it from the FDR of Benjamini and
Hochberg [9]).
Let α denote any significance level chosen to be between

0 and 1. For all GO terms of interest, the nonlocal FDR
may be estimated by

F̂DR(α) = min
(

mα∑m
j=1 1{pj≤α}

, 1
)
, (11)

where m is the number of GO terms, pj is the p-value
of GO term j, and 1{pj≤α} is the indicator such that
1{pj≤α} = 1 if pj ≤ α is true and 1{pj≤α} = 0 otherwise.
Thus,

∑m
j=1 1{pj≤α} represents the number of discoveries

of enriched GO terms, and mα estimates the number of
such discoveries that are false.
Let ri be the rank of the p-value of GO term i, e.g.,

ri = 1 if the p-value of GO term i is the smallest among
all p-values of m GO terms. Based on a modification
of equation (11), the binomial-based estimator (BBE) of
LFDR of the GO term i is

L̂FDRi =
{
min

(mp2ri
2ri , 1

)
, ri ≤ m

2 ,
1, ri > m

2 .
(12)

It is conservative in the sense that it tends to overestimate
LFDR [17].

Histogram-based LFDR estimator
Efron [15,16] devised reliable histogram-based LFDR esti-
mators for a range of applications in microarray gene
expression analysis and other problems of large-scale
inference. Let zi = 	−1(pi) be the z-transformed statistic
of GO term i, where 	 is the standard normal cumulative
distribution function (cdf) and pi is the 2-sided p-value of
GO term i. For each GO term, the density is a mixture of
the form

f (zi) = π0f0(zi) + (1 − π0)f1(zi), (13)

where f0 is the density function of z for the non-enriched
GO terms, f1 is that for the enriched GO terms, and
π0 is the probability that a GO term is non-enriched.
The histogram-based LFDR of GO term i is estimated by
equation (14):

L̂FDRi = f̂0(zi)
f̂ (zi)

, (14)

where f̂ is the estimator of f that is estimated by a non-
parametric Poisson regression method [15,16]. We call
L̂FDRi the histogram-based estimator (HBE) if the den-
sity function f0 is assumed to be standard normal, N(0, 1),
and the histogram-based estimator with empirical null
(HBE-EN) if the density function f0 is estimated based
on the truncated maximum likelihood technique of [16].
Dalmasso et al. [23] compared the precursor of HBE-EN
[15] to other LFDR estimators.
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New LFDR estimators
Type II maximum likelihood estimator
Bickel [17] follows Good [24] in calling the maximization
of likelihood over a hyperparameter Type II maximum
likelihood to distinguish it from the usual Type I maxi-
mum likelihood, which pertains only to models that lack
random parameters. Type II maximum likelihood has
been applied to parametric mixture models (PMMs) for
the analysis of microarray data [25,26], proteomics data
[18], and genetic association data [27]. In this section, we
adapt the approach to the feature enrichment problem by
using the conditional probability mass function defined
above. The particular models we use in this framework
correspond to new methods of enrichment analysis.
Let G(s) = {gθ (•|s); θ ≥ 0} be a parametric family of

probability mass functions with

gθ (•|s) = 1
2

× [
fθ (•|s) + f−θ (•|s)] , (15)

where fθ (•|s) is defined in equation (6). We define the k-
component PMM as

g(•|s; θ0, . . . , θk−1,π0, . . . ,πk−1) =
k−1∑
j=0

πjgθj(•|s), (16)

where θ0 = 0 and θj �= θJ for all j, J ∈ {0, . . . , k − 1} such
that j �= J .
LetT = 〈T1,T2, · · · ,Tm〉 and t = 〈t1, t2, · · · , tm〉 be vec-

tors of the Tis and tis used in equation (8). Assuming Ti is
independent of Tj and Sj for all i, j ∈ {1, . . . ,m} such that
j �= J . i �= j, the joint probability mass function is

g(t|s; θ0, . . . , θk−1,π0, . . . ,πk−1)

=
m∏
i=1

g(ti|s; θ0, . . . , θk−1,π0, . . . ,πk−1) (17)

=
m∏
i=1

g(ti|si; θ0, . . . , θk−1,π0, . . . ,πk−1),

where si is the observed value of Si for GO term i, and
s = 〈s1, s2, · · · , sm〉.
Moreover, we assume that for a given number of genes

in GO term i, Ti (i = 1, . . . ,m) satisfies the k-component
PMM shown in equation (16). In other words, we assume
that the possible log odds ratios of GO term i are
the θ0, θ1, θ2, . . . , θk−1 of equation (16) if the alternative
hypothesis H1 in hypothesis comparison (7) is true.
Therefore, the log-likelihood function under the k-

component PMM for all GO terms is

logL(θ0, . . . , θk−1,π0, . . . ,πk−1)

= log g(t|s; θ0, . . . , θk−1,π0, . . . ,πk−1)

=
m∑
i=1

⎡⎣log
k−1∑
j=0

πjgθj(ti|si)
⎤⎦ . (18)

The LFDR of GO term i is estimated by

L̂FDR
(k)
i = π̂0gθ0(ti|si)

g(ti|si; θ0, θ̂1, . . . , θ̂k−1, π̂0, . . . , π̂k−1)
, (19)

where θ̂1, . . . , θ̂k−1 and π̂0, . . . , π̂k−1 are maximum like-
lihood estimates of θ1, . . . , θk−1 and π0, . . . ,πk−1 in
equation (18). We call L̂FDR

(k)
i the k-component max-

imum likelihood estimator (MLEk). Our LFDRenrich
and LFDRhat software suites of R functions that
implement MLE2 and MLE3 are now available at
www.statomics.com. Moreover, θ̂i (i = 1, . . . , k − 1;
k = 2, 3) and π̂j (j = 0, . . . , k − 1; k = 2, 3), also in
LFDRenrich and LFDRhat, are maximum likelihood
estimators of θi (i = 1, . . . , k − 1; k = 2, 3) and πj (j =
0, . . . , k − 1; k = 2, 3) under given constraints .

LFDRestimator basedon thenormalizedmaximum likelihood
Combining equations (9)-(10), we obtain

LFDRi =
(
1 + BFi × (1 − π0)

π0

)−1
. (20)

Therefore, given a guessed value of π0, we may use an esti-
mator of the Bayes factor to estimate the LFDR of a GO
term.
We now develop such an estimator of the Bayes factor.

For GO category i, let Ei stand for the set of all probabil-
ity mass functions defined on {0, 1, . . . , si}, the set of all
possible values of ti. Based on hypothesis comparison (7),
the set of log odds ratios, denoted as H, is {0} under the
null hypothesis and is R\ {0} = {θ ∈ R : θ �= 0}, the set of
all real values except 0, under the alternative hypothesis.
With the assumption that random variable Ti is indepen-
dent of random variable Sj for any i �= j, the regret of a
predictive mass function f̄ ∈ Ei is a measure of how well
it predicts the observed value ti ∈ {0, 1, . . . , si}. The regret
is defined as

reg(f̄ , ti|si;H) = log
f
θ̂i(ti|si)(ti|si)
f̄ (ti|si)

, (21)

where θ̂i(ti|si) is a Type I MLE with respect to H under
observed values ti given si [28,29].
For all members of Ei, the optimal predictive condi-

tional probability mass function of GO category i and the
hypothesis that θi ∈ H is denoted by f †i (•|si;H). It mini-
mizes the maximal regret in sample space {0, 1, . . . , si} in
the sense that it satisfies

f †i (•|si;H) = argmin
f̄∈Ei

max
t∈{0,1,...,si}

reg(f̄ , t|si;H). (22)

It is well known [28] that the predictive probability mass
function that satisfies equation (22) is

f †i (ti|si;H) = maxθ∈H fθ (ti|si)
K†

i (H)
, (23)
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where fθ (ti|si) is the conditional probability mass function
defined in equation (6), and K†

i (H) is a constant defined
as

K†
i (H) = max

θ∈H
fθ (y|si) =

min(si ,n)∑
y=max(0,si+n−N)

max
θ∈H

fθ (y|si)

=
min(si ,n)∑

y=max(0,si+n−N)

(n
y
)(N−n

si−y
)
eyθ̂i(y)∑min(si ,n)

j=max(0,si+n−N)

(n
j
)(N−n

si−j
)
ejθ̂i(y)

,

(24)

where

θ̂i(y) = argmax
θ∈H fθ (y|si). (25)

We call f †i (ti|si;H) the normalized maximum likelihood
(NML) associated with the hypothesis that θi ∈ H.
Thus, BFi is approximated by

B̂F†i = f †i (ti|si;R\ {0})
f †i (ti|si; 0)

, (26)

which we call the NML ratio. (More generally, the log-
arithm of an NML ratio is interpreted as a measure
of the evidential support for the alternative hypothesis
over the null hypothesis [29,30]). Therefore, by combin-
ing equations (8) and (9), if we guess the prior probability
π0, the LFDR estimate of GO category i in the hypothesis
comparison (7) is

L̂FDR
†
i =

[
1 + 1 − π0

π0
× B̂F†i

]−1
, (27)

where B̂F†i is defined in equation (26). We call this LFDR
estimator the NML estimator (NMLE).
To assess the reliability of NML ratio B̂F†i for a particular

data set, it will be compared to an empirical Bayes esti-
mate of the Bayes factor that unlike NML, simultaneously

takes all GO terms into account. Equations (19) and (20)
suggest

B̂Fi = 1 − L̂FDR
(k)
i

L̂FDR
(k)
i

× 1 − π̂0
π̂0

(28)

as the empirical Bayes estimator of BFi.

Results and discussion
In this section, we compared the LFDR estimators using
simulation data and breast cancer data.
For each GO category, the p-value used in BBE to esti-

mate LFDR is computed based on the 2-sided Fisher’s
exact test. In computingMLEk (k = 2, 3), θi (i = 1, . . . , k−
1) in equation (18) was constrained to lie between 0 and
10, whereas πi (i = 0, . . . , k − 1) in equation (18) was
allowed to take any value between 0 and 1 such that∑k−1

i=0 πi = 1.

Simulation studies
The aim of the following simulation studies is to compare
the LFDR estimation biases of BBE, MLE2, MLE3, HBE,
and HBE-EN. NMLE is not taken into account because its
performance depends not only on the data, but also on the
specified prior probability π0.
The simulation setting involves 10, 000 genes in a

microarray with 200 genes identified as DE and 100 GO
terms. We conducted a separate simulation study using
each of these values of π0: 50%, 60%, 70%, 80%, 90%, and
94%.
Since the PMM behind MLE is optimal when the num-

ber of enriched GO terms is equal to the number non-
enriched GO terms, we assessed the sensitivity of MLE
to that symmetry assumption by using strongly asymmet-
ric log odds ratios and by using symmetric ones. For each
GO term, two configurations were used in this simulation
to choose log odds ratios: the asymmetric configuration

Figure 1 The performance of LFDR estimators for 100 GO terms with asymmetric and symmetric log odds ratios.



Yang et al. BMC Bioinformatics 2013, 14:87 Page 7 of 12
http://www.biomedcentral.com/1471-2105/14/87

shown in equation (29) and the symmetric configuration
shown in equation (30).We used these values of odds ratio
of the ith GO term:

φ
asymmetric
i =

{ 5i
100(1−π0)

, 1 ≤ i ≤ 100(1 − π0),
0, 100(1 − π0) < i ≤ 100;

(29)

φ
symmetric
i =

⎧⎪⎨⎪⎩
5×2i

100(1−π0)
, 1 ≤ i ≤ 50(1 − π0),

5 − 5×2i
100(1−π0)

, 50(1−π0) < i≤100(1−π0),
0, 100(1 − π0) < i ≤ 100.

(30)
Considering the log odds ratios of all GO terms in each

simulation study, we generated Table 1 for GO term i and
for each of the 20 simulated data sets as follows:

• x1 is generated from a binomial distribution with
parameter �1 used in equation (2); �1 is a real value
randomly picked from 0 to 1.

• x2 is obtained from a binomial distribution with
parameter �2 =

[
(1−�1)×2φi

�1
+ 1

]−1
, obtained by

solving

φi = log2[�1/(1 − �1)]− log2[�2/(1 − �2)] . (31)

Thus, according to equation (4), we obtain φi = θi log2 e
for GO term i. Each of those artificial data sets represents
what might have been a real data set such as that of the
next subsection.
The p-value of each GO term used in BBE, HBE,

and HBE-EN is obtained from the 2-sided Fisher’s exact
test. The k-component PMM (k = 2 or k = 3)
used in MLE is shown in equation (16) with πj =
(1 − π0) /k

[
j = 1, . . . , k

]
and gθi(ti|si) defined in equation

(15). For every log odds ratio sequence, we estimated the
LFDR for each GO term and each data set using BBE,
MLE2, MLE3, HBE, and HBE-EN. We compared the per-
formances of the 5 estimators by means of computing the
absolute value of the estimated LFDR bias. The true LFDR
is computed by equation (10), where

f0(ti) =
(n
ti
)(N−n

si−ti
)

∑min(si,n)
j=max(0,si+n−N)

(n
j
)(N−n

si−j
)

and f1(ti) is computed by

1
J

J∑
j=1

fθj(ti|si),

where fθ (t|s) is defined in equation (6).
Figure 1 shows the performance comparisons of the

5 LFDR estimators (i.e., BBE, MLE2, MLE3, HBE, and
HBE-EN) for simulation data obtained from asymmetric

Table 2 The proportion of non-enriched GO terms and the
log2 odds ratios of GO terms used in the simulation studies

Number of GO terms π0 log2 odds ratio (φi)

0.5, i = 1

2 50.0% 0, i = 2

100.0% 0, i = 1, 2

3, i = 1

50.0% −3, i = 2

0, i = 3, 4

0.5, i = 1

4 75.0% 0, i = 2, ..., 4

100.0% 0, i = 1, ..., 4

(0.5+1.5×(i − 1)), i = 1, 2

50.0% −(0.5+1.5×(i − 3)), i = 3, 4

0, i = 5, ..., 8

(0.5+1.5×(i − 1)), i = 1, 2

62.5% −(0.5+1.5×(i − 2)), i = 3

0, i = 4, ..., 8

2, i = 1

8 75.0% −2, i = 2

0, i = 3, ..., 8

2, i = 1

87.5% 0, i = 2, ..., 8

100.0% 0, i = 1, ..., 8

(0.32+0.64×(i − 1)), i = 1, ..., 8

50.0% −(0.32+0.64×(i − 9)), i = 9, ..., 16

0, i = 17, ..., 32

(0.8+0.8×(i − 1)), i = 1, ..., 3

62.5% −(0.8+0.8×(i − 4)), i = 4, ..., 6

0, i = 7, ..., 32

(0.2+1.6×(i − 1)), i = 1, 2

32 75.0% −(0.2+1.6×(i − 1)), i = 3, 4

0, i = 5, ..., 32

1.8, i = 1

87.5% −1.8, i = 2

0, i = 3, ..., 32

100.0% 0, i = 1, ..., 32

Here, index i labels the GO term.

and symmetric log odds ratios. The absolute LFDR biases
estimated by BBE, MLE2, MLE3, and HBE-EN are sim-
ilar. The absolute bias of LFDR estimated by HBE on
symmetric log odds ratios is a little higher than that on
asymmetric log odds ratios when the proportion of non-
enriched GO terms is greater than 80%. Therefore, the
estimated LFDR biases of the estimators are not strongly
affected by whether the log odds ratios are symmetric or
asymmetric.
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To assess the performance of the 5 estimators for smaller
GO terms, we added simulation studies using 2, 4, 8,
and 32 as the total number of GO terms. The propor-
tion of non-enriched GO terms (π0) and log odds ratios
of simulation studies are shown in Table 2. The simula-
tion studies were otherwise the same as those for 100 GO
terms. Figure 2 shows the performance of LFDR estima-
tors by means of computing the absolute estimated LFDR
bias for 2, 4, 8, and 32 GO terms with log odds ratios based
on formulas shown in Table 2.
Considering every (m,π0) pair of the simulation stud-

ies with symmetric log odds ratios for the case of 100 GO
terms, we recorded the LFDR estimator with the lowest
absolute estimated LFDR bias among the 5 LFDR estima-
tors (BBE, MLE2, MLE3, HBE, and HBE-EN). Moreover,
we determined the maximum absolute LFDR bias over
the proportion of non-enriched GO terms (π0) in order
to evaluate the worst-case bias of each estimator at each
value ofm. Figure 3 shows the results.

Breast cancer data analysis
The single-channel microarray data set used here to illus-
trate our new methods is from an experiment applying

an estrogen treatment to cells of a human breast cancer
cell line [31]. The Affymetrix human genome U-95Av2
genechip data are from four samples from an estrogen
receptor positive breast cancer cell line. Two of the sam-
ples were exposed to estrogen and then harvested after
10 hours. The remaining two samples were left untreated
and then harvested after 10 hours. For simplicity of ter-
minology, we call probes in the microarray experiment
“genes.” The relevant data consist of measurements of
gene expression across the reference class of 12, 625 genes.
The purpose of the study was to determine which genes
are affected by the estrogen treatment. (For further infor-
mation concerning the data, see Gentleman et al. [32].)
We applied the R function expresso in the affy

package [33] of Bioconductor [34] to convert the
raw probe intensities from the the CEL data files
to logarithms of gene expression levels without back-
ground correction. In doing so, we applied the “quan-
tiles,” “pmonly,” and “medianpolish” [35] preprocessing
settings.
We selected as genes of interest those that were dif-

ferentially expressed between the treatment group and
the control group according to the following criterion.

Figure 2 The performance of LFDR estimators for 2, 4, 8, and 32 GO terms with log odds ratios.
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Figure 3 The performance comparison of LFDR estimators based on which estimator achieves the lowest absolute estimated LFDR bias
at each combination of π0 andm (left) and, for each estimator, the maximum of absolute estimated LFDR bias over the proportion of
non-enriched GO terms at each value ofm (right).

Using the LFDR as the probability that a gene is EE,
we considered genes with LFDR estimates below 0.2
as DE. In other words, we selected as DE genes those
that were differentially expressed with estimated poste-
rior probability of at least 80%. Considering four samples
of each gene in the microarray, we used the unpaired t-
test with equal variances to compute the p-value. The
LFDR of every gene is estimated using the theoretical
null hypothesis method of Efron [15,16]; the empirical
null hypotheses method can lead to excessive bias due
to deviations from normality [36]. When we compared
gene expression data for the presence and absence of
estrogen after 10 hours of exposure, we obtained 74 DE
genes.
Defining unrelated pairs of GO terms as those that do

not share any common ancestor, we selected for analysis
all unrelated GO molecular function terms with at least
1 DE gene, thereby obtaining a total of 82 GO terms

of interest. Figure 4 compares the BBE to the MLEs
based on the 2-component (MLE2) and 3-component
(MLE3) PMM. Figure 5 displays the probability mass of
GO:0005524 under the null and alternative hypotheses
of hypothesis comparison (7). Figure 6 compares MLE-
based estimates of the Bayes factor given by equation (28)
to the NML ratios given by equation (28).
For two GO terms, opposite conclusions would be

drawn about their enrichment, depending on which
estimator is used. As seen in Figure 4, the estimated
LFDRs of GO:0051082 andGO:0005524 usingMLE2 were
100%. However, the LFDRs estimated by MLE3 were
essentially 0.
Using the MLE formula shown in equation (19), and

the k-component PMM shown in equation (16), we con-
clude that the sensitivity of the LFDRs of GO term i
estimated by MLE2 and MLE3 depended mainly on the
sensitivity of the Bayes factor, based on the number of

Figure 4 Comparison of the LFDR estimated by BBE with the LFDR estimated by MLE2 (left) and MLE3 (right). Each integer represents a
number of GO terms. Intergers > 1 indicate ties.



Yang et al. BMC Bioinformatics 2013, 14:87 Page 10 of 12
http://www.biomedcentral.com/1471-2105/14/87

0 20 40 601e
−

73
1e

−
43

1e
−

13

number of DE genes in GO term

pr
ob

ab
ili

ty
 m

as
s

Null
Alternative

0 20 40 601e
−

73
1e

−
43

1e
−

13

number of DE genes in GO term

pr
ob

ab
ili

ty
 m

as
s

Null
Alternative

Figure 5 The conditional probability mass functions given the number of genes in GO:0005524 under a null hypothesis, and alternative
hypotheses based on 2-component PMM (left) and 3-component PMM (right). The grey dashed line is the number of DE genes in GO:0005524.

PMM components. Comparing the probability masses of
GO:0005524, based on the 2- and 3-component PMMs
shown in Figure 5, we found that the probability mass
of GO:0005524 under the null hypothesis is larger than
that under the alternative hypothesis based on the 2-
component PMM (left plot in Figure 5). In contrast, the
probability mass under the null hypothesis is smaller than
that under the alternative hypothesis based on the 3-
component PMM (right plot in Figure 5). Thus, the LFDR
estimated byMLE is strongly dependent on the number of
PMM components.
While a real data set can in that way indicate the

impact of selecting an appropriate method, that impact
does not in itself say which method has lowest bias. For
that, we rely on the simulation study of the previous
subsection.

Conclusions
As seen in Figure 1 and Figure 2, HBE and HBE-EN have
relative high biases for a small number and a medium

number of GO terms, respectively. The performance
comparison displayed in the left-hand side of Figure 3
indicates that BBE contains the lowest minimum esti-
mated LFDR bias for a small number of GO terms (i.e.,
2-32 GO terms) when the proportion of non-enriched
GO terms is 1. Although the minimum bias of BEE is
not the lowest for some π0s under a small number of
GO terms, it is very close to the lowest value of bias
based on plots shown in Figure 2. The right-hand side
of Figure 3 indicates that MLE3 has the lowest maxi-
mum absolute estimated LFDR bias in 100 GO terms.
MLE exhibits bias similar to that of BBE when the num-
ber of GO terms is much larger than k except for when
the proportion of non-enriched GO terms is high (close
to 1). Moreover, MLE3 has lower bias than MLE2 as an
LFDR estimator. Due to its conservatism and freedom
from PMM, we recommend using BBE for a small num-
ber of GO terms of interest (2-32 GO terms) and MLE
for a medium number of GO terms of interest (100 GO
terms).
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Figure 6 Comparison of the Bayes factor approximated by the NML ratio with that estimated by MLE2 (left) and MLE3 (right) on the basis
of equations (26) and (28). The integers are defined in Figure 4. The grey dashed lines mark commonly used thresholds for strong and
overwhelming evidence [37,38].
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Finally, we recommend that NMLE be used when
there is only 1 GO term of interest since none of the
other estimators is able to estimate LFDR in such a
case except by conservatively giving 1 as the estimate.
Otherwise, unless π0 is known with sufficient accu-
racy, NMLE is not recommended since it depends not
only on the data but also on a guess of the value
of π0, which in the absence of strong prior informa-
tion, is often set to the default value of 50%. A closely
related approach is to use the logarithm of the NML
ratio as a measure of statistical support for the enrich-
ment hypothesis [30] without guessing π0. By using 10
and 100 as thresholds of the approximate Bayes fac-
tors from equations (26) and (28) to determine whether
a GO term is enriched, we reached similar conclu-
sions with both NML and MLE (Figure 6). Thus, in our
data set, the NML ratio tends to estimate the Bayes
factor almost as accurately as methods that simulta-
neously use information across GO terms. While we
do not expect the same for all data sets, we note
that similar results have been found for an applica-
tion of a modified NML [29] to a proteomics data
set [30].
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