
J
H
E
P
1
1
(
2
0
1
6
)
0
4
5

Published for SISSA by Springer

Received: July 28, 2016

Accepted: November 2, 2016

Published: November 8, 2016

Constraints on Dbar uplifts

S.P. deAlwis

Physics Department, University of Colorado,

Boulder, CO 80309 U.S.A.

E-mail: dealwiss@colorado.edu

Abstract: We discuss constraints on KKLT/KKLMMT and LVS scenarios that use anti-

branes to get an uplift to a deSitter vacuum, coming from requiring the validity of an

effective field theory description of the physics. We find these are not always satisfied or

are hard to satisfy.

Keywords: Strings and branes phenomenology, Supersymmetry Phenomenology

ArXiv ePrint: 1605.06456

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP11(2016)045

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81536305?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dealwiss@colorado.edu
https://arxiv.org/abs/1605.06456
http://dx.doi.org/10.1007/JHEP11(2016)045


J
H
E
P
1
1
(
2
0
1
6
)
0
4
5

Flux compactifications of type IIB string theory (for reviews see [1, 2]), have yielded a

concrete framework within which to discuss beyond the standard model phenomenology and

cosmology. The most popular scenarios involve a first stage with an Anti-deSitter minimum

for the moduli potential [3, 4] which is then commonly raised to a deSitter minimum by

introducing one or more anti-D3 branes at the bottom of a warped throat in the internal

space geometry as in [3].1 In this note we discuss the validity of certain cosmological

scenarios within this framework and estimate the one-loop quantum corrections to soft

masses, which in principle could be large due to the fact that the SUSY breaking scale is

effectively above the ultra-violet (UV) cutoff.

The SUGRA potential in the presence of a D-bar brane (down a warped throat) is of

the form

V (τ,Φ) = |F (τ,Φ)|2 − 3m2
3/2(τ,Φ)M2

P + nV
(w)

D̄3
(τ,Φ)

= |F (τ,Φ))|2 − 3m2
3/2(τ,Φ)M2

P + (M (w)
s (τ,Φ))4 + . . . (1)

Here F stands for the F-terms of the moduli and m3/2(τ,Φ) is the moduli dependent

gravitino mass and τ volume modulus. Also n is the number of D3-bar branes each with

potential V
(w)

D̄3
, the superscript w indicating the warping. In the ground state of the Dbar

brane this potential is just the fourth power of M
(w)
s the warped string scale.2 Note that

such a term is absent if only D branes (and orientifold planes) are present.

This potential makes sense only below the lightest Kaluza-Klein (KK) scale in the

problem which is the scale set by KK modes localized at the end of the warped throat.

This is necessarily parametrically smaller than the warped string scale, since all effective

field theory (EFT) discussions in string theory, depend on proceeding via 10D SUGRA

(after freezing string modes). i.e. we need to ensure,

V (τ,Φ)� (M
(w)
KK (τ))4 � (M (w)

s (τ)4. (2)

In the literature on string inflation the only necessary criterion that is usually imposed is

that the Hubble scale is well below the (warped) KK scale i.e. H � M
(w)
KK . However the

EFT must describe not only the inflationary regime but also the dynamics at the end of

inflation — namely the reheating phase. It is easy to see though that if the scale of the

inflationary potential is higher than the (warped) KK scale then this will lead to kinetic

energies of the inflaton(s) that is higher than the (warped) KK scale, thus violating the

criterion under which the derivative expansion is valid.3

One can certainly ensure this at the minimum of the potential — indeed that is the

role of the last (uplift) term (which is greater than the warped KK scale)

Vmin = V (τ0,Φ0) = |F (τ0,Φ0))|2 − 3m2
3/2(τ0,Φ0)M2

P + (M (w)
s (τ0,Φ0))4 & 0.

However it is not possible to ensure this away from the minimum without functional fine-

tuning. As one moves away from the minimum it becomes harder and harder to satisfy the

1There are of course exceptions — for a recent comprehensive review of string cosmology see [5].
2Note that the 10D equations determine the warp factor at the end of the throat in terms of the complex

structure moduli.
3See for example section 2.1 and footnote 6 of [6].
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bound (2) since the scale of the potential is set by the warped string scale which should be

much larger than the warped KK scale (see below for estimates of these).

From the above it appears that there is no consistent EFT picture of inflation in the

presence of D-bar uplifts, when the inflaton is one of the fields in the EFT. The LVS case

with so-called “Fibre inflation” is however an exception and will be discussed later.

On the other hand inflationary dynamics in constructions (such as KKLT, KKLMMT4)

typically involve the motion of branes moving down the warped throat with inflation end-

ing and a reheating phase taking over once the brane and anti-brane annihilate. Such a

process will end with the creation of (light warped) string states and KK states with masses

respectively M
(w)
s and M

(w)
KK . But this is clearly a stringy process taking place at energy

scales E ∼M (w)
s �M

(w)
KK . Clearly one cannot discuss this within a 4D low energy effective

field theory. In this case the above potential is just used to establish the background field

configuration in which this intrinsically stringy process takes place.

To incorporate warping we adopt the following parametrization of the 10D string

metric. This is related to the 4D Einstein metric gµν by5

ds2 = GMNdX
MdXN

= eφ/2[e−6u(x)

(
1 +

e−4A(y)

e4u(x)

)−1/2

gµν(x)dxµdxν +

e2u(x)

(
1 +

e−4A(y)

e4u(x)

)1/6

ĝmn(y)dymdyn] (3)

Here φ is the dilaton, gmn is a fiducial metric on the internal manifold X which is con-

veniently normalized such that
∫
X

√
ĝd6y = (2π)6α′3. So we have (using the relation

2κ2
10 = (2π)7α′4 between the 10 D gravitational constant and the string scale in the string

metric [10])

1

(2π)7α′4

∫
d10X

√
|G|e−2φGµνRµν(G) + . . . =

1

2πα′

∫
d4x
√
|g(x)|gµνRµν(g) + . . . . (4)

The Planck length lP measured in the Einstein frame is given by l2P = M−2
P = 2πα′/2.

Outside of throat regions the warping can be ignored so that e4u � e−4A and the met-

ric becomes the standard 4D Einstein metric as given for example in GKP [11]. The

volume modulus is then τ = e4u(x) so that the dimensionless volume of X is given by

V = e6u. Even in the case where there is one (or more) warped throat, as long as the

volume of warped regions is negligible compared to the overall volume, we may still

take V = e6u(x)
∫
d6y

(
1 + e−4A(y)

e4y(x)

)1/6
/(2π)6α′3 ' τ3/2 = e6u. However at the bot-

tom of a long warped throat y → y0) where e−4A(y0) � e4u the metric (3) becomes

4For a recent review with a comprehensive discussion of all the issues involving this type of scenario see

Baumann and McAllister [5].
5Note that the standard factorized metric used in GKP cannot be used everywhere on the ten dimensional

space. In addition in the presence of warping one needs to keep non diagonal terms Gµn in the metric ansatz

— since otherwise the Einstein equation Rµn = 0 leads to an overconstrained system as first observed in [7]

— see also [8, 9].
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ds2 = eφ/2[e−4ue2Agµνdx
µdxν + e4u/3e−2A(y)/3ĝmn(y)dymdyn]. The effective KK radius

depends on the location in the internal space. Thus this parametrization provides an

interpolation between the unwarped bulk region and the warped throat region as dis-

cussed in [12].

The string scale for strings located at a fixed value of the internal coordinate y can be

read off from the string action which reads (using (3)),

1

2

1

2πα′

∫
ws
d2σ
√

det(GMN∂αXM∂βXN )

=
1

2

1

2πα′

∫
ws
d2σeφ(x(σ),y)/2e−6u(x(σ)

(
1 +

e−4A(y)

e4u(x(σ))

)−1/2

×
√

det(gµν∂αxµ(σ)∂βxν(σ)),

so that relative to the 4D Einstein metric the string scale is (with <>ws denoting average

over the world sheet),

M2
s =

1

2πα′
< eφ/2e−6u(x)

(
1 +

e−4A(y)

e4u(x(σ))

)−1/2

> ws. (5)

Thus we have in the different regions:

M2
s =

1

2πα′
eφ/2e−6u(x) = M2

P

eφ/2

2V
, unwarped; (6)

M (W)2
s =

eφ/2

2πα′
e−4u(x)e2A(y) = M2

P

eφ/2

2V2/3
e2A(y). warped KKLMMT (7)

The KK mass matrix turns out to be, after expanding Φ(x, y) =
∑
φr(x)ωs(y) where

ωr(y) is an orthonormal (in the metric ĝ) basis of harmonics on X,

M2
KKrs =

1

(2π)7α′4

∫
X
d6y
√
ĝe−8u(x)

(
1 +

e−4A(y)

e4u(x)

)−2/3

ĝmn(y)∂mωr(y)∂nωs(y).

Thus we have in the different regions, ignoring an O(1) matrix;

M2
KK =

1

2πα′
e−8u(x) =

M2
P

2V4/3
, unwarped (8)

M
(W)2
KK =

1

2πα′
e−16u(x)/3e8A(y0)/3 =

M2
P e

8A(y0)/3

2V8/9
, warped KKLMMT. (9)

Note that the last two relations applies to modes ωr(y) that have support in a strongly

warped throat y ∼ y0. We observe also that

M2
KK

M2
s

=
e−φ/2

V1/3
;
M

(W)2
KK

M
(W)2
s

=
e−φ/2e2A(y0)/3

V2/9
.

The last two relations apply to the unwarped and warped (KKLMMT) cases respectively

and clearly both satisfy the necessary criterion that the KK scale should be well below the

– 3 –
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string scale for large volume and warping. The requirement that the gravitino mass is less

than the (warped) KK then gives (using m2
3/2 = g|W0|2M2

P /V2 and eqn (9))

g3/2|W0|3

V5/3
� e4A(y0) � 1

V2/3
,

where the second relation is the statement of being in the region of large warping (see

discussion below eqn (4).

For the corrected (KKLMMT) KKLT stabilization mechanism where the supersym-

metric AdS minimum is uplifted to Minkowski/dS space, the relevant uplift condition gives

3M4
P

eφ|W0|2

V2
'M (W )4

s = M4
P

eφ

4V4/3
e4A(y0),

leading to

e4A(y0) = 12
W 2

0

V2/3
0

� 1. (10)

Let us now discuss whether adding an anti-brane contribution to the potential can

give us Minkowski (or dS) space when used in conjunction with the spontaneously broken

supersymmetric, albeit AdS, equilibrium (LVS) solution of BBCQ [4]. If the scale of the

inflationary potential is given by the warped string scale, as would be the case generically for

Dbar uplift theories (see the discussion above eqn (2)), then the same conclusion applies and

there is no 4D EFT that covers inflation and reheating. However unlike in the KKLT case

in LVS there is another mechanism for inflation — namely the so-called “Fibre Inflation”

model. In this case (for details see [6, 13] ) one starts with CY manifolds that are (for

instance) K3 fibre bundles. Compared to the original BBCQ class of models there is in

addition to the volume modulus, (at least) one more large modulus in addition to the small

(exceptional divisor) modulus τs. The canonical example is V = a
√
τ1τ2 − bτ3/2

s .

In this case there is at least one flat direction that survives the BBCQ (plus uplift to

dS space) stabilization procedure, that can be used to get an inflationary scenario. This

is stabilized by adding in string loop and/or α′3 terms that result in F 4 terms. This gives

a viable EFT description of inflation satisfying all the observational constraints though

predicting very low power in tensor modes. For us the relevant question is whether this

mechanism survives the use of anti-branes to accomplish the uplift to dS.

The new element here is that there is a relation in the LVS construction amongst the

three terms of (1) coming from the extremization with respect to the small modulus τs and

the volume V. The inflationary potential then has essentially a fixed value of V but the

important point is that there are cancellations amongst the three terms, so that the scale

of inflation is now given by,

Vinf '
gW 2

0 Φ(lnV/W0)

V3
M4
P �M

(W )4
KK =

e16A(y0)/3

4V16/9
M4
P ,

where Φ ∼ (ln(V/W0))3/2 and in the second relation we have again imposed the bound (2).

This gives us

e4A0 � (gW 2
0 Φ)3/4

V11/12
. (11)
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On the other hand the LVS (plus Dbar uplift term) stabilization conditions give6

τ3/2
s ' ξ

2
√
g3

+
16

27

e4A0

|W |2
V5/3 '

(
a−1 ln

V
|W0|

)3/2

. (12)

Combining this with the bound (11) we get a bound on the volume,

V �
(

27

16

)4/3 |W0|2/3

gΦ(lnV/W0)
(a−1 lnV/W0))2 ∼ |W0|2/3

ga2

(
ln
V
W0

)1/2

. (13)

Since typically W0 . O(1), g ∼ 10−1 in LVS constructions this bound is hard to satisfy for

the typically large values V & 103 that are usually required in LVS constructions.

Recently backgrounds involving an anti-brane have been discussed in terms of non-

linearly realized SUSY (see for example [14] and references therein), so that its effect is

represented by a Goldstino field. The latter in turn comes from a nilpotent superfield X

which satisfies X2 = 0. Adding the contribution of this field to the usual Kaehler and

superpotential terms we have7 (with k(U, Ū) ≡ i
∫
X Ω ∧ Ω̄) and MP = 1)

K = −2 lnV − ln(S + S̄)− ln k(U, Ū) +
c(U, Ū , SR)

Vβ
XX̄ + . . . , (14)

W = M2X +Wflux +Wnp +Wsm. (15)

The last term Wsm is the supersymmetric standard model superpotential. The additional

term coming from the anti-brane is then,8 M−4
P |FX |2 = eKKXX̄M4 = eφc−1Vβ

2V2k(U,Ū)
M4. Com-

paring |FX |2 with the leading term of the D̄3 brane action in the Einstein frame M
w)4
s

(see (7)) and using the fact that M has to be holomorphic or a constant (since it is a term

in the superpotential) we find in the KKLMMT case, M4 = 1
2πe

4A0 , β = 2/3, c = eφ

k(U,Ū)
.

With these identifications the low energy effects of the anti-brane can clearly be represented

within the formal context of N = 1 SUGRA.9

However a formal representation does not imply that the usual properties of linearly

realized and spontaneously broken SUSY hold here. Indeed SUSY is broken above the

cutoff scale of the EFT. FX ' (M
(w)
s )2 > (M

(w)
KK )2 ≡ Λ2

cutoff . Thus perturbative corrections

to masses couplings etc will not have SUSY cancellations in the EFT and will be no dif-

ferent from that in a non-supersymmetric theory cutoff at M
(w)
KK . In particular one might

expect that soft scalar masses (and hence the Higgs mass in particular), will acquire quan-

tum corrections ∆m2
0 ' Λ2

cutoff/16π2 and that the classical calculation has no meaningful

phenomenological consequences.

The actual situation is however is somewhat more complicated. It will turn out that

although the phenomenology coming from a KKLT type stabilization (with the flux su-

perpotential taking extremely tiny values (W0 ∼ e−V
2/3

) will acquire one-loop corrections

6Up to O(1) factors the LVS potential with Dbar uplift term after fixing the complex structure and the

dilaton, takes the form, 4
3
g(a|A|)2

√
τse

−2aτs

V −2ga|AW0| τse
−aτs

V2 + 3
8
ξ|W0|2

g1/2V3 + g

2V4/3 e
4A(y0). The equations (12)

come from the extremization conditions ∂τsV = ∂VV = 0.
7This is a somewhat modified version of the discussion in [14].
8Note that we are taking dimensionless moduli so K,W,M,X are all dimensionless.
9For an earlier discussion using spurion instead of nil-potent superfields see [15].
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that tend to vitiate the classical calculations, in the LVS case (with W0 ∼ O(1)) these

corrections are actually suppressed.

From the Coleman-Weinberg formula the largest supersymmetric standard model field

dependent contribution to the effective potential is

∆V1 =
Λ2

16π2
StrM2(Φ, Φ̄), (16)

where StrM2 =
∑

(−1)2j+1(2j + 1)trm2
j (Φ, Φ̄). Here m2

j is the mass matrix for states of

spin j and Φ = {ΦI}, I = 1, . . . , NTot) stands for all the fields in the low energy theory

below the cutoff Λ, i.e. in our case all the moduli and the dilaton as well as the matter fields.

Now in a (spontaneously broken) supersymmetric theory (with all states forming com-

plete supermultiplets below the cutoff) we have [16, 17],

StrM2 = (NTot − 1)m2
3/2(Φ, Φ̄)− F I(RIJ̄ + SIJ̄)F J̄ ,

where RIJ̄ = ∂I∂J ln detKMN̄ and SIJ̄ = −∂I∂J̄ ln det<fab with fab being the gauge cou-

pling superfield. The field dependent gravitino mass is given by m2
3/2(Φ, Φ̄) = eK |W (Φ)|2,

where K and W are given by (14)(15). For future reference we also write the matter

superpotential as

Wsm = µij(U)CiCj + λijk(U)CiCjCk +O(C4), (17)

where Ci represent the Higgs, lepton and quark superfields.

In this case the correction to the matter field mass matrix is (see for example [18])

∆m2
ij̄ = − Λ2

16π2

(
eKDiDMWRML̄Dj̄DL̄W +O((m2

3/2, F )
)
.

The only contribution in the above expression that is not proportional to supersymmetry

breaking parameters or to the matter fields Ci (which will have vanishingly small expec-

tation values) is the µ-term contribution from (17). In other words we have (restoring MP

and the dimensionality of µ),

∆m2
ij̄ = − Λ2

16π2M2
P

(
eKµikµ̄j̄lRkl̄ +O(C,m2

3/2, F )
)
. (18)

Since the µ-term needs to be tuned in any case to be of the same order as the soft SUSY

breaking masses, the above quantum correction to the squared soft mss is negligible for

cut-offs Λ which are well below the Planck scale — as is of course the case here.

On the other hand when as here, the supersymmetry breaking is above the cutoff,

one might on general grounds expect a much larger quantum (additive) correction to the

squared soft mass. The point is that in this case we do not have a complete supermultiplet

for the goldstino field X. The scalar superpartner is absent. It corresponds to the (would

be) modulus field corresponding to the position of the D̄3 brane at the bottom of the

throat and which has been removed by the orientifold projection. Thus the supertrace

– 6 –
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Coleman-Weinberg formula (16) will contain an unpartnered contribution trm2
XX̄

giving

us an additional contribution to (16)10

∆XV1 =
Λ2

16π2
trm2

XX̄ =
Λ2

16π2
eKDXDIWDX̄DJ̄W̄KIJ̄KXX̄ .

For simplicity we will specialize to the case of one Kaehler modulus T so that V ∼ τ3/2, τ =

<T , and also ignore the indices on the matter fields Ci. Thus we rewrite the Kaehler

potential (14) as

K = −3 ln(T + T̄ )− ln(S + S̄)− ln k(U, Ū) +
aCC̄

T + T̄
+

cXX̄

(T + T̄ )
+
bCC̄XX̄

(T + T̄ )2
+ . . .

Here a, b, c are functions of U, Ū , andS. After some straightforward calculation we find the

leading contribution proportional to CC̄ to be11

trm2
XX̄ ∼

1

V2

∣∣∣∣∂µ2

∂U

∣∣∣∣2KUŪKXX̄ ∼ 1

V2

∣∣∣∣∂µ2

∂U

∣∣∣∣2KUŪ b

c2
CC̄. (19)

Hence the largest one-loop contribution to the squared soft mass is

∆m2
CC̄ ∼

Λ2

32π2

1

V2

∣∣∣∣∂µ2

∂U

∣∣∣∣2KUŪ b

c2
.

The µ-term at the minimum of the potential (i.e. with U = U0) needs to be tuned to be of

the order of the weak mass scale (or at most O(m3/2)) so that standard model particles are

at the right scale, but in general away from the minimum it is O(1) on the Planck scale.

Thus identifying the cutoff with the KK-scale (given in (9)) we have

∆m2
CC̄ ∼

M2
P

32π2

e8A/3

V8/9

O(1)

V2
∼ O(1)

32π2

m2
3/2

W 2/3

1

V4/3
. (20)

In the last relation we have used the KKLT uplift condition (10) to estimate the warp

factor. The classical squared soft mass in this class of models is m2
CC̄
∼ m2

3/2/| lnm3/2| and

requiring that the quantum contribution (20) does not dominate this gives us the condition

| lnm3/2| < 32π2W
2/3
0 V4/3. (21)

The Dbar brane contribution uplifts the first stage SUSY AdS minimum of KKLT to

Minkowski/dS space. This procedure however works only with highly suppressed values of

the flux superpotential — indeed the first stage results in DTW = 0 which in turn gives

(writing Wnp = De−aT )

− aDe−aT = 3
W0

T + T̄
. (22)

10Note that this is a field dependent contribution to the potential which needs to be differentiated with

respect to C, C̄ to get the corresponding correction to soft terms. Of course on-shell (i.e. at the minimum

of the potential) this will vanish as it is the sqared Goldstino mass.
11At the minimum of the potential where we expect C = 0 the contribution to trm2

XX̄ below will of

course vanish!
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Thus we get | lnm3/2| ∼
∣∣ln W0

V
∣∣ ∼ aτ. Using this and (22) in the bound (21) we have

e2aτ/3 < 32π2τ5/3 . This restricts the value of the modulus to the range 1 � aτ ∼ τ . 15.

In the LVS case however there is no such restriction since the uplift condition is dif-

ferent. Before the uplift the potential ∼ −eφ|W0|2/V3. Requiring that this is of the same

order as the warped string scale raised to the fourth power we have instead of (10) the

estimate e4A0 = |W0|2
V5/3 . Using this in the first relation of (20) we get ∆m2

CC̄
= O(1)

32π2

m2
3/2

W
2/3
0

1
V2 .

In the unsequestered LVS case [19], one gets soft masses of the same order as in the

KKLT case. Requiring again that the quantum correction does not dominate the classical

one now gives,

| lnm3/2| ∼
∣∣∣∣ln W0

V

∣∣∣∣ < 32π2|W0|2/3V2,

which is easily satisfied since unlike in the KKLT case W0 is not required to be exponentially

suppressed in LVS. In the sequestered scenario [20–22] the classical squared soft mass is

suppressed by an extra factor of V so that the above relation is replaced by

| lnm3/2| ∼
∣∣∣∣ln W0

V

∣∣∣∣ < 32π2|W0|2/3V.

This is also easily satisfied.

In conclusion we find that with Dbar uplifts the constraints coming from the validity

of an EFT description depend on whether one is in the KKLT case or the LVS case. In the

first (KKLT) case they indicate there is no EFT which describes inflationary cosmology

without functional fine-tuning. It is necessarily a stringy process coming from brane anti-

brane annihilation with the EFT just determining the background. Also in order for the

classical phenomenology to survive one-loop quantum effects, the Kaehler modulus needs

to be less than or equal to a number around 15. In the second (LVS) case the constraints

are somewhat different. On the one hand it appears that it is difficult to get a viable

EFT description of inflation (such as fibre inflation) with Dbar uplifts because it is hard

to satisfy (13). However the classical evaluation of soft masses will not be vitiated by large

one-loop corrections even for very large values of the Kaehler moduli.
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