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Abstract In this paper, some new tests based on the idea of the B-spline test (Shen
and Faraway in Stat Sin 14:1239–1257, 2004) for the one-way ANOVA problem for
functional data are proposed. Eleven existing tests for this problem are also reviewed.
Exhaustive simulation studies are presented to compare all of the tests considered.
The simulations are based on real labeled times series data and artificial data. They
provide an idea of the size control and power of the tests, and emphasize the differences
between them. Illustrative examples of the use of the tests in practice are also given.

Keywords Basis function representation · Equality of functional means ·
Longitudinal data · One-way ANOVA for functional data · Orthonormal basis ·
Stochastic process

1 Introduction

Great advances in computational and analytical techniques now enable many
processes to be continuously monitored. To analyze the large quantities of data
from such processes, new statistical methods are needed. In functional data analy-
sis (FDA), such data are considered as random functions so-called functional data.
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A broad perspective of FDA methods is given in Ramsay and Silverman (2002);
Ramsay and Silverman (2005), Ferraty and Vieu (2006), Ramsay et al. (2009),
Horváth and Kokoszka (2012), Zhang (2013), and in the review papers Valderrama
(2007) and Cuevas (2014). Many standard statistical methods are being adapted for
functional data. These include, for example, canonical correlation analysis (Leur-
gans et al. 1993; Krzyśko and Waszak 2013), cluster analysis (Tokushige et al.
2007; Yamamoto and Terada 2014), discriminant analysis (James and Hastie 2001;
Preda et al. 2007; Górecki et al. 2014), principal component analysis (Boente
and Fraiman 2000; Berrendero et al. 2011), and regression (Cuevas et al. 2002;
Cai and Hall 2006; Benhenni et al. 2007; Chiou and Müller 2007). FDA is also
strongly linked with longitudinal data analysis (LDA), which is a better-known
area. Both methodologies serve to analyze data collected over time about the
same subjects, but they are nonetheless intrinsically different (see Davidian et al.
2004, or Martínez-Camblor and Corral 2011, for more details). The differences
between FDA and LDA involve chiefly the viewpoints and ways of thinking about
the data. The connection between FDA and LDA is considered in Zhao et al.
(2004).

The present paper is concerned with the one-way ANOVA problem for functional
data. This problem can be formulated in the following way. Let Xi1(t), Xi2(t), . . . ,
Xini (t), i = 1, . . . , k denote k groups of random functions defined over a given
finite interval T = [a, b]. Let SP(m, γ ) denote a stochastic process with mean
function m(t), t ∈ T and covariance function γ (s, t), s, t ∈ T . Assuming that
Xi1(t), Xi2(t), . . . , Xini (t) are i.i.d. SP(mi , γ ), i = 1, . . . , k, it is often interesting to
test the equality of the k mean functions

H0 : m1(t) = · · · = mk(t), t ∈ T, (1)

against the alternative that its negation holds. This problem is known as the k-sample
testing problem or the one-way ANOVA problem for functional data. As we will
see, some of the tests considered in this paper can also be used in the general “het-
eroscedastic” case, where the covariance functions in groups are not necessarily
equal.

Quite a few tests for the aforementioned problem are given in the literature.
Some of these tests have been used in many practical experiments in chemomet-
rics (Bobelyn et al. 2010; Tarrío-Saavedra et al. 2011), economics (Long et al.
2012), transport emissions (Gao 2007), etc. Most of these tests are described briefly
in Sect. 2, where we also propose new tests. The tests differ in terms of size
control and power. To compare the tests, we present exhaustive simulation stud-
ies whose results may help in choosing the best test for a specific real prob-
lem.

The rest of the paper is organized as follows. In Sect. 2, the existing tests for the
one-way ANOVA problem for functional data are reviewed and new tests for that
problem are presented. Simulation studies and illustrative examples are presented in
Sects. 3 and 4, respectively. Some conclusions are given in Sect. 5. Supplementary
Materials are described in Sect. 6. Proofs of the theoretical results are outlined in the
“Appendix”.
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A comparison of tests for the one-way ANOVA problem for functional data 989

2 Tests for the one-way ANOVA problem for functional data

In this section, we describe existing tests for the one-way ANOVA problem for
functional data and present new tests based on the idea of the B-spline test
(Shen and Faraway 2004).

2.1 Existing tests

We first set up notation. Let

SSRn(t) =
k∑

i=1

ni (X̄i (t) − X̄(t))2

and

SSEn(t) =
k∑

i=1

ni∑

j=1

(Xi j (t) − X̄i (t))
2

denote the pointwise between-subject and within-subject variations respectively,
where

X̄(t) = 1

n

k∑

i=1

ni∑

j=1

Xi j (t)

and

X̄i (t) = 1

ni

ni∑

j=1

Xi j (t),

i = 1, . . . , k, are respectively the sample grand mean function and the sample group
mean functions. Moreover, let tr(γ ) = ∫

T γ (t, t)dt denote the trace of γ (s, t). The
pooled sample covariance function γ̂ (s, t), as an unbiased estimator of γ (s, t), is given
by

γ̂ (s, t) = 1

n − k

k∑

i=1

ni∑

j=1

(Xi j (s) − X̄i (s))(Xi j (t) − X̄i (t)). (2)

The natural extension of the classicalANOVA F-test for real variables to the context
of functional data analysis is the pointwise F-test proposed by Ramsay and Silverman
(2005, p. 227). The test statistic of the pointwise F-test for (1) is defined as

Fn(t) = SSRn(t)

k − 1

/
SSEn(t)

n − k
.
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The pointwise F-test rejects (1) at each t ∈ T whenever Fn(t) > Fk−1,n−k(1 − α)

for any predetermined significant level α, where Fk−1,n−k(1 − α) denotes the upper
100(1 − α) percentile of Fk−1,n−k . Hence we can test (1) at all points of T using
the same critical value for any predetermined significant level. Unfortunately, the
pointwise F-test is time-consuming (it must be performed for all t ∈ T ) and it is not
guaranteed that the one-way ANOVA problem (1) is significant overall for a given
significance level even when the pointwise F-test is significant for all t ∈ T at the
same significance level. In the literature, global tests which overcome this difficulty
are also proposed. We briefly describe them below.

Cuevas et al. (2004) proposed to use the following test statistic for testing (1)

Vn =
∑

1≤i< j≤k

ni

∫

T
(X̄i (t) − X̄ j (t))

2dt.

Under the null hypothesis (1) and the assumptions that ni , n → ∞ in such a way that
ni/n → pi > 0 for i = 1, . . . , k, they proved that the approximate distribution of Vn
is that of the statistic

V =
∑

1≤i< j≤k

ni

∫

T
(Zi (t) − √

pi/p j Z j (t))
2dt, (3)

where Z1(t), . . . , Zk(t) are independent Gaussian processes with mean 0 and covari-
ance function γ (s, t). Cuevas et al. (2004) computed the p-value of Vn , or its empirical
critical value, by resampling Zi (t), i = 1, . . . , k, from Gaussian processes GP(0, γ̂ ),
where γ̂ (s, t) is given by (2), a large number of times. This test will be referred to as
the CH test. They also showed that the test statistic Vn can be used for testing (1) in the
“heteroscedastic” case. In this case, the p-value of Vn can be computed as above, but
here Z1(t), . . . , Zk(t) are independent Gaussian processes with covariance functions

γ̂i (s, t) = 1

ni − 1

ni∑

j=1

(Xi j (s) − X̄i (s))(Xi j (t) − X̄i (t)), i = 1, . . . , k.

This version of the test of Cuevas et al. (2004) will be referred to as the CS test.
The L2-norm-based test (Faraway 1997; Zhang and Chen 2007) adopted for (1)

uses the test statistic Sn = ∫
T SSRn(t)dt . Under the null hypothesis (1), it can be

shown that Sn ∼ βχ2
d approximately, where β = tr(γ ⊗2)/tr(γ ), d = (k − 1)κ , κ =

tr2(γ )/tr(γ ⊗2) and γ ⊗2(s, t) = ∫
T γ (s, u)γ (u, t)du. This approximate distribution

can be used to compute the p-value of Sn (P(χ2
d ≥ Sn/β)) or its critical value (βχ2

d
(1−α)). In practice, the parameters β and κ are estimated based on the functional data
by a naivemethod or a bias-reducedmethod.With the estimator γ̂ (s, t) given in (2), by
the naive method, we have β̂ = tr(γ̂ ⊗2)/tr(γ̂ ), d̂ = (k−1)κ̂ and κ̂ = tr2(γ̂ )/tr(γ̂ ⊗2),

and by the bias-reduced method, we have β̂ = ̂tr(γ ⊗2)/tr(γ̂ ), d̂ = (k − 1)κ̂ and

κ̂ = ̂tr2(γ )/ ̂tr(γ ⊗2), where
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̂tr(γ ⊗2) = (n − k)2

(n − k − 1)(n − k + 2)

(
tr(γ̂ ⊗2) − tr2(γ̂ )

n − k

)
,

̂tr2(γ ) = (n − k)(n − k + 1)

(n − k − 1)(n − k + 2)

(
tr2(γ̂ ) − 2tr(γ̂ ⊗2)

n − k + 1

)
.

Therefore, we have two L2-norm-based tests which differ in the method of estimation
of the parameters β and κ , i.e. the L2-norm-based test with the naive method of
estimation of those parameters (the L2N test for short), and the L2-norm-based test
with the bias-reduced method of estimation of those parameters (the L2B test for
short).

The F-type test (Shen and Faraway 2004; Zhang 2011) adopted for (1) uses the
test statistic

Fn =
∫
T SSRn(t)dt/(k − 1)∫
T SSEn(t)dt/(n − k)

.

Under the null hypothesis (1), we can show that Fn ∼ Fd1,d2 approximately, where d1
is the same as for the L2-norm-based test given earlier and d2 = (n − k)κ . Similarly,
the approximate null distribution of the F-type test can be used to compute the p-
value of Fn or its critical value. The parameter κ can be estimated by the naive method
or by the bias-reduced method described above. Hence we consider the F-type test
with the naive estimation method for the parameter κ (the FN test for short), and the
F-type test with the bias-reduced estimation method for the parameter κ (the FB test
for short). Further details about the aforementioned L2-norm-based and F-type tests
for one-way ANOVA for functional data can be found in Zhang (2013, ch. 5).

When the k samples are not Gaussian and when the sample sizes are small, the
L2-norm-based test and the F-type test are not preferred (see Zhang 2013). In this
case, the bootstrap versions of these tests can be used to bootstrap the p-values of Sn
and Fn (see Zhang 2013, p. 159, for more details). To shorten the notation, we refer
to the L2-norm-based bootstrap test and F-type bootstrap test as the L2b test and Fb
test, respectively.

Globalization of the pointwise F-test (the GPF test, Zhang and Liang 2014) uses
the test statistic Tn = ∫

T Fn(t)dt . Under the null hypothesis (1), it can be shown that
Tn ∼ β̂wχ2

d̂w
approximately, where

β̂w = (n − k − 2)tr(γ̂ ⊗2
w )/((k − 1)(n − k)(b − a)),

d̂w = (k − 1)(n − k)2(b − a)2/((n − k − 2)2tr(γ̂ ⊗2
w ))

and

γ̂w(s, t) = γ̂ (s, t)/
√

γ̂ (s, s)γ̂ (t, t),

where γ̂ (s, t) is given by (2). This approximate distribution can be used to compute
the p-value of Tn or its critical value in much the same way as for the L2-norm-based
test.
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Fan and Lin (1998) proposed to use adaptive Neyman test to compare differ-
ent sets of curves. This test can be adopted for testing (1) (see, for example,
Laukaitis and Račkauskas 2005, which used it in the analysis for clients segmentation
tasks). Let X∗

i j (l), l = 1, . . . , T ∗ be the discrete Fourier tranform of the function Xi j

for given i and j . We assume the model X∗
i j (l) = m∗

i (l) + ε∗
i j (l), where ε∗

i j (l) are

independent and ε∗
i j (l) ∼ N (0, σ 2

i (l)). The null hypothesis (1) is transformed then to
H∗
0 : m∗

1(l) = · · · = m∗
k(l) = m∗(l) for all l. To test H∗

0 , Fan and Lin (1998) propose
to use the test statistic

THANOVA = √
2 log log T ∗Fm̂ − {2 log log T ∗ + 0.5 log log log T ∗ − 0.5 log(4π)},

where

Fm̂ = max
1≤m≤T ∗

1√
2(k − 1)m

[
m∑

l=1

k∑

i=1

ni σ̂
∗
i (l)−2[X̄∗

i (l) − X̄∗(l)]2 − (k − 1)m

]
,

and

X̄∗
i (l) = 1

ni

ni∑

j=1

X∗
i j (l), σ̂ ∗

i (l) = 1

ni − 1

ni∑

j=1

(X∗
i j (l) − X̄∗

i (l))
2,

X̄∗(l) =
k∑

i=1

ni σ̂
∗
i (l)−2 X̄∗

i (l)

/ k∑

i=1

ni σ̂
∗
i (l)−2.

As it is discussed in Fan and Lin (1998), the choice of the maximum number of
dimensions T ∗ does not alter the result very much, as long as T ∗ is large enough
so that high-frequency cells are basically noise. We reject H∗

0 when THANOVA is too
large. The critical values for this test statistic can be obtained by the finite sample
distribution of it (see Table 1 in Fan and Lin 1998). We refer to this test as the FL test.

2.2 Tests based on a basis function representation

In this section, we present tests for the one-way ANOVA problem which are based on
a basis function representation of the stochastic processes (Xi j (t), t ∈ T ). These tests
are inspired by the idea of the B-spline method of Shen and Faraway (2004).

Assume that we observe k groups of stochastic processes Xi j ∈ L2(T ), i =
1, . . . , k, j = 1, . . . , ni , where L2(T ) is the Hilbert space of square integrable func-
tions on the interval T , equipped with the inner product < f, g> = ∫

T f (t)g(t)dt .
Let {φl} be an orthonormal basis of L2(T ). This orthonormal basis also called basis
function system has the property that we can approximate arbitrarily well any function
by taking a weighted sum or linear combination of a sufficiently large number K of
these functions (see Ramsay and Silverman 2005). For this reason, we consider the
case where the stochastic processes (Xi j (t), t ∈ T ) can be represented by a finite
number of orthonormal basis functions, i.e.
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Xi j (t) =
K∑

l=0

ci jlφl(t), t ∈ T, (4)

where ci jl , l = 0, 1, . . . , K , are random variables with finite variance and K is suffi-
ciently large. We present how we can choose the appropriate value of K based on the
data later on.

We write φ(t) = (φ0(t), φ1(t), . . . , φK (t))′ and ci j = (ci j0, ci j1, . . . , ci j K )′. The
stochastic processes (Xi j (t), t ∈ T ), the sample grand mean function and the sample
group mean functions can be written in matrix notation as follows:

Xi j (t) = c′
i jφ(t), X̄(t) = 1

n

k∑

i=1

ni∑

j=1

c′
i jφ(t), X̄i (t) = 1

ni

ni∑

j=1

c′
i jφ(t), (5)

for t ∈ T .
The vectors ci j can be estimated by the least squaresmethod, and the optimumvalue

of K in the sense of smoothness can be selected for each process (Xi j (t), t ∈ T ) using
the Bayesian Information Criterion (BIC); then from the values of K corresponding
to all processes a modal value is selected as the common value for all (Xi j (t), t ∈ T ),
i = 1, . . . , k, j = 1, . . . , ni (see Krzyśko and Waszak 2013; Górecki et al. 2014,
for more details). We should prefer K to be large, particularly when the stochastic
processes (Xi j (t), t ∈ T ) are observed at high frequency with little noise.

We reduce the stochastic processes (Xi j (t), t ∈ T ) to vectors ci j of length K + 1,
for all i = 1, . . . , k, j = 1, . . . , ni . Of course, the score vectors ci j contain some
information about these processes. The B-spline method in Shen and Faraway (2004)
for testing hypotheses for functional data uses this information in the following simple
way: We represent each stochastic process as a linear combination of orthonormal
basis functions and then perform the usual multivariate test on the coefficients of this
representation. Based on this idea, the usual MANOVA tests on the vectors ci j can be
performed to test (1). The well-known MANOVA tests are Wilk’s lambda (which is
a function of the likelihood ratio test statistic), the Lawley-Hotelling trace, the Pillai
trace, and Roy’s maximum root (Anderson 2003). Therefore, we have four tests for
the one-way ANOVA problem for functional data, and we call these the W, LH, P and
R tests, from the initial letters of the surnames of their originators.

The aforementioned tests for the one-way ANOVA problem for functional data are
very simple, but we will see that they do not perform so well as the other methods
in some cases. Moreover, from the formal requirements of the MANOVA tests, we
usually have to reduce the number of basis functions in (4), which can negatively affect
the smoothness of a basis functional representation of the processes (Xi j (t), t ∈ T ).
However, a basis function representation can be used to construct a better test for
(1). The test statistic of the classical ANOVA F-test for real variables adopted for
functional data takes the form

F =
1

k−1

∑k
i=1 ni ||X̄i − X̄ ||22

1
n−k

∑k
i=1

∑ni
j=1 ||Xi j − X̄i ||22

, (6)
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where || f ||22 = ∫
T f 2(t)dt for f ∈ L2(T ). In the following proposition, a more useful

form of this statistic is proved.

Proposition 1 Assume that the stochastic processes Xi j ∈ L2(T ), i = 1, . . . , k,
j = 1, . . . , ni , are represented by a finite number of orthonormal basis functions, i.e.
the equations in (5) hold with a known (fixed) K . Then the statistic F given by (6) is
equal to

1
k−1 (a − b)
1

n−k (c − a)
,

where

a =
k∑

i=1

1

ni

ni∑

m=1

ni∑

s=1

c′
imcis, b = 1

n

k∑

i=1

ni∑

m=1

k∑

t=1

nt∑

v=1

c′
imctv, c =

k∑

i=1

ni∑

j=1

c′
i jci j .

The proof of Proposition 1 is given in the “Appendix”. We propose to use F as the test
statistic and a permutation-based p-value for testing (1). Proposition 1 implies that the
statistic F given by (6) is a function of the coefficient vectors ci j and does not depend
on the functions φl . Moreover, it is easy to see that any permutation of the stochastic
processes (Xi j (t), t ∈ T ) leaves the values of the sums b and c unchanged. Hence for
each random permutation of the data only the sum a has to be calculated. Furthermore,
the sums a, b and c given in Proposition 1 can be expressed in the forms presented in
the following lemma,which are easier and faster to compute, using computer programs
such as R, than the sums given in Proposition 1.

Lemma 1 Let Ci = (ci1, . . . , cini ), i = 1, . . . , k, where the vectors ci j , j =
1, . . . , ni , are defined in (5). Then

a =
k∑

i=1

1

ni
1′
ni C

′
iCi1ni , b = 1

n

k∑

i=1

k∑

j=1

1′
ni C

′
iC j1n j , c =

k∑

i=1

tr(C′
iCi ),

where 1p is the p × 1 vector of ones.

The proof of Lemma 1 is outlined in the “Appendix”. The permutation test based on
the test statistic F and implemented with the use of the above facts is comparable in
terms of speed to the bootstrap tests described in Sect. 2.1. Moreover, as we will see
later, this test is comparable in terms of size control and power to other tests for (1),
and it performs better than those tests when the number of observations and number of
time points are small.We also remark that it is easy to see that F = Fn , where Fn is the
test statistic of the F-type test described in Sect. 2.1. However, from the simulations
in Sect. 3, we find that the above permutation test based on the test statistic F (the
FP test for short) performs better than the F-type tests based on approximation of the
distribution of this test statistic, and also better than the Fb test.
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2.3 Numerical implementation of the tests

In practice, the k functional samples are not continuously observed. Each function is
usually observed on a grid of design time points. In this paper, all individual func-
tions in the simulations and the examples are observed on a common grid of design
time points. All tests can be directly applied to such functional data. In the Supple-
mentary Materials, we present and describe the R codes which perform all of the
global tests considered in this paper. However, the design time points may in some
situations be different for different individual functions. To implement the tests numer-
ically for such situations, one first has to reconstruct the k functional samples from
the k observed discrete functional samples using some smoothing technique, then dis-
cretize each individual function of the k reconstructed functional samples on a com-
mon grid of time points, and finally apply the tests accordingly (see Zhang 2013, or
Zhang and Liang 2014, for more details).

In all simulations and examples given in this paper, the p-values of the FP test
were obtained on the basis of 1,000 permutation replicates, the p-values of the CH
and CS tests were evaluated on the basis of 2,000 discretized artificial trajectories for
each process Zi (t) appearing in the limit statistic V given in (3), and the p-values of
the L2b and Fb tests were obtained on the basis of 10,000 bootstrap replicates. The
orthonormal basis functions chosen in performing the FP, LH, R, P and W tests are
the Fourier system (see Krzyśko andWaszak 2013). The optimal values of K as given
in (4) were selected using the BIC from the set K = {3, 5, . . . , 101} in the case of
the FP test. For the LH, R, P and W tests, we usually selected the optimal values of
K from a subset of that set whose elements enable the performance of the MANOVA
tests. The set K is associated with the function in the R program which creates the
Fourier system. The critical values for the FL test statistic (0.05 upper quantiles of the
distribution of THANOVA) were obtained by the finite sample distribution of it based on
one million simulations (see Table 1 in the Supplementary Materials). The R code of
the program, which generates these critical values is also given there. The maximum
number of dimensions T ∗ in THANOVA is chosen in the following way: Suppose that
the number of design time points onwhich the functions are observed is T . If T < 100,
T ∈ [100, 200], T > 200, then T ∗ = T , T ∗ = �T/2, T ∗ = 100, respectively.

3 Simulation studies

In this section we present some simulation studies which serve to compare the tests for
the one-way ANOVA problem for functional data. The simulation studies are based
on real labeled times series data, which are in fact discrete functional data. They are
labeled, which means that the assignment of the observations to groups is known.
They also consist of real data. Additional simulation studies based on artificial data
are also given.

3.1 Experimental setup

We use the labeled time series data to generate k = 3 discrete functional samples
with n1 = n2 = n3 = n̄ = 10, 20, 30. Information on the time series used is given in
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996 T. Górecki, Ł. Smaga

Table 1 Summary of data sets

Data set Number of classes Number of observations Time series length

Adiac 37 781 176

CBF 3 930 128

ChlorineConcentration 3 4,307 166

CinC_ECG_torso 4 1,420 1,639

Cricket_X 12 780 300

Cricket_Y 12 780 300

DiatomSizeReduction 4 322 345

Face (all) 14 2,250 131

Face (four) 4 112 350

Fish 7 350 463

Haptics 5 463 1,092

Mallat 8 2,400 1,024

MedicalImages 10 1,141 99

Non-Invasive Thorax1 42 3,765 750

Non-Invasive Thorax2 42 3,765 750

OSU Leaf 6 442 427

Plane 7 210 144

StarLightCurves 3 9,236 1,024

Swedish Leaf 15 1,125 128

Symbols 6 1,020 398

Synthetic Control 6 600 60

Trace 4 200 275

uWaveGestureLibrary_X 8 4,478 315

uWaveGestureLibrary_Y 8 4,478 315

uWaveGestureLibrary_Z 8 4,478 315

Table 1. The time series originate from the UCR Time Series Classification/Clustering
Homepage (Keogh et al. 2011), which includes the majority of all of the world’s
publicly available, labeled time series data sets. The data sets originate from a large
number of different domains, including medicine, robotics, astronomy, biology, face
recognition, handwriting recognition, etc.

Assume that the classes of the data sets are numbered from 1 to l. Of course, the
number of classes l depends on the data set (see Table 1). For each data set described
in Table 1 except data sets where there is not a sufficient number of observations, the
k = 3 functional samples are generated to compare the empirical sizes of the tests for
(1) in the following way: (1) select randomly one element i from the set {1, . . . , l};
(2) from the i th class, select randomly 3n̄ observations and create from them three
samples, each of size n̄. For such samples, we expect to accept the null hypothesis
(1). For each data set, we generate 100 such samples. For each of them, the p-values
provided by all considered tests for (1) were noted. The rates of rejection of the null
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hypothesis (1) at the significance level α = 0.05 for all tests are given in Table 2 and
Tables 2 and 3 in the Supplementary Materials. This simulation will be referred to as
S1.

For each data set described in Table 1 except data sets where there is not a sufficient
number of observations, the k = 3 functional samples are generated to compare
the empirical powers of the tests for (1) in the following way: (1) select randomly
two different elements i and j from the set {1, . . . , l}; (2) from the i th class, select
randomly 2n̄ observations and create from them two samples, each of size n̄; (3)
from the j th class, select randomly n̄ observations to create the third sample. For the
samples generated in this way we expect to reject the null hypothesis (1). The rates
of rejection of the null hypothesis (1) at the significance level α = 0.05 are given in
Table 3 and Tables 4 and 5 in the Supplementary Materials. This simulation will be
called S2.

The aforementioned simulations are based on time series whose lengths are mainly
moderate or large.We also give additional simulation studies to present the differences
between empirical sizes and powers of the tests for the one-way ANOVA problem for
“short” functional data. Similarly to Cuevas et al. (2004), we considered an artificial
example with [a, b] = [0, 1] and k = 3 groups in seven cases:

(M1) mi (t) = t (1 − t) for i = 1, 2, 3,
(M2) mi (t) = 0.1| sin(4π t)| for i = 1, 2, 3,
(M3) mi (t) = t i (1 − t)6−i for i = 1, 2, 3,
(M4) mi (t) = t i/5(1 − t)6−i/5 for i = 1, 2, 3,
(M5) m1(t) = 0.05| sin(4π t)|, m2(t) = 0.1| sin(4π t)|, m3(t) = 0.15| sin(4π t)|,
(M6) m1(t) = 0.025| sin(4π t)|,m2(t) = 0.05| sin(4π t)|,m3(t) = 0.075| sin(4π t)|,
(M7) mi (t) = 1 + i/50 for i = 1, 2, 3.

Cases M1 and M2 correspond to situations where H0 is true; M3–M7 correspond to
situations where H0 is false. For each choiceM1–M7 of mean functions, we generated
independent samples with n1 = n2 = n3 = n̄ = 10, 20, 30, under the model Xi j (t) =
mi (t) + εi j (t), i = 1, 2, 3, j = 1, . . . , n̄. More precisely, the processes (Xi j (t), t ∈
[0, 1]) were generated in discretized versions Xi j (ts), for s = 1, . . . , 25, where the
values ts were chosen equispaced in the interval [0, 1]. Two different type of errors
are considered. In the normal case for the models M1–M7, the errors εi j (ts) were
i.i.d. random variables of normal distribution with mean 0 and standard deviation
σ . In the Wiener case for the models M1–M6, the errors εi j were i.i.d. standard
Wiener processes with dispersion parameter σ 2. The values of the parameter σ were
σ1 = 0.2/25, σ2 = 1/25, σ3 = 1.8/25, σ4 = 2.6/25, σ5 = 3.4/25, σ6 = 4.2/25 and
σ7 = 5/25.

Figures 1 and 2 in the Supplementary Materials depict simulated examples corre-
sponding with models M1–M6 with ni = 30, i = 1, 2, 3, σ1 = 0.2/25 in the normal
and the Wiener cases.

For each pair (Mi, σ j ), i, j = 1, . . . , 7 in both cases, the fifteen tests were applied to
the three generated functional samples. Their p-values were then recorded. When the
p-values are smaller than the nominal significance level α = 0.05, the null hypothesis
(1) is rejected. The aforementioned process was repeated N = 100 times. For each
case, the empirical sizes or powers of the tests were then computed as the proportional
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Table 2 Empirical sizes (as percentages) of all tests for the one-way ANOVA problem obtained in simu-
lation S1 with ni = 10, i = 1, 2, 3

Data set Test

FP LH R P W CH CS L2N L2B L2b FN FB Fb GPF FL

CBF 8 8 20 6 6 4 4 7 9 6 5 8 2 6 26

ChlorineConcentration 8 3 27 2 2 4 5 7 7 6 5 6 3 7 33

CinC_ECG_torso 4 7 24 4 5 4 5 6 6 6 5 6 2 4 39

Cricket_X 7 5 27 4 4 5 7 10 11 8 8 10 5 10 36

Cricket_Y 7 5 24 4 4 3 4 4 5 4 4 4 3 4 35

DiatomSizeReduction 4 3 19 2 4 2 4 4 4 4 3 4 1 3 31

Face (all) 4 3 19 3 1 3 3 4 5 4 3 5 2 4 29

Fish 8 5 31 4 8 4 4 6 9 6 5 5 2 8 29

Haptics 8 5 16 2 5 4 4 5 7 4 5 5 1 4 40

Non-Invasive Thorax1 4 9 31 7 9 4 6 7 10 6 6 8 2 6 39

Non-Invasive Thorax2 3 3 27 3 3 5 7 8 10 9 7 8 4 8 42

OSU Leaf 8 2 21 5 3 4 4 4 5 4 4 4 2 5 25

Plane 7 7 25 0 2 2 5 6 8 5 4 5 2 7 31

StarLightCurves 7 4 22 3 2 5 6 7 7 6 6 7 5 4 39

Swedish Leaf 6 9 28 6 7 3 3 7 9 3 5 6 0 5 28

Symbols 5 7 28 3 5 1 2 3 4 1 1 3 1 5 46

Synthetic Control 8 7 11 6 7 3 2 5 9 3 4 9 0 5 19

Trace 1 5 31 2 4 4 6 6 11 7 6 6 2 8 40

uWaveGestureLibrary_X 3 1 20 4 1 6 6 6 6 6 6 6 3 7 35

uWaveGestureLibrary_Y 7 0 25 2 2 3 4 6 8 5 5 6 1 6 31

uWaveGestureLibrary_Z 7 2 23 4 2 4 4 5 5 4 4 5 1 5 34

Mean 6 5 24 4 4 4 5 6 7 5 5 6 2 6 34

number of rejections (out of N = 100 replications) based on the calculated p-value
(see Tables 6–17 in the Supplementary Materials).

3.2 Results

It is not easy to draw conclusions about the behavior of all of the tests for (1) being
compared by means of the simulations given in Sect. 3.1. For this reason, we present a
detailed statistical comparison to identify differences between the tests in Sect. 3.3. In
this section, we restrict ourselves to providing simple and immediate insights obtained
from Tables 2, 3 and Tables 2–17 in the Supplementary Materials.

In simulation S1 and in models M1 and M2 (where H0 is true) all tests except the
R and FL tests provide satisfactory results in almost all of the cases considered. From
Table 2 and Tables 2, 3, 6–8, 12–14 in the Supplementary Materials, we immediately
observe that the R and FL tests are the most liberal of all the tests, with empirical
sizes ranging between 10 and 46%, 4 and 46% respectively. Hence it seems that the
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Table 3 Empirical powers (as percentages) of all tests for the one-way ANOVA problem obtained in
simulation S2 with ni = 10, i = 1, 2, 3

Data set Test

FP LH R P W CH CS L2N L2B L2b FN FB Fb GPF FL

Adiac 85 80 97 49 81 86 86 87 89 87 87 87 78 93 100

CBF 100 100 100 98 100 97 97 98 99 98 97 98 86 100 99

ChlorineConcentration 4 10 25 11 9 5 5 6 8 5 6 6 2 7 47

CinC_ECG_torso 16 17 51 6 12 8 9 11 15 9 9 12 6 10 45

Cricket_X 36 22 60 14 24 25 27 32 38 30 29 33 20 39 74

Cricket_Y 66 31 76 23 34 62 60 66 70 62 64 66 51 78 88

DiatomSizeReduction 85 97 100 35 97 58 57 63 64 60 58 59 52 91 97

Face (all) 80 80 89 35 75 82 79 84 89 82 84 89 70 95 100

Face (four) 100 93 100 26 86 96 96 97 100 96 97 98 94 100 100

Fish 77 69 94 23 63 71 72 72 75 72 72 72 65 85 100

Haptics 37 12 34 9 12 23 24 31 33 24 27 31 14 37 67

Mallat 100 94 100 41 88 100 100 100 100 100 100 100 100 100 100

MedicalImages 90 46 80 24 44 82 82 84 86 83 84 85 72 84 94

Non-Invasive Thorax1 100 93 99 32 88 99 98 99 99 98 99 99 97 99 100

Non-Invasive Thorax2 99 97 100 38 95 100 100 100 100 100 100 100 100 100 100

OSU Leaf 40 9 47 13 13 25 24 31 35 24 29 32 17 34 75

Plane 100 100 100 24 100 100 100 100 100 100 100 100 99 100 100

StarLightCurves 86 77 92 40 79 85 87 87 90 87 86 87 83 90 94

Swedish Leaf 96 79 98 35 78 93 90 94 94 93 93 94 84 99 99

Symbols 98 91 96 37 90 97 97 97 97 97 97 97 95 99 100

Synthetic Control 98 91 96 89 91 93 89 94 98 91 93 98 85 100 100

Trace 70 84 95 32 82 69 69 69 69 69 69 69 69 85 90

uWaveGestureLibrary_X 96 37 69 25 39 94 94 94 95 94 94 95 91 95 97

uWaveGestureLibrary_Y 88 33 76 25 34 91 92 93 93 92 92 92 90 93 98

uWaveGestureLibrary_Z 91 41 74 21 43 89 90 91 95 90 90 91 85 94 92

Mean 78 63 82 32 62 73 73 75 77 74 74 76 68 80 90

significance levels of the R and FL tests are not less than or equal to 5%. However,
it also seems that with increasing sample sizes, the empirical sizes of the FL test
generally decrease, but we can not say the same for the R test. The other tests perform
much better than the R and FL tests. In simulation S1, the L2B, FB, L2N, FP and GPF
tests are slightly more liberal than all of the remaining tests except the R and FL tests.
The Fb test is the most conservative. In models M1 and M2 in the normal case, the
LH, W, P, L2B, FP and FB tests are slightly more liberal than the GPF and L2N tests,
and the CH, CS, L2b, FN and Fb tests are the most conservative. In models M1 and
M2 in the Wiener case, the L2B, GPF, L2N, CS and L2b tests are slightly more liberal
than the other tests, and the P, CH and Fb tests are usually the most conservative (the
LH and W tests are also conservative when ni = 30, i = 1, 2, 3).
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Information about the empirical powers of the tests is obtained from simulation
S2 and models M3–M7 (see Table 3; Tables 4, 5, 9–11, 15–17 in the Supplementary
Materials). The R and FL tests seem to be ones of the most powerful tests, but this may
be connected with the unacceptable high empirical sizes of those tests. In simulation
S2, the GPF, FP, L2B and FB tests have slightly higher powers than the L2N,L2b
and FN tests, and these all have higher powers than the other tests. The P test has the
smallest empirical power. In models M3–M7 in the normal case, the FP, L2B and FB
tests have the highest powers. The remaining tests have smaller powers than those tests,
and the Fb and P tests have the smallest empirical powers. In models M3–M6 in the
Wiener case, the situation is changing. Here, LH, W, P (for ni = 20, 30, i = 1, 2, 3)
andGPF tests are themost powerful tests. Nevertheless, the Fb test has still the smallest
empirical power.

With increasing sample sizes, the empirical sizes of the tests generally become
better or are at the same level in terms of size control, and the empirical powers of the
tests generally increase.

The powers of the tests for (1) depend strongly on the error parameters. With
an increase in the dispersion parameter, the empirical powers of the tests generally
become smaller. All of the tests (except eventually the P test in the normal case or when
ni = 10, i = 1, 2, 3) perform very well for σ1 and well for σ2 and σ3. However, for σi ,
i = 5, 6, 7, the CH, CS, L2N,L2b, FN and Fb tests in each case and the FP, L2B and
FB tests in the Wiener case often perform badly or even very badly. All tests depend
on the dispersion parameter, but some of them to a much greater degree than others.

In model M7 the functions are in fact constant, so this model is an example in
which the functional approach is unnecessarily complicated. We include this case
to compare the functional tests with the classical ANOVA F-test for real variables,
which would be more appropriate here. In model M7, the classical ANOVA F-test
gives 97% rejections of the null hypothesis (1) at a significance level α = 0.05 for
σ7 and ni = 10, i = 1, 2, 3, and 100% rejections in all other cases. Although the
functional tests perform generally worse than the classical ANOVA F-test for real
variables, most of them (especially the FP, L2B and FB tests) perform quite well for
small and moderate values of the dispersion parameter.

We can also observe that in simulation S2 and models M3–M7 in the normal case
the CH test performs slightly better than the CS test. The reason for this is perhaps
that the homoscedastic assumption appears reasonable for those simulation data. The
opposite situation holds in models M3–M6 in the Wiener case.

3.3 Statistical comparison of tests

To identify differences between the tests, we present a detailed statistical comparison.
We test the null hypothesis that all tests perform the same and the observed differ-
ences are merely random. We used the Iman and Davenport (1980) test, which is a
nonparametric equivalent of ANOVA. The F-test is recommended because it is less
conservative than other tests (Looney 1998; Demšar 2006). We perform this test sepa-
rately for the results of the simulation S1, the simulation S2, the models M1 andM2 in
each case, the models M3–M7 in the normal case, the models M3–M6 in the Wiener
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case, and separately for ni = 10, 20, 30, i = 1, 2, 3 in each of these simulation sce-
narios. The F-test ranks the tests for each data set or pair (Ms, σt ), s, t = 1, . . . , 7,
separately, the tests with the smallest rates of rejection of the null hypothesis receiving
a rank of 1, the tests with the second smallest rates of rejection a rank of 2, and so on
(in case of ties average ranks are assigned). Let Ri j be the rank of the j th of K tests
on the i th of N data sets or pairs (Ms, σt ), and R j = 1

N

∑N
i=1 Ri j . The test compares

the mean ranks of methods and is based on the statistic

S′ = (N − 1)S

N (K − 1) − S
,

where

S = 12N

K (K + 1)

K∑

i=1

R2
i − 3N (K + 1)

is the Friedman statistic, which has the F distribution with K −1 and (K −1)(N −1)
degrees of freedom.The p-values from this test are less than 2.2E−16 for all simulation
scenarios described in Sect. 3.1 except simulations S1 with ni = 30, i = 1, 2, 3 (p-
value = 3.005E−10) and S2 with ni = 20, 30, i = 1, 2, 3 (p-value = 3.281E−12,
9.721E−06 respectively). We can therefore proceed with the post hoc tests to detect
significant pairwise differences among all of the tests. A set of pairwise comparisons
can be associated with a set of hypotheses. Any of the post hoc tests which can be
applied to non-parametric tests work over a family of hypotheses. The test statistic for
comparing the i th and j th tests is

Z = Ri − R j√
K (K+1)

6N

.

This statistic is asymptotically normal with zero mean and unit variance. When com-
paring multiple algorithms, to retain an overall significance level α, one has to adjust
the value of α for each post hoc comparison. There are various methods for this. A
simple method is to use Bonferroni correction. There are m = K (K − 1)/2 compar-
isons, therefore Bonferroni correction sets the significance level of each comparison to
α/m. Demšar (2006) recommends the procedure of Nemenyi (1963), which is based
on this correction. The Nemenyi test is similar to the Tukey test for ANOVA and is
used when all tests are compared with each other. The performance of two tests is
significantly different at the experimentwise error rate α if

|Ri − R j | > q(α, K ,∞)

(
K (K + 1)

12N

)1/2

, (7)

i = 1, . . . , K − 1, j = i + 1, . . . , K , where the values of q(α, K ,∞) are based
on the Studentized range statistic (Hollander and Wolfe 1973; Demšar 2006). The
results of multiple comparisons are given in Table 4 and Tables 18 and 19 in the
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Supplementary Materials. Those tests that are connected by a sequence of letters have
average ranks that are not significantly different from one another. For example, when
ni = 10, i = 1, 2, 3 for the empirical size, we obtained six homogeneous groups
of tests for simulation S1, and five homogeneous groups of tests for models M1 and
M2 in each case, and for the empirical power, seven homogeneous groups of tests for
simulation S2 and models M3–M6 in the Wiener case, and six homogeneous groups
of tests for models M3–M7 in the normal case (see Table 4). For the empirical size,
the best tests are in the last group, while for the empirical power, the best tests are in
the first group.

4 Illustrative examples

In this section, we apply the tests to two real-data examples, using Canadian tem-
perature data and orthosis data. These data sets are commonly used to illustrate
the use of statistical methods for real functional data (see Abramovich et al. 2004;
Ramsay and Silverman 2005; Zhang 2013; Zhang and Liang 2014). The Canadian
temperature data are available in the R package fda, and the orthosis data can be
downloaded from “http://www.stat.nus.edu.sg/~zhangjt/books/Chapman/FANOVA.
htm”.

4.1 Canadian temperature data

The Canadian temperature data are the daily temperature records of 35 Canadian
weather stations over a year (365 days). Fifteen of the weather stations are in Western
Canada, another fifteen in Eastern Canada, and the remaining five in Northern Canada.
Panels (a)–(c) of Fig. 1 present the raw Canadian temperature curves for these 35
weather stations. From Fig. 1, it can be seen that the temperatures at the Eastern
and Western weather stations are generally higher than those at the Northern weather
stations. The reason for this is probably that the Northern stations are located at higher
latitudes. We would like to check statistically whether location has an effect on the
mean temperature curves of the Eastern, Western and Northern weather stations. This
problemwas considered by Zhang (2013), and it is equivalent to the one-way ANOVA
problem for functional data with k = 3. To solve this problem, we applied all of
the tests under consideration, obtaining the results given in Table 5 (the estimates of
the parameters of the L2N,L2B, FN, FB and GPF tests are given in Table 20 in the
Supplementary Materials). The p-values of the first fourteen tests are less than the
significance level 0.05, and the value of the test statistic of the FL test is greater than
the critical value, hence it can be concluded that location has an effect on the mean
temperature curves of the Eastern, Western and Northern weather stations.

4.2 Orthosis data

As reported byAbramovich et al. (2004), the orthosis datawere acquired and computed
in an experiment by Dr. Amarantini David and Dr. Martin Luc (Laboratoire Sport et
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Table 4 Results of the Nemenyi post hoc test for the results of the simulations S1 and S2, the models M1
and M2, and the models M3–M7 with ni = 10, i = 1, 2, 3

Test Ranks mean Homogeneous groups Test Ranks mean Homogeneous groups

Empirical size (S1) Empirical power (S2)

FL 14.93 a FL 13.74 a

R 14.07 a GPF 12.02 a b

L2B 11.79 a b R 11.02 a b c

FB 9.31 b c L2B 11.00 a b c

L2N 9.17 b c d FP 10.18 a b c d

FP 9.07 b c d FB 9.48 a b c d

GPF 8.48 b c d e L2N 9.04 b c d e

L2b 7.36 b c d e FN 7.82 b c d e f

LH 6.86 c d e L2b 7.34 c d e f

FN 6.38 c d e f CH 6.52 d e f

CS 5.98 c d e f CS 6.40 d e f

W 5.62 c d e f LH 5.08 e f g

P 4.62 d e f W 4.74 f g

CH 4.21 e f Fb 3.78 f g

Fb 2.17 f P 1.84 g

Empirical size (M1, M2 in normal case) Empirical power (M3–M7 in normal case)

R 14.82 a FL 12.64 a

FL 14.18 a FP 11.51 a b

LH 12.43 a L2B 11.37 a b

W 11.32 a b FB 10.80 a b

P 10.32 a b GPF 9.61 a b c

L2B 10.07 a b R 9.03 a b c d

FP 9.50 a b c L2N 8.73 b c d

FB 9.11 a b c d FN 7.97 b c d e

GPF 6.18 b c d e CH 7.10 c d e

L2N 4.29 c d e L2b 6.81 c d e

CH 3.86 c d e LH 6.00 c d e f

FN 3.86 c d e CS 5.87 d e f

L2b 3.50 d e W 5.09 e f

CS 3.29 e Fb 4.57 e f

Fb 3.29 e P 2.89 f

Performance Motrice, EA 597, UFRAPS, Grenoble University, France). They inves-
tigated how muscle redundancy could be appropriately used to cope with an external
perturbation while complying with the mechanical requirements related either to bal-
ance control and/orminimumenergy expenditure. In the experiment, seven youngmale
volunteers wore a spring-loaded orthosis of adjustable stiffness under the following
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Table 4 continued

Test Ranks mean Homogeneous groups Test Ranks mean Homogeneous groups

Empirical size (M1, M2 in Wiener case) Empirical power (M3–M6 in Wiener case)

R 14.75 a FL 12.91 a

FL 14.25 a R 12.57 a

L2B 12.25 a b GPF 11.18 a b

GPF 10.14 a b c LH 10.34 a b c

L2b 9.89 a b c W 10.00 a b c d

CS 9.54 a b c L2B 9.23 a b c d e

L2N 9.43 a b c L2N 8.05 b c d e f

LH 8.50 b c d L2b 7.96 b c d e f

FB 6.36 c d e CS 6.93 c d e f g

FN 6.11 c d e P 6.14 d e f g

W 5.82 c d e FP 6.05 d e f g

FP 5.14 c d e FB 5.82 e f g

P 3.21 d e FN 5.11 f g

CH 3.07 d e CH 4.64 f g

Fb 1.54 e Fb 3.05 g

The critical values of this test given in (7) for the results of the simulation S1, the simulation S2, the models
M1 andM2 in each case, the models M3–M7 in the normal case, and the models M3–M6 in theWiener case
with ni = 10, i = 1, 2, 3 are equal to 4.680342, 4.289605, 5.732225, 3.625378 and 4.053295 respectively

four experimental conditions: a control condition (without orthosis); an orthosis con-
dition (with orthosis); and two spring conditions (with spring 1 or with spring 2) in
which stepping-in-place was perturbed by fitting a spring-loaded orthosis onto the
right knee joint. All volunteers tried all four conditions 10 times for 20 s each. To
avoid possible perturbations in the initial and final parts of the experiment, only the
central 10 s were used in the study. The resultant moment of force at the knee was
derived by means of body segment kinematics recorded with a sampling frequency of
200Hz. For each stepping-in-place replication, the resultant moment was computed at
256 time points, equally spaced and scaled to the interval [0, 1] so that a time interval
corresponded to an individual gait cycle.

Similarly to Zhang and Liang (2014), we use only the first volunteer’s orthosis
data under the four experimental conditions for illustrative purposes. The raw orthosis
curves of the first volunteer under the four experimental conditions are given in Panels
(a)–(d) of Fig. 2. We are interested in testing whether the mean orthosis curves of the
first volunteer are different under the four experimental conditions. This is a one-way
ANOVA problem for functional data with k = 4. Zhang and Liang (2014) used the
pointwise F-test for this problem. This test suggests that the mean orthosis curves of
the first volunteer under the four experimental conditions are not the same, but they
may be the same over the interval [0.8, 1], i.e. at the last stage of the experiment. The
results of all of the tests under consideration are presented in Table 5 (the estimates
of the parameters of the L2N,L2B, FN, FB and GPF tests are given in Table 20 in
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Fig. 1 Canadian temperature data for a fifteen Eastern weather stations, b fifteenWestern weather stations,
and c five Northern weather stations

the Supplementary Materials). All of the tests reject the null hypothesis that the mean
orthosis curves of the first volunteer under the four experimental conditions over [0, 1]
do not differ significantly.However,most of the tests accept the equality of these curves
over [0.8, 1]. The exceptions are the MANOVA-based tests and the FL test. Hence we
see that the decisions suggested by the tests are not always the same in practice.

5 Conclusions

In this paper we have presented comprehensive simulation studies to compare existing
tests and new tests for the one-way ANOVA problem (1) for functional data. A large
part of the simulations was based on real labeled time series data sets, and for this
reason they describe the size and the power of the tests better than simulations based
on artificial data.

The simulations suggest that the tests do not perform equally well. Moreover, there
is no single test that performs best. When the functions are observed on a moderate
or large grid of design time points, the GPF, L2B, FP and FB tests seem to perform
best, although the FP test can be time-consuming. The situation changes when the
functions are observed on a short grid of design time points. Here, depending on the
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Fig. 2 a–d Raw orthosis curves for the first volunteer under the four experimental conditions

structure of the functional data, the FP test or the LH, W and P tests seem to perform
best. Moreover, the FP test is also very fast in such a case.

Finally, it is worth to mention that the results of performance of the R and FL tests
confirm that the investigation of the empirical size of a test is very important and
should not be omitted.

6 Supplementary Materials

SupplementaryMaterials contain the R codes of the programs, which allow to perform
the tests for the one-way ANOVA problem for functional data considered in the paper,
and the tables, which contain empirical sizes and powers of those tests obtained in
remaining simulations S1 and S2 respectively, and in models M1–M2 and M3–M7
respectively; the results of multiple comparisons of tests in simulations S1 and S2 and
models M1–M7 with ni = 20, 30, i = 1, 2, 3 (see Sect. 3.3); the estimates of the
parameters of the L2N,L2B, FN, FB and GPF tests for the Canadian temperature data
and the orthosis data for [a, b] = [0, 1] and [a, b] = [0.8, 1]. We also present the
figures, which depict simulated examples corresponding with models M1–M6.
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Table 5 Values of test statistics and p-values of all tests for the Canadian temperature data and the orthosis
data for [a, b] = [0, 1] and [a, b] = [0.8, 1]
Test Canadian temp. data Orthosis data [0, 1] Orthosis data [0.8, 1]

Test stat. p-value Test stat. p-value Test stat. p-value

FP 16.312 0 24.063 0 1.1142 0.357

LH 8.3499 3.1E−13 20.942 2.0E−15 0.7786 0.005

R 5.7812 1.1E−09 14.863 8.3E−11 0.7004 0.000

P 1.5723 2.3E−13 2.2715 8.0E−10 0.4844 0.020

W 0.0413 2.5E−13 0.0052 6.6E−13 0.5455 0.011

CH 2.06E6 0 3.02E6 0 1.77E4 0.328

CS 2.06E6 0 3.02E6 0 1.77E4 0.319

L2N 3.04E5 1.5E−10 7.55E5 0 4425.4 0.352

L2B 3.04E5 2.7E−11 7.55E5 0 4425.4 0.337

L2b 3.04E5 0 7.55E5 0 4425.4 0.342

FN 16.210 2.0E−07 19.933 0 1.1098 0.363

FB 16.210 1.3E−07 19.933 0 1.1098 0.362

Fb 16.210 0 19.933 0 1.1098 0.422

GPF 17.231 4.8E−13 17.061 0 1.1343 0.380

FL 189.66 − 124.53 − 6.3156 −
The critical values of the FL test are equal to 3.843317 (T ∗ = 100), 3.843317 (T ∗ = 100) and 3.820904
(T ∗ = 51) respectively (see Table 1 in the Supplementary Materials)

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix

Proof of Proposition 1 Let {φl} be an orthonormal basis of the space L2(T ) and
Xi j (t) = c′

i jφ(t) for all t ∈ T , i = 1, . . . , k, j = 1, . . . , ni , where ci j =
(ci j0, ci j1, . . . , ci j K )′ and φ(t) = (φ0(t), φ1(t), . . . , φK (t))′. By (5), we have

X̄(t) = 1

n

k∑

i=1

ni∑

j=1

c′
i jφ(t)

and

X̄i (t) = 1

ni

ni∑

j=1

c′
i jφ(t).
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The definition of the norm of the space L2(T ) implies

||X̄i − X̄ ||22 =
∫

T
(X̄i (t) − X̄(t))2dt.

From the basis function representation of Xi j (t), it follows that

||X̄i − X̄ ||22 =
∫

T

⎛

⎝ 1

ni

ni∑

m=1

c′
imφ(t) − 1

n

k∑

j=1

n j∑

p=1

c′
j pφ(t)

⎞

⎠
2

dt.

Hence ||X̄i − X̄ ||22 is equal to
⎛

⎝ 1

ni

ni∑

m=1

c′
im − 1

n

k∑

j=1

n j∑

p=1

c′
j p

⎞

⎠
∫

T
φ(t)φ′(t)dt

(
1

ni

ni∑

s=1

cis − 1

n

k∑

t=1

nt∑

v=1

ctv

)
.

Since {φl} is an orthonormal basis,
∫
T φ(t)φ′(t)dt is equal to the identity matrix of

size K + 1. Therefore

||X̄i − X̄ ||22 = 1

n2i

ni∑

m=1

ni∑

s=1

c′
imcis − 2

nni

ni∑

m=1

k∑

t=1

nt∑

v=1

c′
imctv

+ 1

n2

k∑

j=1

n j∑

p=1

k∑

t=1

nt∑

v=1

c′
j pctv.

Thus since n1+· · ·+nk = n,
∑k

i=1 ni ||X̄i − X̄ ||22 = a−b, where a and b are given in
Proposition 1. The denominator of F given by (6) may be handled in much the same
way, which completes the proof. ��

Proof of Lemma 1 Let Ci = (ci1, . . . , cini ), i = 1, . . . , k. For i, j = 1, . . . , k, we
have

C′
iC j =

⎛

⎜⎜⎜⎝

c′
i1c j1 c′

i1c j2 . . . c′
i1c jn j

c′
i2c j1 c′

i2c j2 . . . c′
i2c jn j

...
...

. . .
...

c′
ini

c j1 c′
ini

c j2 . . . c′
ini

c jn j

⎞

⎟⎟⎟⎠ .

Hence the sums
∑ni

m=1

∑ni
s=1 c′

imcis ,
∑ni

m=1

∑nt
v=1 c′

imctv ,
∑ni

j=1 c′
i jci j are equal to

the sum of entries of the matrix C′
iCi , the sum of entries of the matrix C′

iCt and the
trace of the matrix C′

iCi respectively, i.e. they are equal to 1′
ni C

′
iCi1ni , 1′

ni C
′
iCt1nt

and tr(C′
iCi ), respectively. This finishes the proof. ��
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Krzyśko M, Waszak Ł (2013) Canonical correlation analysis for functional data. Biometr Lett 50:95–105
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