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1 Introduction

“Well! I’ve often seen a cap without a black hole,” thought Alice;

“but a black hole without a cap! It’s the most curious thing I ever

saw in all my life!”

L. Carroll — Through the Horizon, and what Alice Found There

There are by now a variety of constructions of black hole states from a dual field

theoretic perspective (for a review, see for example [1]). In these constructions, nonlocality

abounds, perhaps to the degree that typically the field theory is not the place to seek

a resolution of puzzles involving local bulk geometry. Maximally supersymmetric Yang-

Mills theory in dimensions d ≤ 4 constructs black holes as thermal states of a brane

gas; noncommutativity is a hallmark of the black hole phase of the field theory, and field

theory quantum fluctuations are large; at the same time this renders the bulk geometrical
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description obscure — how does one reconstruct the bulk geometry? Where is the black

hole horizon, let alone its interior? Or for that matter any localized bulk observables? Is

the gauge theory only describing the black hole exterior? Is there some complementarity

map to describe the interior [2]? What about the experience of infall? There have been

some attempts to construct local observables using the operator spectrum of the gauge

theory, dating back to the early days of gauge/gravity duality [3, 4], but their status is

unclear (see [5] for a recent summary and discussion of the issues). The recent firewall

debate instigated by [6] (see [7, 8] for earlier work) has simply sharpened these issues.

One would like a testbed which can exhibit as much of the quantum structure of

black holes as possible within a setting where the geometry is both weakly coupled and

accessible. Maximally supersymmetric gauge theory is perhaps not that setting, nor is the

symmetric orbifold CFT dual to AdS3 × S3 ×M4 (where M4 = T4 or K3). These field

theory realizations of quantum gravity are too unwieldy to answer the sorts of questions

one wishes to ask about quasi-local bulk physics; being a weak/strong coupling duality, the

weakly coupled regime of the field theory is where the geometry strongly fluctuates, and

vice versa.

At the same time, there has been remarkable progress in elaborating the structure

of individual horizonless solutions of effective supergravity equations of motion, beginning

with [9, 10] (see [11] for a recent discussion and further references), many carrying the same

quantum numbers as BPS black holes, having a large degeneracy, and having the same gap

to small excitations. The suggestion is that these solutions are microstates in the ensemble

of states contributing to the black hole entropy. Proponents hope that the enumeration of

these BPS configurations may be nearing an ability to count a substantial fraction of the

entropy as a function of the charges and thus, one might hope that these states comprise

a dense sampling of the set of microstates. In addition, there is a sparse but growing set

of examples of non-BPS configurations [12–17].

It has not yet been clear how generic these microstates are, and whether one will

be able to use them to answer fundamental questions about the flow of information in the

course of black hole formation and evaporation. It seems that there must be some violation

of local quantum field theory on macroscopic scales in order for unitarity to be preserved,

since the solutions are based on supergravity, for which the classical effective theory obeys

the strong energy condition, while Mathur has argued [8] that small corrections to the

dynamics cannot solve the information paradox. One would like to identify the mechanism

responsible for this violation of locality and causality on macroscopic scales.

Techniques have been developed for enumerating large numbers of microstate geome-

tries for particular BPS states carrying three charges, dipole charges and angular momen-

tum, in asymptotically AdS3 × S3 ×M4 spacetimes, where M4 is T4 or K3. We review

these constructions in section 3. The reason to focus on this particular situation is that

there are BPS black holes whose horizon is smooth and macroscopic, and so one might

hope that supersymmetry nonrenormalization might exert some influence on controlling

quantum effects, especially in the near-BPS regime. These microstate geometries have

a number of features that seem generic, including the appropriate gap to non-extremal

excitations; and including also the geometry apart from a small region near the horizon,
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where they differ and roll over to a smooth cap without horizon. There is a mechanism to

support this capping off of an extensive set of geometries somewhat outside the would-be

horizon, and to prevent this structure from falling into the black hole, via the interaction

of charged sources, fluxes, topology, and geometry. One is approaching an enumeration

which it is hoped can account for a finite fraction of the black hole entropy [11, 18–20],

however the key question remains of whether a significant fraction of the BPS microstate

degrees of freedom can be realized geometrically, and whether the solutions found so far

are sufficiently generic. If these issues coud be resolved favorably, one may imagine that

these geometries provide a picture of horizon structure, at least for BPS black holes, and

perhaps point us toward resolutions of some of the perplexing puzzles that persist. The

locality/causality issue looms large, however.

In essence, the microstates geometry program asks whether one needs the whole ap-

paratus of nonperturbative gravity in order to understand the quantum structure of black

holes; in particular, whether the nonlocalities that are fundamental to a resolution of

the information problem and the infall problem, can be discerned from the supergravity

approximation. If so, then one should be able to make considerable progress without a

complete nonperturbative description of all of spacetime, instead focussing on the features

of the near-horizon structure relevant to the black hole. It seems as though in trying to

reconstruct black hole physics from a complete nonperturbative dual one is working too

hard — first one has to reconstruct all the vastness of AdS, then one has to put a modest

size black hole in the middle of it, and distinguish not only one from the other, but specific

local features of geometry near the black hole. The hope is that one can separate this

hugely complicated spacetime reconstruction problem from the specific features needed to

resolve the puzzles of black holes.

We begin to address these issues in section 2 in the context of three charge string theory

backgrounds and the BTZ black hole geometries they are related to. The thermodynamic

properties of the BTZ geometry together with the covariant entropy bound [21–24] point

to where the degrees of freedom of the black hole are located; for modest excursions from

extremality, most of them reside at the inner horizon. Section 3 then summarizes the state

of the art for constructing the relevant microstate geometries, following [19, 25–27], and

section 4 gives an overview of a complementary approach via quiver quantum mechan-

ics [28–34]. The geometry approach matches up quite well with the Coulomb branch of the

quiver construction, however the Higgs branch of the quiver has substantially more entropy,

leading one to ask where the Higgs branch might be on the geometry side. Consideration

of this question in section 5 leads us to an answer satisfyingly similar to well-understood

features of fivebrane dynamics [35–40], wherein the Coulomb branch has a smooth geomet-

rical cap to the fivebrane throat which can be probed by supergravity at low energies, but

which gives way to the Higgs branch of little string theory as the throat grows deeper and

the supergravity description becomes singular — and it is the little string on the Higgs

branch which carries the entropy of nonextremal fivebranes. We identify the analogous

structures in the microstate geometries, and argue that the physics is much the same —

that the microstate geometries with deep throats are descriptions of the Coulomb branch

near but below the BTZ black hole threshold, and that the Higgs branch opens up the
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sector of ‘long strings’ that carry the entropy of BTZ black holes [41, 42]. The primary

difference is that the tension of little strings is fractionated by a factor of the fivebrane

charge quantum n5, while the long strings of AdS are fractionated by a factor n1n5. We

interpret this result in section 6 in the light of similar features of matrix theory [43, 44],

and propose a mechanism for the resolution of the information paradox [8, 45] and the

associated firewall problem [6, 7] using the interplay of short and long strings, and Higgs

and Coulomb branch properties. A key feature of this scenario is the observation that

the long string is at the correspondence point for strings propagating in AdS3 [46], where

black holes leave the spectrum; this feature leads one to suspect that the long string simply

doesn’t see the same geometry that short strings do; that the environment it does experi-

ence has no horizon or singularity, and that this property is the basic mechanism by which

string theory and its fractionated brane structures resolve null and spacelike singularities

in general relativity.

Thus we find that, like Lewis Carroll’s mischievous creature,1 the cap can disappear

at will, but as it fades away into the horizon, it leaves something behind to surprise us.

2 Branes, horizons and thermodynamics

2.1 Branes and black holes

Our focus will be the set of three-charge geometries in toroidally compactified string theory.

The full non-extremal D1-D5-P geometry carrying all possible charges, dipole charges and

angular momenta is somewhat complicated. To begin, let us specialize to backgrounds

carrying no dipole charges or transverse angular momentum [42]; these will illustrate some

of the main features we wish to explore:

ds2 = (H1H5)−1/2
[
−dt2 + dz2 + (1− f)(coshαp dt+ sinhαp dz)

2
]

+(H1H5)1/2(f−1dρ2 + ρ2dΩ2
3) +

(
H1

H5

)1/2

ds2
T4 (2.1)

where

H1,5 = 1 +
ρ2

0 sinh2 α1,5

ρ2
, f = 1− ρ2

0

ρ2
(2.2)

The decoupling limit of D1-D5-P bound states takes `s, ρ0 → 0 with Q1,5,p =

ρ2
0 sinh 2α1,5,p fixed, in such a way that the D1 and D5 charges make a ‘heavy’ back-

ground geometry whose contributions to the ADM mass scale like `−2
s , and the P charge is

comprised of ‘light’ excitations on that background whose energies scale like `0s . This limit

leads to a geometry that is locally AdS3 × S3 × T4:

ds2 =
1√
H1H5

[
−dt2 + dz2 +Hp(dt+ dz)2

]
+
√
H1H5

(
f−1dρ2 + ρ2dΩ2

3

)
+

√
H1

H5
ds2

T4

(2.3)

1With apologies for the apocryphal epigraph above.
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where

H1,5,p =
Q1,5,p

ρ2
, f = 1− ρ2

0

ρ2
(2.4)

The canonical BTZ form of the metric arrives upon making the coordinate transformation

(defining the AdS radius ` = 4G3n1n5 in 3d Planck units, where n1,5 are the integer

brane charges)

r2 =
ρ2

`2
+
ρ2

0

`2
sinh2 αp (2.5)

which recasts the (t, z, r) part of the metric locally in the form of a 3d BTZ black hole (see

for example [47] for a review)

ds2 = −N2dt2 +N−2dr2 + r2(dz −Nϕdt)
2 + `2dΩ2

3

N2 =
r2

`2
−M3 +

16G2
3J

2
3

r2
(2.6)

Nϕ =
4G3J3

r2
,

where J3 is the integer momentum charge np. Rotation on the three-sphere transverse to

the branes fibers the S3 over the locally AdS3 BTZ base [48].

2.2 Horizons and thermodynamics

We will denote the BTZ black hole and similar geometries with stationary horizons as en-

semble geometries, in that the properties of their horizon(s) determine the thermody-

namics of the system. The ensemble geometry should reflect certain average characteristics

of the individual microstates, and thus represents a sort of mean field theory for the full

dynamics. The picture is good for motion of macroscopic observables but misses the evo-

lution of quantum correlations in individual microstates. The question is how to recover

the latter while not disturbing the former or leading to gross violations of causality over

macroscopic distances, and thus resolve the issue of unitarity of black hole evaporation

from the geometrical side of the gauge/gravity duality.

For example, in the BTZ example, the two roots r± of the vanishing N = 0 of the lapse

function (2.6) are the locations of the inner and outer horizons of the ensemble geometry:

r2
± =

M3`
2

2

[
1±

[
1−

(
8G3J3

M3`

)2]1/2]
(2.7)

or equivalently

M3 =
r2

+ + r2
−

`2
, J3 =

r+r−
4G3`

; (2.8)

the thermodynamic variables of the system are given by

SBH =
2πr+

4G3
, TH =

r2
+ − r2

−
2π`2r+

, Ω =
r−
`r+

. (2.9)

The ensemble geometry should reflect generic features of the typical microstate, under the

assumption that a generic microstate gives generic answers to sufficiently coarse-grained
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observables. The inner horizon plays a prominent role in the thermodynamics. This sug-

gests that it ought to be a prominent feature of the microstates that are being averaged

over in the ensemble geometry.

A useful feature of the three charge system is that the canonical extremal geometry

has a large smooth horizon, and already a large entropy in the BPS limit. This contrasts

with other systems like N=4 SYM or matrix theory, where the BPS limit fights with strong

curvature because features of the horizon become of stringy or Planckian dimensions. In

the three charge system, one has a big sphere or ring in the BPS limit whose area counts

a macroscopic entropy of BPS microstates.

If the microstate geometries program were to be maximally successful, the density

of states might be made of semiclassical geometries (though it might take a collection of

semiclassical states of strings, branes etc.. in addition to geometry to fully enumerate

the microstates). Furthermore, the geometry is stationary and BPS, and so one might

expect to be able to count states in the bulk theory using nonrenormalization theorems

and localization techniques; such an approach has been spectacularly successful in certain

model situations [28–31, 34, 49–53]

In section 3 below, we will review relevant aspects of the program to construct BPS

microstate geometries. By the connection between horizons and thermodynamics, each of

these microstate geometries should be horizonless because they each represent individual

contributions to the ensemble rather than the ensemble itself, or even a sub-ensemble. An

ensemble geometry such as (2.6) is instead realized as the one-point function of the metric in

the ensemble of microstates; it is not itself realized on any particular microstate.2 Instead

the constructed microstate geometries cap off in the vicinity of the would-be horizon of

the extremal ensemble geometry. This ideology has had some success in generating the

properties of two-charge geometries (see [10, 52, 55–60] for example) though it should be

stressed that the interpretation of the ensemble geometry is often somewhat suspect due

to strong curvature near the horizon (see for example [54, 60].

The inner horizon appears to be a special place in the black hole geometry, so let

us explore its properties a bit further. In the analytically continued stationary ensemble

geometry, the inner horizon is another bifurcate surface where the norm of the Killing

vector changes sign. Even outside the outer horizon, its effects are felt as a subleading

singularity in the wave equation for linearized perturbations. In AdS3, the inner horizon

is detectable in the monodromy of the frame field and spin connection, arbitrarily far from

the source. Any attempt to excise the inter-horizon region due to a ‘firewall’, or some sort

of ‘complementarity’ (fuzzball or otherwise), will have to come up with an explanation of

all the thermodynamic properties encoded by the inner horizon.

Typical practice in quantum gravity is to construct the average one-point function of

the geometry in the ensemble of states (i.e. the ensemble geometry) using the effective ac-

tion, perhaps with leading higher derivative and semiclassical corrections.3 This geometry

has an outer and inner horizon, and if we naively continue further, a timelike singularity.

2An alternative argued in [54] is that the states constructed so far are distinct from the states that

contribute to the ensemble geometry, and that the two contributions should be added together.
3In supersymmetric situations, this has been raised to a high art, see [53] for a recent review.
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Figure 1. Penrose diagram for charged/rotating black holes, taking into account the instability

of the inner horizon, after [61, 62]. Instabilities of the analytically continued stationary solution

preclude the existence of a regular geometry beyond the inner horizon.

The inner horizon is however the locus of dynamical instabilities [61, 62]. In the

analytically continued ensemble geometry, the inner horizon has ingoing and outgoing

components, see figure 1. The ingoing component is a Cauchy horizon, argued by [63, 64]

to be the locus of a weak null curvature singularity; in any event, black hole evaporation

will replace this region by something else. The outgoing component has been argued to be

the location of a shock wave singularity — any small perturbation is arbitrarily blueshifted

as v evolves along this portion of the inner horizon.4 Thus, it seems likely that while the

ensemble geometry can be analytically extended past the inner horizon, this part of the

geometry is unstable and closes off. What we seek in string theory is a mechanism to resolve

this null singularity, along the lines of the many successes of string theory at resolving

timelike singularities. Typically the resolution of the latter is due to the appearance of

new light degrees of freedom at the would-be singularity; it is just such a mechanism that

we propose in this work.

The null singularity at the outgoing inner horizon, and Cauchy singularity at the in-

going inner horizon, lead to an excision of the regions beyond, leaving us with the Penrose

diagram of figure 1. The shaded interior region beyond the outer horizon represents an

analytic continuation of the exterior geometry. For the purposes of the present discus-

sion, we will treat the black hole inter-horizon region as physically relevant for revealing

thermodynamic aspects of the black hole ensemble.

Support for this idea comes from the capped microstate geometries that have been

constructed to date which all close off at or before reaching the horizon. If capped geome-

tries are the generic microstates of the ensemble of BPS states, then the ensemble average

4Thus perhaps the true firewall is the null singularity at the inner horizon, rather than the one proposed

at the outer horizon in [6] (see also [7]).
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geometry will end in the vicinity of the horizon. The question is, which horizon? In the

extremal case, the inner and outer horizons coincide. It has long been suggested that the

effects of the black hole interior can be modeled on a timelike stretched horizon slightly

outside the outer horizon of the ensemble geometry [65]. One might think that the cap

observed in the microstates constructed to date is a realization of the stretched outer hori-

zon of the black hole — that it is the membrane of the membrane paradigm. However it’s

hard to tell since the inner and outer horizons coincide in the extremal case.

It is often stated that the ‘fuzzball’ proposal for nonextremal black holes (see [58] for

a review) resolves the singularity of the black hole at the outer horizon, and that in some

sense the fuzzball is the membrane of the membrane paradigm. One proposal [66] suggests

the region inside the outer horizon of the geometry isn’t accessed, that upon crossing the

outer horizon one immediately tunnels into the ensemble of eSBH fuzzball states of the black

hole. In this way of thinking, the inner horizon (and all else inside the black hole) are only

a convenient fiction — virtual ‘dual’ entities describing the vibrations of a ‘real’ membrane

at the outer horizon. This notion has been dubbed ‘fuzzball complementarity’ [67].

It seems however that if the microstates program has any real power, it is that the

classical solutions and the objects that populate them should have some relevance to the

‘ensemble geometry’ that counts the states thermodynamically but has forgotten the mi-

crostructure. For instance, the thermodynamic variables such as the locations r± of the

inner and outer horizons, their surface gravities κ± and areas A±, should be reflected

in the structure and dynamics of typical microstates. What might differ however is the

global, long-time behavior of quantum correlations in the averaged, ‘ensemble geometry’

as opposed to that of individual microstate geometries.

We propose here that in the nonextremal case, the cap of the microstate geometry

is composed of ‘long string’ degrees of freedom that oscillate, and that the inner and

outer horizons represent the extremes of the long string’s average motion. In this way,

the departure of the geometry from the ensemble average geometry remains small outside

the outer horizon. The region between the outer and inner horizons exists as a region of

excitation of the ‘cap’ of the microstate; but the geometry indeed does not exist beyond

the inner horizon, as suggested by the analysis of [61, 62] — it is excised by the cap. The

extremely low tension of the long string suggests that the inter-horizon region will appear

nearly indistinguishable from the vacuum to a freely falling observer.

Some recent observations about black hole thermodynamics resonate with this picture.

A remarkable and mysterious role in this thermodynamics is played by the inner horizon

of the analytically continued ensemble geometry. Black hole thermodynamics relates prop-

erties of the outer horizon to those of the thermodynamics — the outer horizon area in

Planck units is the entropy, and the (Hawking) temperature is the surface gravity of the

outer horizon

SBH = S+ =
A+

4G
, TH = T+ =

κ+

2π
. (2.10)

These enter into a first law relation

dM = T+dS+ + Ω+dJ + Φ+
e dQe + Φ+

mdQm , (2.11)
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where Ω+ is the angular velocity of the outer horizon, J the angular momentum, Φ+
e,m the

electric/magnetic potentials, and Qe,m the electric/magnetic charges.

There is also a first law for the inner horizon:

dM = T−dS− + Ω−dJ + Φ−e dQe + Φ−mdQm . (2.12)

For example, for BTZ black holes one has

S− =
A−
4G

=
2πr−
4G3

, T− =
κ−
2π

=
r2
− − r2

+

8G3`2r−
, Ω− =

r+

`r−
; (2.13)

these expressions are the same as in (2.9), with r+ and r− interchanged.

The meaning of these inner horizon quantities from the gravitational point of view

has to date been rather less clear than that of their outer horizon counterparts, which

are physical observables apparent to exterior observers. However, there is a remarkable

relation which ties together the inner and outer horizon areas [68]:

S+S−
4π2

= f(q, J) ∈ Z , (2.14)

where f(q, J) is an integer valued function of the integer charges of the black hole. This

relation seems to be quite general — it holds in all examples of four and five dimensional

black holes and rings where it has been checked [69–72], though no proof is known.5

More explicitly, for asymptotically AdS3 × S3 black holes one has

S+S− = 4π2(q1q2q3 + J2
R − J2

L) (2.15)

where qi are the number of integer quanta of each species of mutually BPS background

charge (for instance D1-D5-P), and JL,R are the S3 angular momenta (R-charges).

It seems reasonable to regard (2.14) as a sort of rigidity property of the black hole

interior — the product of the areas of the inner and outer horizons is independent of the

black hole mass, as well as the moduli or any other geometric data; it only depends on

the quantized charges. In particular, if one excites an AdS3 black hole, the outer horizon

will move further out and the inner horizon further in, but the geometric mean of the

horizon radii

S+S− =
π2r+r−

4G2
3

= 4π2q1q5J3 (2.16)

will stay fixed.

This fact about horizons is the sort of property one might expect if the microstate

geometries were all capped, and the effect of adding energy was to (further) excite the

cap. Starting with the extremal geometry, where the cap is stationary at a fixed radius

r+ = r− ≡ rext, adding energy should vibrate the cap like a membrane, at least for small

excitations, and it is tempting to associate the expectation values of the minimum and

maximum radial extent of the cap degrees of freedom with r±. The cap motion takes

5In cases where the geometry has more than two horizons, a generalization holds involving the product

over all the horizons, including complex ones.

– 9 –



J
H
E
P
0
3
(
2
0
1
5
)
1
1
2

place about an ‘equilibrium’ position which is the extremal radius rext for those charges,

though as argued above the bulk of the cap degrees of freedom are located at the inner

horizon for modest excursions from extremality. A small disturbance of the cap is what

is seen for small excitations of the smooth extremal microstate geometries constructed

to date. Such excitations have been considered in [25, 73] for probes that are mutually

BPS with the background (and so change the background charges), and [12, 16, 74–79] for

non-BPS excitations.

This picture of nonextremality differs from the standard ‘membrane paradigm’ for

black holes [65]. There, the membrane is effectively a phenomenological boundary condition

somewhat outside the outer horizon, and a set of thermodynamic responses, that encode

how the reservoir of black hole interior states interacts with its environment. Here instead,

the cap extends over the black hole interior and represents a qualitative characterization

of those interior degrees of freedom.

For AdS3 × S3 black holes, sums and differences of inner and outer horizon ther-

modynamic variables define quantities that are natural from the perspective of the dual

CFT [48, 68, 80–85]. For instance,

SL,R =
1

2
(S+ ± S−) ,

1

TL,R
=

2π

κ+
± 2π

κ−
(2.17)

are the entropies and temperatures of the left-moving and right-moving degrees of freedom

of the dual CFT; and the two angular momenta JL,R on S3 are naturally associated to

the corresponding CFT chirality. We now ask what thermodynamics tells us about where

these left- and right-movers are located in a typical black hole state.

2.3 Hints from the covariant entropy bound

The question thus arises, what is the interpretation of these left- and right-moving quanti-

ties from the gravitational perspective, which are so natural from the point of view of the

dual CFT? A hint comes from thinking about an adiabatic interpolation between the two

horizons. The covariant entropy bound [21–24] states that the entropy that crosses a light

sheet is bounded by the change in the area of the light sheet

∆S ≤ ∆A

4G
. (2.18)

Black holes are supposed to saturate this bound.

Ordinarily, the bound (2.18) is applied to processes where objects are thrown into a

black hole, and the outer horizon area increases as a result of the stress-energy crossing the

horizon. That stress-energy is associated to an entropy through the equation of state of the

matter, which obeys the bound (2.18); ordinary matter doesn’t come close to saturating

the bound, but one can approach it by adiabatically lowering another black hole through

the horizon of the one under consideration.

Here we wish to consider a rather different application of the bound (2.18), to the

interior of the stationary black hole rather than to properties of the outer horizon under

perturbations. It will prove convenient to cast the geometry in Eddington-Finkelstein or
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v
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(a)
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Figure 2. (a) Near-horizon causal structure of Reissner-Nordstrom and BTZ geometries in

Eddington-Finkelstein coordinates. Outward going null trajectories are depicted in blue, ingo-

ing in red. The radius of the horizon of the extremal geometry carrying the same conserved charges

(r+r− = r2ext in the BTZ case) is the green dashed line. (b) The covariant entropy bound applied

to an outgoing light sheet that begins just inside the outer horizon and ends just outside the inner

horizon. The interior of the light sheet is shaded, and the flow of entropy across it indicated.

Kerr coordinates. The Eddington-Finkelstein diagram is perhaps a bit more conducive

to intuition than the Penrose diagram. The latter is almost certainly misleading when it

comes to the causal propagation of information from the interior to the exterior of the

black hole, so we might as well make the horizons run approximately vertically until we

have an appropriate notion to replace classical causal structure. In the BTZ geometry,

upon substituting

dv = dt+
dr

N2
, dϕ = dφ− Nϕ

N2
dr (2.19)

the metric becomes

ds2 = −N2dv2 + 2dv dr + r2(dϕ+Nϕdv)2 . (2.20)

The inward and outward going null trajectories are depicted in figure 2a.

Consider an outward directed light sheet initially just inside the outer horizon at

r = r+, see figure 2b. Slowly the light sheet drifts inward until it asymptotes to the inner

horizon at r = r−. In the process, its area changes from the area of the outer horizon to

the area of the inner horizon; the change in area is

∆A

4G
=
A− −A+

4G
= −2SR (2.21)
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This clearly suggests that one should associate the ‘right-moving’ entropy of black holes to

degrees of freedom in the region between the two horizons, since these degrees of freedom

will have crossed the light sheet during the course of its traverse of this region. The sign

is negative because the change is interpreted as the microstate degrees of freedom being

transported out of the interior of the light-sheet as it moves inward. Similarly, when not

too far from extremality, the majority of the ‘left-moving’ degrees of freedom comprise the

contribution to the total entropy from degrees of freedom not traversed by the light sheet

— in other words, the constituents of the inner horizon, which are expected to resolve the

singularity there. One has

SL = S+ − SR = S− + SR (2.22)

It is natural to conjecture that the inner horizon is the location of (most of) the cap, to the

extent that it can be localized; and that in exciting the black hole above extremality, this

is where most of the microstate degrees of freedom responsible for the entropy of the BPS

spectrum have migrated to. The covariant entropy bound is trying to tell us where the

degrees of freedom carrying the black hole entropy are on average located; and that some

of these degrees of freedom are allowed to ‘float’ in the interior of the black hole between

the two horizons, and are not forced to fall into the singularity as ordinary matter must.

The factor of two in (2.21) prevents an interpretation of the inter-horizon degrees of

freedom as consisting only of right-movers. Qualitatively, one might think of the situation

as follows. At extremality, the macroscopic degeneracy of states resides in a set of cap

degrees of freedom at the horizon. The inner and outer horizons coincide, so it’s ambiguous

which horizon they should be associated with. When the black hole is excited above

extremality, the two horizons ‘delaminate’. A depiction of the splitting apart of the two

horizons in response to an ingoing null shock is depicted in figure 3a (in the classical theory;

a cartoon of the evaporation process is depicted in figure 3b).

Upon excitation, the inner horizon moves in and the outer horizon moves out; near

extremality one has

r± = rext ± δ +O(δ2) , (2.23)

and roughly half of ∆S in (2.18) comes from the outer horizon moving out, and the other

half from the inner horizon moving in. We should associate half of this process to exciting

the right-movers, and the other half to further exciting the left-movers; and that while the

bulk of the cap is located at the inner horizon, there are some of its original degrees of

freedom in the region between the inner and outer horizon. These left-moving degrees of

freedom are needed near the outer horizon to combine with the right-movers and emerge as

Hawking radiation, since emitted quanta carry both left and right conformal dimensions.

It is natural to conjecture that these 2SR degrees of freedom in the inter-horizon

region, that flow across the light-sheet of figure 3b, are the ‘left- and right-movers’ that

are ‘available’ to emerge as Hawking radiation. Especially for small nonextremality (r+ −
r−)/r+ � 1, the bulk of the entropy sits on the inner horizon, which one might regard as

the actual firewall of the black hole (note that for large charges, the inter-horizon region

can be as macroscopic and weakly curved as desired). By treating the covariant entropy

bound this literally, our major remaining task will be to explain how the degrees of freedom
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Figure 3. (a) Geometry of a shockwave excitation (the brown null trajectory) of the extremal

geometry. (b) Qualitative picture of the evaporation process when quantum effects are included.

carrying this entropy are not forced to fall into the singularity as the causal structure felt

by ordinary matter would dictate, but rather seem to float in the region between the two

horizons. A proposed explanation will be given in the final section below.

The inner and outer horizons have a surface gravity κ± and associated temperatures

T± via (2.10), (2.12). It seems reasonable to associate a ‘local temperature’ to the region in

between, especially near extremality where the temperature is small, however because the

outgoing light-sheet is not static in the inter-horizon region, such a concept is necessarily

somewhat ambiguous. For spherically symmetric spacetimes, a proposal for a definition of

surface gravity was given in [86, 87]:

κ = −nµlν∇ν lµ (2.24)

where lµ and nµ are outgoing and ingoing null normals to a sphere at fixed r, satisfy-

ing lµnµ = −1; and furthermore, nµ is chosen to be the tangent vector to an affinely

parametrized ingoing null geodesic whose affine parameter is normalized at spatial infinity

by tµnµ = −1 in terms of the asymptotic timelike Killing vector tµ. This definition agrees

with the usual notion of surface gravity on a bifurcate Killing horizon, and smoothly

extends it off that surface using ingoing null trajectories (the surfaces of constant v in

Eddington-Finkelstein coordinates). Evaluated on the BTZ metric (2.20), one finds

κ(r) =
−3r4 + r2(r2

+ + r2
−) + r2

+r
2
−

16G3`2r
[
r4 − r2(`2 + r2

+ + r2
−) + r2

+r
2
−
] . (2.25)
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This quantity is naturally positive at the outer horizon where the outgoing null geodesics

are diverging, negative at the inner horizon where they are converging, and smoothly

interpolating in between.

It may seem odd that the temperature of the inner horizon is negative. In thermo-

dynamic terms, this simply means that the entropy of this subsystem decreases as one

adds energy to the system. For the black hole, this means that the inner horizon ‘cap’

carries less and less of the total entropy of the black hole as it is further excited; more and

more of the entropy is instead carried in the inter-horizon region, until one approximates

a Schwarzschild black hole and the inner horizon carries essentially no entropy. In this

sense, the inner horizon represents a reservoir of degrees of freedom that is tapped to fill

the inter-horizon region when the black hole is excited above extremality.

In what follows, we will build a picture of the black hole interior as the dominant

support of the wavefunction of the ‘long string’ that holds its entropy. We will interpret

the microstate geometries program as giving hints about the nature and location of this

long string, near but just below the black hole transition.

In a resolution of the information paradox, there are two places where magic has to

happen: first, at the inner horizon, something has to resolve the singularity, and store

incoming information in its degrees of freedom; this is what the cap does in the extremal

microstate geometries constructed to date, assuming they are stable under small perturba-

tions. Second, something nonlocal has to allow information — now trapped on the resolved

null singularity in the Eddington-Finkelstein diagram — to cross over from the black hole

interior to its exterior. A longstanding idea of how this might happen uses the fuzziness of

light cones in string theory [88–90] to try to pass information outside the light cones of the

effective geometry, but how precisely this could work and how it could operate on the nec-

essary macroscopic scales was never made clear. Our proposal here uses the fractionated

tension of the long string sector to extend the nonlocality of ordinary strings over the AdS

scale and beyond, such that the fuzziness of the long string’s light cones does not resolve

the distinction between the inner and outer horizon – that the reason there are degrees of

freedom that seem to float in the inter-horizon region is that they are not subject to the

light cone structure felt by ordinary matter.

3 Review of supergravity microstate solutions

We now turn to a review of the basics of the construction of BPS microstate geometries,

and how they cap off the geometry near the would-be horizon, following [19, 25–27]. This

discussion will be followed in section 4 by a summary of the associated quiver quantum

mechanics construction of these states via the quantization of the collective coordinates of

their underlying brane constituents, following [28–34]. This overview will lay the foundation

for a discussion of the limits of validity of supergravity in these solutions, and eventually a

physical picture will emerge of the mechanism underlying the breakdown of the supergravity

description that will be the focus of section 5.
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3.1 BPS geometry

There are two useful duality frames in which to consider the three-charge systems of in-

terest. The first is M-theory compactified to 5d on T6, where the charges and dipole

charges are

Conserved Charge Dipole Charge

M2: 5 6 M5: 7 8 9 10ψ

M2: 7 8 M5: 5 6 9 10ψ

M2: 9 10 M5: 5 6 7 8ψ

(3.1)

Here 5 . . . 10 are the torus directions, and ψ is an angular coordinate along which the dipole

charge is distributed. The symmetric arrangement of brane sources simplifies a variety of

expressions for the supergravity fields.

Shrinking the T2 of the 9-10 directions takes us to type IIB string theory on a dual

circle 9̃, with the charges and dipoles

Conserved Charge Dipole Charge

D3: 5 6 9̃ D3: 7 8ψ

D3: 7 8 9̃ D3: 5 6ψ

P: 9̃ KK: 5 6 7 8 9̃ψ

(3.2)

where in the last dipole, the 9̃ circle is nontrivially fibered in the KK monopole. The D1-D5

duality frame is simply related to this one by T-duality. The duality holds for all three-

charge solutions, however only when the fields are constant along the circles being dualized

will there be a simple relation between their explicit forms in the two duality frames.

The duality frame of particular interest to us is the D1-D5-P frame, where one can

take an AdS3 × S3 scaling limit. The metric takes the form

ds2 = − 2√
Z1Z2

(
dv + β

)(
du+ k +

1

2
F(dv + β)

)
+
√
Z1Z2 ds

2
4(B) (3.3)

The BPS equations that determine the coefficient functions in this metric, together with

the other supergravity fields, have been extensively studied, and have a remarkable linear

structure, allowing for explicit solutions to be constructed. Supersymmetry implies that

these functions are independent of the time coordinate u.

The equations simplify dramatically [91] if one in addition assumes that the solutions

are independent of v; this also simplifies the duality relation to the M-theory frame. A

further simplification assumes that the base B has a tri-holomorphic Killing vector isometry,

i.e. that it is a Gibbons-Hawking space. In this circumstance, the metric is written as

ds2
4 = V −1(dψ +A)2 + V d~y · d~y , ~∇V = ~∇× ~A (3.4)

with V harmonic on the flat R3 parametrized by ~y. In terms of the frame forms

Ω
(i)
± = e0 ∧ êi ± 1

2
εijkê

j ∧ êk

ê0 = V −1/2(dψ +A) , êi = V 1/2dyi , (3.5)
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the self-dual two-forms (I = 1, 2, 3)

Θ(I) ≡ Ωi
+∂i(V

−1KI) (3.6)

are closed (therefore co-closed and harmonic) provided KI is harmonic. The vector poten-

tial β can be expressed as

β =
K3

V

(
dψ +A

)
+ ~ξ · d~y , ~∇× ~ξ = −~∇K3 . (3.7)

Suitable choices are

V = ε0 +
N∑
a=1

qa
ra

, KI = κI0 +
N∑
a=1

kIa
ra

(3.8)

with ra = |~y − ~ya| the distances from sources in the various harmonic functions. One

demands q0 =
∑

a qa = 1 so that the four-manifold is asymptotically R4. When |qa| = 1,

the base B is locally R4 near the source location ya; sources with |qa| 6= 1 have a Zqa orbifold

singularity near the source. The fiber coordinate ψ of the Gibbons-Hawking geometry

degenerates at the poles of V , determining a two-cycle ∆ab consisting of this fiber circle

times any path between ~ya and ~yb; the flux of the two-form Θ(I) through this two-cycle is

given by

Π
(I)
ab =

(
kIb
qb
− kIa
qa

)
, 1 ≤ a, b ≤ N . (3.9)

Defining Z3 = −F , the warp factors in the metric are then determined as

ZI =
1

2
CIJKV

−1KJKK + LI

k = µ(dψ +A) + ω

µ =
1

6
CIJK

KIKJKK

V 2
+

1

2V
KILI +M

~∇× ~ω = V ~∇M −M~∇V +
1

2
(KI ~∇LI − LI ~∇KI) (3.10)

with CIJK = |εIJK | the triple-intersection product, and

LI = `0,I +
N∑
a=1

`aI
ra

, `aI = −1

2
CIJK

kJa k
K
a

qa

M = m0 +
N∑
a=1

ma

ra
, ma =

1

12
CIJK

kIak
J
a k

K
a

q2
a

=
1

2

k1
ak

2
ak

3
a

q2
a

. (3.11)

The AdS3 × S3 asymptotic form of the metric is achieved for

ε0 = 0 , q0 =

N∑
a=1

qa = 1 , κI0 = 0 , `0,I = 0 , m0 = −1

2
q−1

0

N∑
a=1

3∑
I=1

kIa . (3.12)
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Finally, the absence of closed timelike curves imposes the bubble equations

N∑
b=1,b 6=a

〈Γa,Γb〉
rab

= 〈Φ,Γa〉 , (3.13)

where Γa is the eight-vector of charges, and Φ the harmonic potential background

Γa = (qa, `
a
I , k

I
a,ma) , Φ ≡ (ε0, `

0
I , κ

I
0,m0) = (0, 0, 0,m0); (3.14)

the symplectic inner product 〈∗, ∗〉 is

〈Γa,Γb〉 = 2(qbma − qbma) +

3∑
I=1

(`bIk
I
a − kIb `aI ) . (3.15)

Using (3.9), (3.11), (3.12) these conditions can also be expressed as

N∑
b=1,b 6=a

Π
(1)
ab Π

(2)
ab Π

(3)
ab

qaqb
rab

= −2m0qa −
3∑
I=1

kIa . (3.16)

The bubble equations place N − 1 constraints on the 3(N − 1) parameters ~ya (modulo

translations) and the 4N − 1 parameters qa, k
I
a.

The conserved charges of the solution are given by

QI = −2CIJK

N∑
a=1

q−1
a k̃Ja k̃

K
a ,

JR = J1 + J2 =
4

3
CIJK

N∑
a=1

q−2
a k̃Iak̃

J
a k̃

K
a (3.17)

JL = J1 − J2 = 8| ~D| ,

where

k̃Ia ≡ kIa − qa
N∑
b=1

kIb , ~D ≡
∑
I

N∑
a=1

k̃Ia~ya . (3.18)

The conserved D1-D5-P background charges QI of the solution, as well as the angular

momenta JL,R, are determined by the residues of the poles in the harmonic functions.

Thus each pole is the locus of some portion of the sources of background charge. Another

convenient way to think of the angular momentum JL [92, 93] distributes it among pairs

of poles:

~JL =
∑
a6=b

~JabL (3.19)

~JabL = −8〈Γa,Γb〉 ŷab , ŷab ≡
yab
|yab|

The assumptions that the metric is independent of v and ψ has simplified the system

of BPS equations sufficiently that a reasonably explicit solution can be found, whose data
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consists of the locations and residues of the poles in the various harmonic functions, modulo

various constraints. These assumptions also allow the solution to be carried over to the

dual M-theory background by simply copying over the corresponding harmonic functions.

However, the generic D1-D5-P BPS state will be both v dependent (since the generic mo-

mentum excitation is v dependent) and ψ dependent (since the generic angular momentum

excitation is ψ dependent). A general strategy for generating (v, ψ) dependent solutions

was outlined in [26].

3.2 Solutions with less than three poles

As a somewhat trivial example, consider only a single pole V = 1/r with Z1,2 = L1,2 =

n1,2/4r; Z3 = −F = 0, and all the dipole charges kI vanishing. Then the metric (3.4) is

simply AdS3 × S3 in Poincaré coordinates, or equivalently the extremal M3 = J3 = 0 BTZ

black hole.

If we generalize slightly to allow angular momentum, but still suppressing the

dipole charges:

V =
1

r
, KI = 0 , ZI = LI = 1 +

QI
4r

, µ = M =
J

8r
, (3.20)

the geometry describes (the U-dual of) a BMPV black hole [94] (see also [25]). There is a

horizon at r = 0 whose area yields the black hole entropy

SBMPV = 2π
√
Q1Q2Q3 − J2 . (3.21)

The generalization to include dipole charges, still with a single pole, leads to black ring

solutions (see [25] again for a discussion in the present framework).

V =
1

r
, KI =

−qI
2|y − y0|

, LI = 1+
QI + CIJKq

JqK

4|y − y0|
, M =

J

16R
− J

16|y − y0|
, (3.22)

where R is the ring radius. The conserved and dipole charges of the solution are QI and

qI , respectively, and the angular momentum and entropy are

J = 4(q1 + q2 + q3)R , S = π
√
I4 (3.23)

with I4 the quartic invariant

I4 = (2q1q2Q1Q2 − q2
3Q

2
3 + cyclic)− 4q1q2q3J . (3.24)

These single pole solutions are what we have termed ensemble geometries, in that they

all have horizons at the pole of the harmonic functions; microstate geometries, on the other

hand, should be everywhere smooth. This is what is accomplished by the choices (3.11) of

`Ia, ma as the residues of the poles in LI and M ; these choices guarantee that the harmonic

functions ZI and µ remain finite everywhere, and the solution is smooth.

Solutions with two charge centers are worked out in [92, 95–97]. Following [98],

parametrize the harmonic functions as

V = − s

|y|
+

s+ 1

|y − c|
, KI = dI

(
1

|y|
− 1

|y − c|

)
. (3.25)
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The constraints (3.16) then determine

|c| = 1

s2(s+ 1)2

d1d2d3

d1 + d2 + d3
. (3.26)

The dipole charges dI are related to integer quanta via

d1 =
g`2s
2R

k1 , d2 =
g`6s

2V4R
k2 , d3 =

R

2
k3 (3.27)

and in turn the kI are related to the conserved background charges and angular mo-

menta via

n1 =
k2k3

s(s+ 1)
, n5 =

k3k1

s(s+ 1)
, np =

k1k2

s(s+ 1)

JL =

(
s+

1

2

)
n1n5

k3
, JR =

n1n5

2k3
(3.28)

From this one sees that when s = k3 or s = k3 + 1 the geometry is the spectral flow

by two units of the Ramond vacuum states |0++〉R and |0−+〉R, respectively; for other

values [98] gave an interpretation of the geometry in terms of ‘fractional spectral flow’.

The integer data (s, k1, k2, k3) specify a solution; proper quantization of the charges and

angular momenta is ensured if s(s+ 1) and n1n5 are integer multiples of k3.

While these solutions carry all three charges and both angular momenta, they are

not typical microstates in that the excitation gap is typically large — the throat of the

geometry is not deep in the regime where one trusts the geometry. The CFT duals of BPS

microstates are characterized by the twisted sectors of the symmetric product orbifold,

which are in turn specified by a word in the symmetric group. The words in the symmetric

group which realize the above geometries were identified in [98] to consist of n1n5/k3 cycles

of length k3; the twist ground state for each cycle is then spectrally flowed by an amount

proportional to s. The excitation gap in the dual CFT is thus k−1
3 in AdS units, rather

than the (n1n5)−1 one expects of a typical microstate in the black hole ensemble.

If one takes k3 ∼ n1n5 in order to have the right gap, then there will be high order

orbifold singularities at the poles of the sphere in the Gibbons-Hawking base B. The

smoothness of the geometry was investigated in [12, 98]. It turns out that for (k3, s, s+ 1)

all mutually prime, the geometry is completely smooth and the metric is locally AdS3×S3.

When a pair has a common divisor, there are orbifold singularities of the order of that

divisor; the orbifold quotient can be as large as Zk3 . For instance, if we take s(s+ 1) = k3

and k3 = n1n5, we have orbifold singularities of order s and s + 1 at the poles of the S2,

which are of order
√
n1n5.

These geometries cannot belong to an ensemble with macroscopic horizon of BMPV

type [92]. The BMPV black hole [94] has horizon area

SBMPV = 2π
√
n1n5np − J2

L (3.29)

vanishes in the limit J2
L → n1n5np which is implied by (3.28). This is not so surprising,

because when k3 = n1n5, the state is the spectral flow of the extremal BTZ black hole

– 19 –



J
H
E
P
0
3
(
2
0
1
5
)
1
1
2

geometry. These states are not on the verge of becoming BMPV black holes (i.e. don’t

have a sufficiently deep throat and small excitation gap) unless k3 ∼ n1n5; in this limit

one has macroscopic JL but JR of order one.

3.3 Three or more poles

We now turn to a review of solutions with three or more poles, following [29, 91, 93, 99, 100].

In this case, the positions of the poles in the solution are not fixed by the charges as in

the two pole case. The major new feature in this case is the existence of scaling solutions

for which the bubble equations can be solved for a one parameter family of pole locations

where a subset S of the poles collapse to the same point y0 [29, 93, 100–102] (for a recent

pedagogical discussion, see [27]). The bubble equations (3.16) are approximately solved

by letting

rab ∼ λ (Π
(1)
ab Π

(2)
ab Π

(3)
ab qaqb) = λ〈Γa,Γb〉 ≡ λ Γab (3.30)

for a, b ∈ S; λ→ 0 is the scaling limit that pushes this collection of sources together.

Let ε be the characteristic distance in R3 between poles in S, and let η be the distance

from the cluster center y0 to the nearest pole in the complement of S. For ε� |y−y0| � η,

the various harmonic functions scale as c/r where c is the sum of contributions from S.

In particular, the six-dimensional metric is locally AdS3 × S3 with a curvature radius

determined by the total charges carried by S. Inside the radius ε, the geometry caps off.

Thus, one can worry that in the scaling limit λ→ 0, the throat created by the scaling

cluster becomes infinitely deep, and the microstate develops a horizon of finite area in

contradiction with the fact that microstates by themselves have no entropy and therefore,

according to the Bekenstein-Hawking relation, should not have a finite area horizon.

The analysis of scaling solutions in [100] pointed out the close connection between the

moduli space of Gibbons-Hawking centers and the moduli space of D-brane bound states in

four-dimensional supergravity; the dynamics of these centers was analyzed in [28, 29, 101]

using the quiver gauge theory of the D-brane open string description.6 The authors of [100]

speculated that quantization of the moduli space could prevent the formation of a horizon.

The quantization of the moduli space of three centers was performed quite explicitly

in [31]. Generally, the space of classical solutions is endowed with a symplectic struc-

ture [103], but extracting it from the geometry and the supergravity action is complicated.7

The quiver gauge theory description supplies a route to determining the symplectic form,

6The ‘moduli space’ of solutions is a convenient fiction; really it is an attempt to isolate the structure of

the lightest degrees of freedom in a particular corner of the configuration space. These degrees of freedom

are not true moduli like the asymptotic shape of the compactification torus. Due to the low dimensionality

of the conformal boundary, the modes in question are normalizable and fluctuate; they generically have time

dependence and must be path-integrated over. These deformations are not moduli of the background that

are fixed data of the spacetime conformal field theory; rather they are soft modes of a particular solution

or set of solutions that one hopes to treat properly by methods of collective coordinate quantization.
7This exercise has been carried out successfully for the two-charge D1-D5 backgrounds in [50], using the

explicit construction of the metrics of Lunin and Mathur [10] via the map to the duality frame in which

the charges are F1-P and then quantizing the resulting effective string modes. Supersymmetry is expected

to protect these modes as being the priveleged collective modes of the supergravity fields in the original

duality frame that one wishes to quantize.
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and a nonrenormalization theorem supports the notion that the ground states of the quiver

should match those of supergravity, and thus for the BPS states one should find the same

symplectic form from the space of BPS supergravity solutions. We turn now to an overview

of the analysis of [31].

4 4d black holes and quiver QM

Quantization of the collective coordinates of D-brane bound states has provided a great deal

of insight into the BPS black hole spectrum [28–34], see [104] for a review. In this section

we summarize these results, which will prepare the way for a discussion of singularities in

the following section.

4.1 4d BPS solutions and their 5d M-theory uplift

The 4d geometries sourced by D-brane charges have a description very similar to the 6d

type IIB geometries we have been discussing. An elegant analysis of Denef and collab-

orators [28, 29, 101, 102] constructs the near-horizon geometries and relates them to a

variety of phenomena such as walls of marginal stability, etc.. Much of the near-horizon

structure is captured by an effective quiver quantum mechanics for the adiabatic motion

of the D-brane centers.

One starts with 4d type IIA string theory, for simplicity consider a torus compactifi-

cation, with a collection of N (D6,D4,D2,D0) charged sources located at points ya in their

transverse R3; let the charge of the ath source be

Γa = (p0
a, p

A
a , q

a
A, q

a
0) (4.1)

where A = 1 . . . b2 labels a basis of two-cycles on the torus. As with the 6d microstates

construction, these objects will source the geometry via a set of harmonic functions

H0 =
∑
a

p0
a

ra
+ h0 , H0 =

∑
a

qa0
ra

+ h0 (4.2)

HA =
∑
a

pAa
ra

+ hA , HA =
∑
a

qaA
ra

+ hA (4.3)

(here ra = |y − ya|). There is an overall integrability condition on the locations ya of the

centers which plays the role of the ‘bubble equations’ (3.13)∑
b

〈Γa,Γb〉
rab

= 〈h,Γa〉 . (4.4)

Here, 〈∗, ∗〉 is again the symplectic product

〈Γa,Γb〉 = −p0
aq
b
0 + pAa q

b
A − qaApAb + qa0p

0
b , (4.5)

and rab is the inter-center separation.

Under suitable conditions, one can take an M-theory limit where an additional

(fibered) circle appears in the geometry, and the brane charges (D6,D4,D2,D0) become
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(KK,M5,M2,P). That is, D0 charge lifts to momentum along the M-theory circle; D2

branes are the membranes of M-theory; D4 branes are M5 branes wrapped around the

extra circle; and D6 branes are KK monopoles in 11d, with the extra M-theory circle being

the nontrivial fiber of the monopole solution. As usual, one wants to decouple the branes

from the ambient gravitational dynamics, in order that the near-source geometry is entirely

captured by the quantum theory of open string degrees of freedom on the branes.

In the M-theory limit, a charged 4d black hole naively becomes a 5d charged black

ring smeared over the extra circle. When the D6 charge is sourced by flux, the flux threads

a two-sphere in the M-theory geometry, consisting of the M-theory circle fibered over a

path between D6 charge centers, at which the circle pinches off. The momentum along

the fiber circle is now angular momentum, since the circle is contractible. This picture

connects 4d D-brane bound states to the 5d M-theory picture of section 3. For more

details, see [28, 30, 31, 105].

In a decoupling limit, this type IIA geometry can be lifted to a five dimensional M-

theory solution with AdS3×S2 asymptotics. To achieve the decoupling, 5d M-theory limit

of the effective 4d type IIA multicenter geometries, one wants to take the strong coupling

limit of IIA string theory where an extra circle becomes geometrical; at the same time one

wants to take the low-energy limit to focus on the near-source geometry. Let the M-theory

circle to be parametrized by x4, with radius R (this is actually the circle parametrized

by the coordinate ψ of the 6d solutions discussed above). The scaling limit sends the 5d

Planck scale `5 → 0, and R/`5 → ∞, while keeping fixed the size of the compactification

V6/`
6
5. One also wants to keep stretched strings in the effective dynamics; in the limit these

become M2 branes stretching between the charge sources and also wrapping the M-theory

circle. This sets the scaling of the brane locations to be

yi = `35y
i , H = `

−3/2
5 H (4.6)

where yi and H are kept fixed in the limit. This decoupling limit sets the constant terms in

all the harmonic functions to zero, except for h0 → 1
4R

3/2. This limit is entirely analogous

to the M-theory limit of D0-brane matrix theory, where the excitations of the off-diagonal

elements of the matrices also represent membranes wrapping the M-theory circle in an

approach that starts from the dynamics of D0-brane charge centers, and the energetics of

these excitations keeps them in the spectrum in the scaling limit.

Following [52], the 5d metric, gauge field, and Kähler scalars can be written in a form

very similar to (3.3)

ds2
5d =

1

Q2

[
−(H0)2(dt+ ω)2 − 2L(dt+ ω)(dψ + ω0) + Σ2(dψ + ω0)2

]
+ Q dyidyi

AA5d = −H0XA

Q3/2
(dt+ ω) +

1

H0

(
HA − LXA

Q3/2

)
(dψ + ω0) +AAd

Y A =
2

1
3XA

Q1/2
(4.7)
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with ψ parametrizing the M-theory circle, and

dω0 = ?dH0

dAAd = ?dHA

?dω = 〈dH,H〉

Σ2(H0)2 = Q3 − L2

L = H0(H0)2 +
1

3
CABCH

AHBHC − HAHAH
0

Q =

(
1

3
CABCX

AXBXC

)2/3

CABCX
AXB = −2HCH

0 + CABCH
AHB (4.8)

(here ? denotes Hodge star in the R3 parametrized by ~y, and CABC is the triple intersection

of two-cycles).

The idea is to start with charge centers that themselves have ‘zero entropy’ and thus

no internal degrees of freedom, and quantize the collective motion of these objects. For

example, the half-BPS charge Γ = (1, p/2, p2/8, p3/48) is the spectral flow of a single

D6-brane wrapped on T6 and thus carries no entropy at low energies.

The quantization of the brane collective motion on the open string side is described by

quiver quantum mechanics; the lightest open string degrees of freedom consist of the U(1)

vector multiplets describing the center of mass motion of the charge centers, together with

hypermultiplets describing open strings stretching between these primitive brane bound

states. The near-horizon M-theory scaling limit will involve simultaneously taking the

energy scale and brane separation to zero keeping a suitable dimensionless combination

fixed. When the branes are not coincident, the hypermultiplets are massive and can be

integrated out, leading to an effective QM on the moduli space of charge centers [28, 29].

4.2 Quiver QM on the Coulomb branch

The quiver dynamics has both a Coulomb branch and a Higgs branch. The Coulomb branch

dynamics describes the motion of a set of primitive (zero-entropy) objects in the ambient

R3 parametrized by the ~ya, a = 1 . . . N , which are bound together by the electric and

magnetic field sourced by the brane charges. These independent motions become confined

on the Higgs branch by the condensation of strings stretching between the brane centers;

these states seemingly have all the ‘primitive’ branes co-located at a single point in R3.

Quantization of the BPS Coulomb branch spectrum has been achieved via methods of

geometric quantization [31]. In the quiver construction, the symplectic form for the charge

center motion boils down to

Ω =
1

4

∑
a6=b
〈Γa,Γb〉

εijk(y
i
abδy

j
abδy

k
ab)

r3ab
(4.9)
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subject to the constraints ∑
a, a 6=b

〈Γa,Γb〉
rab

= 〈h,Γa〉 (4.10)

which are essentially the bubble equations; here, they come from demanding the vanishing

of the effective potential that arises from integrating out the hypermultiplets. The sym-

plectic form is non-degenerate on the 2N − 2 dimensional solution space of the constraints

and suitable for a geometric quantization approach. The geometric quantization of the

phase space using the Kähler form associated to this symplectic form enumerates the BPS

states. A nonrenormalization theorem supports the notion that the ground states of the

quiver should match those of supergravity, and thus for the BPS states one should find the

same symplectic form from the space of BPS supergravity solutions.

The two-center dynamics is rigid, in that the constraint equations (4.4) fix the center

separation in terms of the charges:

r12 =
〈h,Γ1〉
〈Γ1,Γ2〉

(4.11)

The remaining degrees of freedom comprise the two-sphere of orientations of y12, which

when quantized as a phase space yields the expected 2|J |+ 1 states, where J = 1
2〈Γ1,Γ2〉.

In the three-center configuration, there are four moduli. One of these is the magnitude

j = | ~J | of the angular momentum, another is the conjugate variable σ rotating the system

around the axis of ~J , and two more coordinates (θ, φ) specify the orientation of ~J ; the

symplectic form reduces to

Ω = −d(j cos θ) ∧ dφ− dj ∧ dσ . (4.12)

For the centers to approach one another, j → 0. A careful analysis of the bubble con-

straints [31] shows that the phase space is compact and that the angular momentum lies in

a range j− ≤ j ≤ j+, with scaling solutions corresponding to j− = 0. Kähler quantization

leads to a spectrum of states ψn,m(j, θ) where the quantum numbers label the number of

nodes in σ and φ, where in the scaling case one has

0 ≤ n ≤ j+ − 1 , −n ≤ m+
1

2
≤ n . (4.13)

The probability density for j near j = 0 in the state ψn,m turns out to vanish as j2n+1, in-

dependent of m. Thus the geometry is effectively capped, as the scaling limit is suppressed.

In the supergravity regime j+ →∞ the probability density for j at fixed n tends to

lim
j+→∞

|ψn,m(j)|2 = 4j e−2j (4.14)

The expectation value of j in this state is 〈j〉 = 1.

The striking aspect of this result of [31] is that, when one considers the structure of the

lowest angular momentum state, one finds that the wavefunction for the brane separation

is peaked at a finite value, and vanishes as the branes are brought into coincidence. In
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effect, there is a sort of angular momentum barrier which prevents the branes from lying

on top of one another, and keeps the geometry effectively capped.

One might worry that the appearance of this angular momentum barrier is a conse-

quence of the quantization of total angular momentum, and that when more centers are

included there will be subsystems with J = 0 that will be able to collapse together to form

an infinite throat. The analysis of [106] shows that the individual contributions ~Jab are

separately quantized, not just the total, and this supports the whole collection of scaling

centers against complete collapse to coincidence.

This is an entirely quantum effect — classically, any brane configuration satisfying the

constraints (3.13) is allowed, including those with coincident branes. Classically, there is a

scale symmetry which sends

rab → λrab (4.15)

for a cluster of centers a, b ∈ S, and so one can scale the brane separations to be arbitrarily

small. Going back to the classical solution (4.7), the geometry develops a throat whose

redshift grows without bound as the centers approach one another. Remarkably, quantiza-

tion of the phase space shows that the states on the Coulomb branch have wavefunctions

that are peaked at finite separation, and vanish in the region where an arbitrarily deep

throat would develop.

Ref. [31] also estimated the size of the excitation gap in the geometry with the ef-

fectively bounded separation of the charge centers exhibited in the quiver construction,

and found that it scales as 1/c, where c is the central charge of the CFT dual to the ge-

ometry. In other words, a proper quantization of the BPS solution space leads not only

to a capping off of the horizon, but also to the expected gap of the near-BPS spectrum.

This structure of the geometry can be understood at the level of linearized perturbations

from the fact that the geometry with finite separation of the charge centers caps off —

the geometry ends smoothly at the bottom of the throat at a redshift value commensurate

with the expected excitation gap, and the small fluctuation operator in this background

has a maximum redshift of order the gap. Smoothness of the geometry, together with a

deep throat and a small excitation gap, makes this solution a promising candidate for a

black hole microstate geometry.

In terms of the 5d geometry represented by the quiver quantum mechanics, and the

6d geometry dual to it, this result is quite remarkable. Whereas classically one can have

center separations going all the way down to zero, and thus an arbitrarily deep throat

that can hold any amount of entropy, quantum mechanics maintains a delicate coherence

of the wavefunction over macroscopic distances that keeps this horizon from forming; and

provided one doesn’t excite the geometrical cap too strongly, it seems that this quantum

coherence will be maintained. It seems too much to hope that this coherence will be

maintained under the influence of strong local perturbations such as occur upon infall; the

naive expectation would be that the infalling object decoheres these delicate correlations

that are required to be maintained over macroscopic distances; a closed trapped surface

forms, and the throat collapses into a singularity behind a horizon.

While this resolution of the null singularity near the horizon of the extremal geometry

is welcome, it has the disturbing property that one is invoking quantum effects that are
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acting coherently over macroscopic distances in the geometry. The obvious question that

comes to mind is, how ‘real’ are these coherent effects, what physical mechanism arranges

them, and why are they not destroyed by interaction with local degrees of freedom? Usually,

quantum correlations over macroscopic distances are rapidly decohered through interaction

with the local environment, and so one might wonder why the specially tuned BPS state

is stable under even modest perturbations.8

4.3 Comments on the Higgs branch

When the primitive branes do coincide in the transverse R3, the stretched string hypermul-

tiplets become massless and can condense, massing up the vector multiplets. The resulting

Higgs branch moduli space turns out to have an exponential density of states, describing

an additional sector of microstates typically with parametrically larger entropy than the

Coulomb branch states discussed above.

There are actually two classes of Higgs branch states. In the parts of the Coulomb

branch wavefunction near coincident centers, the hypermultiplets of stretched strings are

not so heavy, and it is not so clear that they can be integrated out. Indeed, there is an

equivalent Higgs branch representation of the Coulomb branch states where one integrates

out the vector multiplets describing the center collective coordinates rather than the hyper-

multiplets — the Coulomb branch wavefunctions have an echo on the Higgs branch [28, 32],

and so in the regime of interest these states are neither purely Higgs nor purely Coulomb,

but rather can be seen from either perspective.

There are also ‘pure Higgs’ states [34, 107], carrying zero angular momentum (so no

barrier preventing the branes from colliding), where the hypermultiplets are fully con-

densed, and the vector multiplet masses are large enough that the Coulomb branch wave-

function is exponentially suppressed rather than of power law decay.

Since the branes are all coincident in the pure Higgs states, naively the geometry does

not seem to be capped off and the throat seems to be infinitely deep, with a horizon. What

does this mean for the microstate geometry program? After all, an infinitely deep, smooth

throat can in principle store vastly more entropy than appears in BPS state counting, and

naively the excitation gap goes to zero in contradiction to the structure of field theory

duals in finite volume.

In the truncated quantum mechanical system, this issue is avoided because one has

truncated the system to a finite set of degrees of freedom, and even the Higgs branch phase

space that opens up at the bottom of the throat has finite volume and so there are only

finitely many states, though many more than exist on the Coulomb branch. The geometry

however has many more degrees of freedom lying at the bottom of the throat, and one must

find out how they are self-consistently truncated to the finite number with finite entropy

that are the truly independent degrees of freedom of the black hole. Nevertheless, if pure

Higgs states are relevant to the dynamics, it would be a major blow for the microstate

8The quantum coherence/decoherence of macroscopic geometry is also puzzling in the context of inflation

and particularly eternal inflation, where one is trying to make sense of the coherence or lack thereof of the

quantum state of geometry on superhorizon scales.
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geometries program, since one would conclude that they vastly outnumber the Coulomb

branch states, yet one would have no geometric understanding of their number or structure.

Another important difference exists between the quiver quantum mechanics construc-

tion and the 6d microstates of interest here. The scaling limit that leads to a two-

dimensional conformal field theory, dual to the AdS3 near-horizon geometry of the D1-D5

duality frame, is different from the scaling limit (4.6) that leads to quiver quantum mechan-

ics; one should ask whether the light degrees of freedom responsible for the structure of a

given class of BPS states in one duality frame are the ones responsible in another frame.

The 4d decoupling limit of the brane dynamics involves taking `s → 0 keeping appropri-

ate dimensionless combinations of the torus moduli, energy, and charge center separations

fixed; in other words, it is the standard Maldacena limit [108]. The further 5d M-theory

limit involves a further scaling down of the energy and brane locations [30]. In quiver

quantum mechanics, the M-theory limit fixes E`35/(R∆y) which is the energy of M-branes

stretching between the charge centers; and also holds fixed y/`35 and H/`
3/2
5 as well as

R, t, ψ,R5 . . . R10, and Γi in units of the characteristic energy scale E, while taking the 5d

Planck length `5 → 0.

These two limits are similar in many respects to the decoupling limits of D0-brane

quantum mechanics. There, the standard Maldacena scaling limit for D0 branes takes

`s → 0 with g2
YM = gs`

−3
s fixed. The thermodynamics describes D0-brane black holes in IIA

string theory on R9,1. The M-theory limit, where the typical states are approximations of

black holes in M-theory on R10,1, involves taking the energy scale (in units of the gauge

coupling) to be of order the inverse D0 charge N in the large N limit, and it is only in

this further limit that the M-theory circle becomes effectively large. One now scales the

D-particle spacing and energies relative to 11d Planck units, where `2s = `3pl/R and R is

the radius of the M-theory circle.

The scaling limit just described differs from the scaling limit that leads to 6d D1-D5-P

microstate geometries. As discussed in section 4, this limit starts with the 5d theory with

three sets of intersecting M2-branes in M-theory on T6; after shrinking the two-cycle (say

in directions 9-10) wrapped by one set of M2-branes to well below the 11d Planck scale,

the appropriate type IIB duality frame has D3 branes intersecting over the type IIB circle

dual to the shrunken torus, and the M2 branes wrapping the shrunken torus dualize into

momentum along the IIB circle whose radius is R̃9 = `3pl/(R9R10). In this duality frame,

the decoupling limit that leads to AdS3 × S3 fixes

R̃9 ∼ `0s , R5R6R7R8 ∼ `4s , yi ∼ `2s , (4.16)

where again dimensionful quantities are referred to the characteristic energy scale of the

system. This limit differs from (4.6), where the energy cost of each set of the triplet of

M2-brane charges scales the same way. Instead, (4.16) keeps the momentum along R̃9

as a light excitation in the effective theory, naively as light or lighter than the stretched

strings (hypermultiplets) of the quiver quantum mechanics, rather than treating it as part

of the heavy background charges. Because the scaling limits are different, features of the

geometry that are not resolved by the degrees of freedom kept in quiver quantum mechanics
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might instead be resolved by the behavior of these new light excitations of the 6d theory,

which in the 5d scaling limit are frozen as part of the heavy background.

In the typical 6d microstate, the geometry is varying along both the v and ψ directions;

however, as was mentioned above, only when there is an isometry along the circle being

dualized is there a simple, direct relation between the harmonic functions of the geometry

in different duality frames. This excludes the vast majority of microstate geometries; they

will not be described by quiver quantum mechanics. The v-dependence of the generic

three-charge background breaks this symmetry, and complicates the relation between the

BPS spectra of the quiver QM and the 6d geometry, and in particular the issue of whether

the geometry is capped off at finite radius.

The authors of [20] have suggested that because 1/3 of the central charge of the CFT

dual comes from (fermionic) degrees of freedom carrying angular momentum on the S3

as well as momentum along the v circle, there will be a distribution of momentum and

angular momentum along the microstate geometry, and this ensemble of (v, ψ) dependent

states will have their centers supported against collapse as in the three-charge example. It

is hoped that in this way, an order one fraction of the entropy will be accessible as distinct

geometries. This scenario assumes that there isn’t a mechanism that engineers charge/spin

separation as is known to occur in certain condensed matter systems [109, 110]; such a

mechanism might allow the angular momentum to be carried by a ‘halo’ while most of the

entropy is carried by other degrees of freedom on the inner horizon (see below). One might

worry that if there is a vastly larger entropy in the Higgs branch, that the system may

try to perform such a separation. This then leads to a puzzle about how these degrees of

freedom are to recombine to make Hawking radiation if they are so distantly separated.

The observation that there are light degrees of freedom in 6d black holes (the v and ψ

dependence of the geometry) that are not accounted for in the quiver quantum mechanics,

does not necessarily mean that the hypermultiplets that generate the Higgs branch in 5d

are irrelevant in 6d. One should in particular understand what becomes of the exponential

density of pure Higgs states, which in explicitly checked examples vastly exceeds that of

the Coulomb branch states.

The picture of the Higgs branch gleaned from the quiver quantum mechanics seems

at odds with the understanding of generic black hole states gleaned from the ensemble ge-

ometry, which from the discussion of section 2 indicates that excitations above extremality

extend out substantially into the inter-horizon region. Instead, in the pure Higgs states,

the vector multiplet wavefunction dies off exponentially rapidly away from r = 0, which

naively should be the horizon — the inner horizon, if the thermodynamics and the co-

variant entropy bound are to be believed. But then one is concentrating the bulk of the

black hole degrees of freedom in a region causally separated from the black hole exterior

by a macroscopic amount, which only grows as the black hole is further excited. There

would have to be an additional form of nonlocality in the theory in order to avoid the usual

information paradox trap when trying to extract information from the black hole through

Hawking radiation.9

9Such nonlocalities in the effective theory have been advocated for instance in [111].
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To summarize, the Higgs branch of quiver quantum mechanics has a vast reservoir of

states, larger than the spectrum of Coulomb branch states. These states carry no angular

momentum, and their wavefunction is supported at r = 0 where naively the throat is in-

finitely deep, and so it looks like a horizon has formed. If this result carries over to the 6d

type IIB geometries obtained after dualization from M-theory in 5d, then necessarily the

bulk of the microstates are not realized as capped geometries. If the Higgs branch states

are indicative of the structure of the majority of the 6d BPS spectrum, the considerations

of section 2 argue that these states should be associated with the inner horizon; however

their wavefunction seems not extend into the inter-horizon region, if the quiver QM wave-

functions are an accurate guide. Of course, one should also remember that the form of

wavefunctions is not protected by any nonrenormalization property, so the wavefunctions

in the quantum mechanics may be a poor guide to the structure of the 6d theory.

The Coulomb/Higgs terminological distinctions we have been making are probably an

expedient (and perhaps misleading) fiction that glosses over a more subtle truth. In quiver

quantum mechanics, the Coulomb branch states can have an echo on the Higgs branch

and vice versa. There is reason to suspect that the distinction is even more subtle in any

formulation relevant to 6d geometries. Further insight into the nexus between the two, and

how communication takes place across it, would certainly be welcome.

If the pure Higgs states of the quantum mechanics are somehow irrelevant, part of

the justification ought to come from understanding the analogue of the quiver QM hyper-

multiplets in the 6d geometry. They start off life as strings stretching between primitive

D-brane bound states involving D6-branes in 4d string theory. In the M-theory limit of

the quantum mechanics, these strings become M2-branes wrapped on the M-theory circle

and stretching between KK monopoles; in other words, the geometry has nontrivial two-

cycles which consist of the M-theory circle fibered over the interval between centers in the

Gibbons-Hawking geometry. Under the duality to IIB, these M2-branes become D3 branes

wrapping this S2 as well as the type IIB circle dual to the shrunken T2 in M-theory. When

one brings charge centers together in the Gibbons-Hawking base, the S2 vanishes and the

D3-brane becomes a tensionless string. The condensation of this string then ought to be

related to entering the Higgs branch of the 6d theory (or rather, the generic microstate

would involve a condensate of such strings).

More precisely, when a cycle vanishes in the Gibbons-Hawking base manifold of the

6d geometry, the various warp factors in the metric cancel that shrinkage and ensure that

the cycle remains of fixed proper size (since the throat geometry approaches AdS3 × S2).

Nevertheless, objects at the bottom of the throat cost little energy, because the same warp

factors govern the redshift in the metric (3.3), so the effect is the same as if the cycle was

vanishing. The effective string from the three-brane wrapping the vanishing cycle is not

necessarily tensionless when the cycle collapses — there are additional antisymmetric tensor

field moduli of the NS B-field and RR two-form that are associated to the two-cycles. Only

when the flux of these potentials through the two-cycle vanishes does the string become

truly tensionless [112]. Naively it seems that this modulus is unconstrained and will be

dynamical on a compact geometry, and thus the wavefunction would have support on the

tensionless string limit. We thus see no reason that the hypermultiplet dynamics of the

Higgs branch will be suppressed in the 6d theory.
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(a)

v

(b)

y
1,2,3

Figure 4. Two perturbations of a Zn symmetric arrangement of type IIB fivebranes on a circle,

dual to type IIA string theory on C2/Zn: (a) moving the fivebranes on S1 is related to changing NS

B-field fluxes through vanishing cycles on the IIA side; (b) moving them in R3 is dual to turning

on the triplets of geometrical blow up modes of the vanishing cycles on the IIA side.

5 Fivebrane singularities

It turns out that many of the potential geometrical pathologies (orbifold singularities, scal-

ing limits, etc.) in the microstate geometries are due to the configuration of the underlying

background sources, whose behavior closely parallels that of fivebranes in well-studied

situations. It will therefore be useful for us to review several facts about fivebrane dy-

namics, beginning with the duality between fivebranes and orbifolds (the discussion here

follows [40], section 4.2). The structure of the Coulomb and Higgs branches of fivebranes

will illuminate the issues raised above, and provide further support for the notion that non-

geometric degrees of freedom account for the bulk of the entropy of three charge black holes.

5.1 Fivebranes on the Coulomb branch

Fivebranes on R3×S1. The orbifold theory C2/Zn is T-dual to the theory of fivebranes

on a circle, in an appropriate limit [35, 113]. Consider type II string theory on R8,1×S1, with

n NS5-branes symmetrically arranged on the circle, which we take to have circumference

R, and parametrized by v; and let y1,2,3 parametrize the R3 transverse to the fivebranes

(see figure 4). Then in the limit

gs → 0 , R/`s → 0 , with
R

`sgs
fixed , (5.1)

type IIB string theory in the fivebrane background is equivalent to type IIA string theory

on the orbifold C2/Zn (and vice versa). The two descriptions are related by T-duality

applied to the circle parametrized by v.

The orbifold has n−1 hypermultiplets of moduli coming from twisted sectors; the four

real parameters in each hypermultiplet consist of the NS B-field flux through one of the

n−1 vanishing cycles of the orbifold ALE space, together with a triplet of modes that blow
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up that cycle. The B-flux is a periodic coordinate, while the blow up modes parametrize

R3. These map on the fivebrane side into the relative locations of the fivebranes on the

S1 and R3, respectively. The standard C2/Zn orbifold CFT corresponds to the point in

moduli space where the fivebranes are coincident in R3 and symmetrically arranged on the

S1 (as in the top of figure 4). The Zn symmetry that cyclically permutes the fivebranes is

the Zn quantum symmetry of the orbifold CFT.

Near-coincident NS5-branes generate a target space for perturbative worldsheet string

theory which develops a throat along which the string coupling grows; the throat becomes

infinitely long, and the coupling at its end diverges, in the limit where fivebranes coin-

cide [114]. On the IIA side, this singularity of the worldsheet CFT can be understood

from considerations of linear sigma models, in the limit where the worldsheet theta angle

is turned off.

One can also match the structure of D-branes on the two sides. The limit (5.1) keeps

fixed the mass in string units of D1-branes stretching between the NS5-branes on the IIB

side; their mass scales as

`smW =
R

n `sgB
s

(5.2)

at the point in moduli space related to the orbifold. D1-branes of fractional winding are

pinned to the NS5-branes they begin and end on, while D1-branes of integer winding

are free to move in the R3 transverse to the NS5-branes. Exactly the same structure is

obtained in IIA string theory on C2/Zn. There, fractional D0-branes of the orbifold are

the W-bosons of a spontaneously broken 5+1 dimensional gauge symmetry localized on

the orbifold singularity; their mass is

`smW =
1

n gA
s

, gA
s = gB

s `s/R . (5.3)

These excitations are D2-branes wrapping the vanishing cycles of the ALE space, and

carrying a fractional unit 1/n of D0-brane charge.

Fractionally wound branes become massless if fivebranes coincide (IIB), or equivalently

(IIA) when the B-flux through vanishing cycles of the ALE space is turned off [112]; the

D-brane gauge dynamics then becomes strongly coupled. This is the open string reflection

of the singularity of the closed string sector noted above.

Fivebranes on R4. A similar structure arises for NS5-branes on R4 rather than R3×S1.

On R4 one has the CHS construction [114], which has been studied in great detail from a

more modern perspective in [36–39]. Fivebranes separated on the Coulomb branch make

a throat that is smoothly capped off as seen by short (fundamental) strings. A long throat

with large redshift develops as the fivebranes approach one another along the Coulomb

branch; the depth of the throat is controlled by the brane separation. New light (and

strongly coupled) degrees of freedom — again D-branes stretching between the fivebranes

— arise in the limit that the branes collide [115]. The depth of the throat is directly tied

to the lightness of these degrees of freedom, which are associated to the ‘little strings’ of

fractionated tension that inhabit coincident fivebranes.
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Adding background one-branes. We claim that similar phenomena occur in the

present context, where the background charges include one-branes in addition to five-

branes. Once again the appearance of a large redshift when a black hole is forming in

AdS3×S3 arises from background sources that are approaching one another, revealing new

light ‘W-brane’ excitations. Analogues of both of the above situations involving fivebranes

arise in the context of three charge systems. If the Gibbons-Hawking base B has charge

centers with greater than unit charge, |qa| > 1, the base has an orbifold singularity whose

dynamics parallels that of fivebranes on R3×S1. Scaling solutions, where charge centers can

approach one another arbitrarily closely, are the analogues of fivebranes on R4. The fact

that the entropy of fivebranes is accounted for by the Hagedorn entropy of ‘little strings’ on

the Higgs branch rather than by quantizing excitations of the cap on the Coulomb branch,

suggests that a similar fate awaits the three charge capped microstate geometries of the

three-charge system.

5.2 Singularities in D1-D5 microstate geometries

Two-charge microstates. The above structure already appears in the two-charge back-

grounds of the D1-D5 system. The chiral primaries of this theory can be mapped to an

F1-P duality frame where the charges are simply winding and momentum of a fundamental

string [9, 10, 116] (see [55] for a review). After smearing the source over the (dual of the)

v circle and dualizing back, explicit expressions for the supergravity fields are obtained for

an arbitrary quantized profile Xi(v) of the string oscillation in the base B = R4 (i.e. a

single pole with unit residue in the Gibbons-Hawking parametrization of B). One finds the

coefficient functions in the metric (3.3)

Z1 = 1 +
Q

L

∫ L

0

dv

(x−X(v))2
, Z2 =1 +

Q

L

∫ L

0

(Ẋ(v))2 dv

(x−X(v))2

β = (A+B)/
√

2 , k =(A−B)/
√

2 , F =0 (5.4)

Ai = −Q
L

∫ L

0

Ẋi(v) dv

(x−X(v))2
, dB = ∗ dA

Perhaps the simplest choice for X(v) is to take

X1 + iX2 = a eiωv , X3 + iX4 = 0 (5.5)

for the four noncompact coordinates of the base B = R4 transverse to the v circle (and

the T4), with the string wound n5 times over the v circle of radius R, and carrying all its

momentum excitations in the kth oscillator mode. Translated to the D1-D5 frame, one has

ω =
kR

n5
, a =

√
Q1Q5

kR
(5.6)

as the image of the parameters characterizing the state. Such a string source is depicted

in figure 5.

As shown in [9], the source (5.5) with mode number k generates a D1-D5 geometry

(AdS3 × S3)/Zk. The lowest mode k = 1 describes global AdS3 × S3, or more precisely
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v

Figure 5. Sources in equation (5.5) for the two-charge solution. Putting a macroscopic number

of quanta in the lowest mode (the laconic source shown in black, making a single turn in the X1-

X2 plane as one moves along the v circle) constitutes a macroscopic ring source whose geometry

turns out to be the spectral flow of the global AdS3×S3 geometry. Putting a single quantum in the

highest mode (the tightly coiled spiral shown in red) makes an orbifold geometry (AdS3×S3)/Zn1n5 .

All the two-charge BPS geometries are specified by such a coiling long string source, which when

separated in space describes a state on the Coulomb branch of D1-D5 system.

the maximally spinning state obtained from this vacuum geometry by two units of spectral

flow in the spacetime CFT [117]. The deepening throat with increasing k is reflected in the

dual source by the decrease of the ring radius a by a factor of k, so that the strands of the

string are drawn closer together in the X1-X2 plane. The strands are furthermore packed

more densely along the v circle by a factor of k, as the source makes k windings before

returning to itself as it travels from v to v+2πn5R. The difference from the fivebrane story

above is that now one is dealing with the underlying long effective string carrying both

one-brane and five-brane charges, rather than just the five-branes; also, the two-charge

BPS states generically have no moduli because the source configuration is fixed by the

choice of mode excitations of the dual F1-P state. The choice k = n1n5 makes the orbifold

defect angle large, and the throat is deep, with excitation gap of order (n1n5)−1; this state

is very near but just below the threshold for the extremal BTZ black hole. The long string

source, which is smeared over the v circle in order to perform the duality transformation,

is actually a tiny helix whose strands are coincident in the directions transverse to v but

secretly just slightly separated in v, see figure 5. Thus, just like the fivebrane situation

reviewed above, deep throats are tied to underlying sources approaching one another along

the Coulomb branch. The main difference with the situation described in the previous

subsection is that the source generating the deep throat whose singular limit is associated

to fivebrane sources, is here replaced by the AdS throat associated to long string sources.

A closely related (AdS3× S3)/Zm orbifold is described in [116]. In the language of [9],

when k and n5 have a common divisor the configuration is singular, because the source
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(a)

0.0

0.5
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v

(b)

Figure 6. Sources for the two-charge solution. (a) A single BPS source with n5 = 3 and k = 3

has the strands of the source locked at finite separation on the covering space of the v circle, but

coinciding in spacetime; (b) Splitting the single string into three string sources with n5 = 1 and

k = 1, and separating them, desingularizes the coincident source singularity that arises when k and

n5 have a common divisor in the single-string source.

traces over the same curve in spacetime m = gcd(n5, k) times. The example n5 = k = 3

is shown in figure 6(a). One can desingularize the geometry by splitting the source into m

separate string sources, each carrying mode number k/m, and separating them along the

v circle, as shown in figure 6(b). Placing the m strings in a Zm symmetric arrangement

leads to the background worked out in [116], which showed explicitly how the moduli of

the orbifold (AdS3×S3)/Zm map to the locations of the sources in the hyperKähler base of

the geometry (3.4) in the construction of [9, 10].10 Thus the construction of [116] realizes

a variant of the fivebrane-orbifold duality depicted in figure 4.

We see that when orbifold singularities arise in the hyperKähler base B of the mi-

crostate geometry, one needs to look further to see whether the geometry is actually non-

singular, or whether instead one has landed on a singular point in the moduli space. The

quantity that governs the distance to the singularity in these two-charge background con-

figurations is the source separation, which governs how close one is to a singularity of the

effective theory. In the special symmetric configurations above, multiple strands of the

source travel the same path in the noncompact R4 , parametrized by ψ (the angular direc-

tion in the X1-X2 plane). The sources are only separated as they wind along a cycle on

the T2 parametrized by v and ψ, and if the source wraps that cycle multiple times, there

is a singularity. The transverse separation of the strands governs how close one is to the

10As shown in [118], the NS duality frame with all Ramond moduli turned off is a singular point in

the moduli space of the spacetime CFT, where brane charge can escape to the boundary of AdS3. This

singularity is regularized by turning on these moduli, which generate an attractive potential between the

branes which lifts the flat directions of the orbifold. The worldsheet description used in [116] is at the singular

point of the moduli space, where the brane separations are a true flat direction of the configuration space.

– 34 –



J
H
E
P
0
3
(
2
0
1
5
)
1
1
2

singularity, i.e. the tension of the ‘W-branes’ that stretch between the sources. The picture

above indicates that when n5 and the mode number k do not have a common divisor, the

theory can be regular — that the sources are separated along v and the would-be angle

modulus is lifted (i.e. is a fixed scalar).

When the orbifold is not singular, it is as usual because there is nonzero NS B-field

flux through the two-cycles of the geometry, which are collapsed at the orbifold locus. This

desingularization is hidden in the geometry but well-understood from the string theory

perspective [112]. In the simple solutions (5.5), the configuration of the string source tells

us that this flux is nonzero, because the strands of the source are separated along the helix,

at least when there are no retracings of the path. The orbifold fixed point that comes closest

to being a black hole has order n1n5, and has n1n5 species of light wrapped branes; for

instance, D3-branes wrapping the vanishing cycles will be strings whose tension is of order

(gs`
2
sn1n5)−1, and will only become lighter if the strands of the long string are pushed closer

together and the B-field is turned off. For the generic two-charge configuration arising from

dualization of an F1-P source, one expects that there will be light brane excitations in the

D1-D5 geometry whenever the string source comes close to self-intersecting. These ‘W-

branes’ signal the emergence of the long string phase, just as in five-brane dynamics they

signal the emergence of the little string excitations.

The generic source profile Xi(v) in (5.4) consists of the string executing a random walk

in the base B = R4 as it winds along the v circle, with an average mode number k̄ ∼ √n1n5,

a radius of gyration of order
√
n1n5, and a typical spacing within B to the nearest other

point on the string of order (n1n5)1/6 in units of the 5d Planck length [55, 56]; the fine-

tuning that might cause the source to trace over the same path will be absent, and the

source string is generically far from self-intersecting. An intriguing analysis [55, 56, 119]

shows that the number of solutions that fit within the typical radius of gyration satisfies

the Bekenstein-Hawking area law S ∼ A/4G. However these states are somewhat far from

being black holes. The typical cycle in the symmetric product orbifold has length equal

to the typical mode number k̄ ∼ √n1n5, and so the gap in the spectrum is much larger

than one expects of a solution with a truly deep throat. The typical such state will carry a

characteristic angular momentum J ∼ √n1n5 since the angular momentum is proportional

to the number of modes; the entropy formula (3.29) then says that one needs np ∼ 1 in

order to rise up to the BMPV black hole threshold, however to achieve this one must excite

the available cycles a macroscopic amount using of order
√
n1n5 excitations down at the

bottom of the throat; but even though the state will then have the same quantum numbers

as a BMPV black hole, it will not have the same excitation gap and so the microstate is not

a generic black hole microstate. Instead, the two-charge geometries exhibit the long string

as an explicitly visible bare source tracing out a path in B as a function of v, which is then

smeared over v. These BPS geometries carry angular momentum, whose centrifugal force

pries apart the long string, allowing us to see it as a Coulomb branch state.

Three-charge solutions. A similar story to the AdS orbifolds above plays out in the

three-charge solutions of section 3. The poles in the harmonic functions are the locus of

charge sources, and their physical separation controls the energetics of ‘W-branes’.
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In the two-center solutions (3.25), the residues s and s+1 of the poles in the harmonic

function V of the Gibbons-Hawking base are such that s(s + 1) is a multiple of the KK

dipole charge k3. There are orbifold singularities (of order gcd(s, k3) and gcd(s+ 1, k3)) at

the north and south poles of the S2 consisting of the ψ circle fibered over the line joining

the two centers, where the fiber degenerates. These orbifold singularities are the locus of

m− 1 additional cycles which have been blown down, where m is the order of the orbifold

quotient. These orbifold singularities will be benign if there is antisymmetric tensor flux

through the collapsed cycles. It would be interesting to work out the values of B in this

situation, which should be frozen at some particular nonzero values.

In the two-center solutions, the map to chiral primaries of the symmetric product given

in [98] indicates that the excitation gap is of order k−1
3 . If one wants the excitation gap

to approximate that of black holes, one wants k3 ∼ n1n5. We then conclude that there

are orbifold singularities of order
√
n1n5 or worse at the poles of the nontrivial sphere in

B, when the depth of the throat is deep enough for the geometry to look like a black hole.

Branes wrapping these cycles will be rather light.

Solutions with three or more centers admit scaling solutions for the microstate geome-

tries, where a cluster of poles in the Gibbons-Hawking base coalesce. These microstate

geometries represent a situation analogous to fivebranes on the Coulomb branch in R4,

since the poles are the locus of sources of the background charges. The centers on the

hyperKähler base B are free to move around, modulo the constraints imposed by the bub-

ble equations (3.13). Scaling a cluster of centers toward coincidence in B is the direct

analogue of moving fivebranes close together; a deep throat develops, and wrapped brane

excitations — ‘W-branes’ stretching between charge centers — become lighter and lighter

in the process.

The ‘spacetime foam’ limit of many centers was studied in [18]. Setting for simplicity

qa = (−1)a+1 for N = 2M + 1 centers, and the dipole charges of each type all of the same

order as the mean value

kIa = k̄I(1 +O(1)) , (5.7)

one finds that in the large N limit the conserved charges scale as

Q1 ∼ 4N2k̄2k̄3 , Q2 ∼ 4N2k̄3k̄1 , Q3 ∼ 4N2k̄1k̄2 , JR ∼ 8N3k̄1k̄2k̄3 , (5.8)

with
J2
R

Q1Q2Q3
− 1 ∼ O(N−2) . (5.9)

The value of JL depends on the solution of the bubble equations, but was checked numeri-

cally for several examples and found to be subleading in the large N limit. Thus once again

the solutions seem to be near but just below the BMPV black hole threshold. With N

centers there are N2 separate two-spheres, each holding a few units of each type of charge.

By moving any given group of centers together in a scaling solution, a long throat develops

and one pushes the associated charge cluster towards the Higgs branch. The structure is in

fact quite similar to the purely fivebrane backgrounds studied in [36–39] — the geometry is

smooth with a throat developing in the vicinity of any cluster of fivebranes that coalesce,

which deepens as the cluster centers approach one another.
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In the two-charge BPS geometries, and (assuming they are nonsingular) the two-center

three-charge solutions discussed above, the regularity of the solution comports with the

fact that the moduli are all frozen, and there is a gap to exciting the long string degrees of

freedom. More general multicenter solutions have a combination of orbifold singularities,

centers that are not free to approach one another due to the bubble equation constraints,

and scaling clusters. The features of these geometries contain the information about the

underlying long string that sources the geometry, which becomes the long string of the

black hole spectrum as the excitation gap approaches the value typical of the black hole

states. We thus have a concrete picture of where the long string lurks in the geometrical

side of the duality. In the geometries with the deepest throats, the excitations bound to

the long string do not cost a lot of energy, and small non-extremality may cause strands

of the source string to approach one another, leading to a singularity in the effective field

theory. The depth of the throat, or the size of the cycles, is directly tied to how near

one is to liberating some portion of the long string degrees of freedom. It is important to

realize that the effective field theory becomes singular not because the underlying theory

is pathological, rather it is simply that new light degrees of freedom arise and so it was a

mistake to integrate them out; the approximation scheme is what is breaking down. Just

as the singularities of fivebranes on the Coulomb branch signal the appearance of the Higgs

branch of ‘little strings’ which accounts for the black fivebrane entropy, similarly in the D1-

D5 system new light degrees of freedom arise, associated to the long string (and the Higgs

branch in the Coulomb/Higgs dichotomy). In the case of fivebranes, one doesn’t count

the entropy of black fivebranes by quantizing the excitations in the cap of the Coulomb

branch geometry. Similarly, it is the long string, whose excitations are liberated on the

Higgs branch, that we expect to be responsible for the three charge black hole entropy,

rather than a consideration of distinct ways of wiggling the microstate geometry.

In the next section, we propose that the long string degrees of freedom of the Higgs

branch not only count the entropy; they also resolve the null singularity at the inner horizon

of BTZ black hole geometries, and not just at extremality. This sort of mechanism has

always been the way that string theory resolves timelike singularities, via the appearance

of either light perturbative string states [112, 120, 121] or light D-branes [122]; the analysis

here points to a mechanism whereby string theory also resolves null singularities in a very

similar fashion. Can spacelike singularities be far behind? After all, the same long string

structure will be operating behind the outer horizon, arbitrarily far from extremality. In

the following, we will provide a picture of how that resolution takes place as a consequence

of the string/black hole correspondence principle of [123].

6 Discussion and speculations

6.1 What can we learn about black holes from the Coulomb branch?

Before delving into the issue of singularity resolution, let us address the question of what can

be gleaned from the microstate geometries program if it indeed falls short of accounting for

three-charge black hole entropy. We suspect that these geometries still have an important
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role to play in sorting out black hole structure, since solutions with the deepest smooth

throats are on the cusp of becoming black holes.

The scaling solutions for multicenter Gibbons-Hawking metrics outlined in section 3

provide a strong test of the ideas of this paper, if one can understand enough about the

dynamics in the regime where branes wrapping the small cycles on the base B become

light. This is the regime where excitations of the long string become light and take over

the effective dynamics — classically the throat where it resides can grow infinitely deep

and the string is naively tensionless as seen from the asymptotic region, in supergravity. As

in the fivebrane case, one does not expect the long string to actually become tensionless,

rather that its tension is small but finite as in the case of little string theory, related to

the amount of fractionation of the fundamental string tension that it exhibits. It would be

helpful to know how the excitation gap arises once these degrees of freedom are included

in the effective description.

We have seen that the new light degrees of freedom that are bound to the long effective

string are visible in the regime where the ‘Coulomb branch’ joins the ‘Higgs branch’ of the

underlying nonperturbative CFT, to borrow the terminology of quiver dynamics. While

the Higgs branch dynamics is strongly coupled and non-geometrical, and seems likely to

carry the bulk of the entropy, we may be able to infer certain characteristics of black holes

from the characteristics of the breakdown of the Coulomb branch description embodied by

the microstate geometries.

Such an approach was used successfully in [43, 44] to find the scaling properties of

black holes in matrix theory. The starting point there was the Coulomb branch effective

action for the zero modes of N D-branes on a torus of size L

Leff =

N∑
a=1

Nv2
a

R
+
∑
a6=b

N2`9pl|va − vb|4

R3Ld rD−4
ab

+ . . . . (6.1)

obtained by integrating out the strings stretching between branes. Assuming the degrees

of freedom lie in a region of size r0 and saturate the uncertainty bound

r0v

R
∼ 1 , (6.2)

and applying the virial theorem, one arrives at a relation between the number of D-particles

N and the characteristic size r0 of the bound state:

N ∼ (`−9
pl L

d)rD−2
0 . (6.3)

The typical energy scale is then

Elc ∼ (`−9
pl L

dR)rD−4
0 =

M2R

N
, (6.4)

which is interpreted as the light-cone frame energy P− of a Schwarzschild black hole highly

boosted to a momentum P+ = N/R. These considerations lead to a typical size of the

bound state in terms of the rest mass:

M ∼ (`−9
pl L

d)rD−3
0 . (6.5)
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Since `−9
pl L

d = 1/GD, where GD is the D-dimensional Newton constant, one finds the

scaling relation between the mass and horizon radius of a Schwarzschild black hole. Us-

ing (6.3), (6.5), one also has

S ∼ (`−9
pl L

d)
1

D−3M
D−2
D−3 ∼ `−9

pl L
drD−2

0 ∼ N . (6.6)

This result is already clear from (6.3) — the number of D-particles is the surface area of the

bound state in Planck units. In other words, the entropy is the number of constituent D-

particles up to coefficients of order unity. This is quite reasonable since they by assumption

saturate the uncertainty bound, and so N is the number of phase space cells occupied by

the system.

Taking into account the number of polarization states for each D-particle, one estimates

the entropy to be S ∼ N .11 Similar considerations provide a picture of Hawking radiation as

the emergence of D0-branes back onto the Coulomb branch [124]. Notice that this argument

works uniformly in all dimensions D, and does not require independent conjectures about

the gauge theory thermodynamics. The basic assumptions are simply (1) the Coulomb

branch effective field theory (6.1) is applicable (even if nearing breakdown); and (2) the

system is in a minimal uncertainty bound state.

The (admittedly crude) picture just outlined approximates a Schwarzschild black hole

in terms of the interactions of D-particle bound states. In the simplest situation where

the D-particles are D0-branes, the constituents are essentially a bundle of 11d gravitons

travelling along null geodesics, and the interaction term in (6.1) approximates the geodesic

deviations of the bundle. If one tries to localize that bundle too closely in the space

transverse to the null trajectory, one finds that stretched string/membrane interactions

among the gravitons are excited that disorder the light-cones, making the resulting trajec-

tories rather non-commutative, chaotic, and quantum mechanically spread out (from the

perspective of an outside observer).

This model for black holes in the D0-brane matrix model is not all that far removed

from the picture of three-charge black holes advocated here. The threshold bound state of

N D0-branes is a null wave which classically has a null singularity at its center. Sending

in a disturbance excites new light degrees of freedom near the singularity and sets up a

cloud of such excitations extending out to the horizon radius. The region of support of

the D-particle wavefunctions seems quite similar to what one expects of the inter-horizon

region of the three-charge system. At a superficial level, the main difference is that the

null singularity in the three-charge case lies at the boundary of an exterior region of low

curvature which one expects to be well described by semi-classical gravity, whereas the

region near the singularity of the extremal D-particle state has high curvature.

The matrix theory result shows that general principles can yield the scaling properties

of the equation of state and the horizon size. It is conceivable that enough could be pinned

down about the effective theory of long strings near the black hole horizon that one could

11One can remove the constraint that the entropy is tied to a particular choice of boost of the black hole

by replacing the individual D0-branes in the above analysis with the motion of threshold bound states of

D0 branes; see [44] for this and other generalizations.
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determine at least these same qualitative features of the dynamics, and compare with black

hole thermodynamics.

6.2 The information paradox, the experience of infall, etc.

Finally, let us turn to a discussion of causal structure, and the new ingredients provided

by our scenario which are missing from typical discussions of the conflict between unitary

evolution and causality in the context of black holes. These typical discussions start with a

sketch of the Penrose diagram of the classical geometry, and then proceed to a debate over

how the information could possibly get out of the black hole, given that the geometry is

smooth and semiclassical in the vicinity of the horizon where the Hawking process operates.

Current versions of the debate [6, 8] refine Hawking’s original calculation by rephrasing

the basic paradox in the language of quantum information theory.

The issue at its core is how to engineer the necessary correlations that carry quan-

tum information over macroscopic spacelike distances, and preserve them from unwanted

decoherence, while not proposing structures that do violence to cherished notions such as

causality in contexts other than black hole dynamics. An essential ingredient is likely to

include the notion that causal structure in a theory of extended objects is quite tricky, and

very likely not definable locally. It has long been felt that the fact that the constituents

of string theory are extended objects will play a vital role. Any attempt to cleave the

theory along the light cone structure of the low energy metric is doomed to failure, as for

instance strings oscillate like mad even in their ground state; the zero-point fluctuations

of the string oscillation guarantee that there are parts of the string on both sides of any

imaginary dividing line. Early investigations [88–90] computed the commutator of string

fields (admittedly an off-shell and not particularly gauge invariant quantity) and showed

that light cones, defined as the boundary of the vanishing of the commutator, fuzz out due

to string fluctuations. However, it was never clear how this result would translate into a

gauge invariant statement about how the notion of light cones determined by the effective

gravity theory would be violated, or a specific mechanism for information retrieval from

black holes, or how such a mechanism would not lead to unacceptable violations of causality

in other contexts. Indeed, it is quite remarkable that the tree level S-matrix of perturbative

string theory satisfies all the usual analyticity properties required by causality, given how

nonlocal strings seem to be. One lesson that seems robust, however, is that the description

of even a single extended object is highly entangled across the light cones of the effective

geometry it inhabits.

The new ingredient provided by the emergence of long strings near the black hole

phase transition, is that these strings lie at the correspondence principle crossover [123]

where BTZ black holes turn into string states. This issue has been studied in the context

of perturbative string theory in AdS3 backgrounds [46], where one can vary the curvature

of the AdS geometry relative to the string scale by varying the superconformal field theory

being coupled to the AdS factor. In terms of the level k of the worldsheet SL(2,R) CFT

describing AdS3, one has

`2 = k `2s . (6.7)
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As one tunes through theories to go from curvature weaker than the string scale to curvature

stronger than the string scale, the high energy spectrum crosses over from being dominated

by BTZ black holes, to being dominated by perturbative strings. The deep result of [46]

is that beyond the crossover point, BTZ black hole states cease to be normalizable and

therefore can’t be excited because they are not part of the spectrum, for any value of

the mass. Precisely at the crossover, the BTZ spectrum matches the perturbative string

spectrum, and one is at the correspondence point. The difference with the original insight

of [123] is that in the latter work, the correspondence point occurs for one particular value

of the mass that depends on the given value of the coupling; here it occurs for any value

of the mass, but only for one particular coupling. For smaller values of the coupling, there

is no correspondence point, in fact there are no black holes at all.

In the analysis of [46], this crossover occurs precisely where the string scale and the

AdS scale coincide, namely k = 1. But as that work emphasized, the crucial point is that

the correspondence point is where the string spectrum matches the black hole spectrum.

This occurs almost by construction in AdS3/CFT2 duality, in which the long string density

of states matches the BTZ spectrum exactly. The entropy formula

S = 2π
√
n1n5(E + np)/2− J2

L + 2π
√
n1n5(E − np)/2− J2

R (6.8)

can either be interpreted as the density of states of BTZ black holes in a unitary theory of

gravity in a weakly curved AdS spacetime with ` = 4n1n5G3, or as the density of states

on a long string whose excitations have central charge c = 6 and a tension reduced by a

factor n1n5. In this context, it is quite intriguing that the critical k = 1 theory discussed

in [46] has ceff = 6.

It may thus happen that the degrees of freedom that hold the black hole entropy don’t

treat it as a black hole, because they don’t see it — they resolve the black hole singularity

(in the sense of smoothness) by not resolving it (in the sense of measurement). While short

strings are experiencing horizons and singularities, the long string thinks that spacetime is

smooth! This proposition seems to be the logical extension of the results of [46]. It may

not be such an outrageous proposition as it might seem at first — we are used to different

objects in string theory experiencing different metrics, see for instance [125]. In the analysis

of [46], there are no black hole states in the spectrum beyond the correspondence point, just

the string spectrum. In the geometry that the long string responds to, there is no horizon

and no singularity. From this perspective, the long string resolves black hole singularities

the way that perturbative strings resolve orbifold singularities — by not feeling them. In

particular the long string will not respond to the ambient short string metric by falling

into its singularity; instead, while short strings see a geometry which is locally AdS3 with

` = 4n1n5G3 and a globally a BTZ black hole metric, long strings see `eff = 4G3,eff and

behave entirely differently, in particular they see no black hole.

A very similar picture again arises for bound states of strings, fivebranes and momen-

tum in a different limit. The theory of ordinary ‘fundamental’ strings in the throat of n5

near-coincident NS5-branes is described by the worldsheet theories elaborated in [36–39].

However, at the bottom of the throat lurks a nonperturbative ‘little string’ whose tension
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is n5 times smaller than that of the fundamental string, and it is this string that governs

the thermodynamics [126]

S = 2π
√
n5NL − J2

L + 2π
√
n5NR − J2

R . (6.9)

In the perturbative string theory description of NS5-branes, one has a throat with radius

` satisfying (6.7) with k = n5; little string theory has the tension reduced by a factor of

n5 and according to the entropy counting is at the correspondence point. Despite their

disparate names, ‘little strings’ and ‘long strings’ appear to be two sides of the same coin.

The work of [46] therefore provides a similar singularity resolution when fivebranes are

the only ‘heavy’ background charge. In this case, the short strings on the Coulomb branch

see a capped throat with a linear dilaton described by SL(2,R)/U(1) worldsheet conformal

field theory at level k = n5, which when sufficiently excited collapses to a linear dilaton

black hole, described by the Lorentzian version of this same coset CFT. The long string (or

‘little string’) at the end of the throat has a tension n5 times smaller, and so for it the throat

geometry seems to have k = 1; what it sees can equally well be described as a Liouville wall

instead of a black hole. The SL(2,R)/U(1) sigma model has a strong/weak coupling duality

to Liouville theory [38] (see [127] for a discussion and further references); Liouville theory

is the appropriate weakly coupled description for k < 1, while the geometrical description

is weakly coupled for k > 1. For k = 1, the black hole and Liouville wall are equally valid

descriptions, but the Liouville version has no horizons or singularities, and we are free to

use it. Once again the long string ‘resolves’ the singularity by not seeing it as such. It is

interesting that once again the worldsheet theory has ceff = 6 as one would expect of the

little string.

The large, floppy long/little string of exceedingly low tension will have a wavefunc-

tion that is coherent over macroscopic distances; and any attempt to decohere it through

local measurements will fail, essentially because the large floppy string is a fault-tolerant

structure of the sort seen in topological condensed matter systems [128] – its information

content is stored in a highly nonlocal fashion. To determine the state of the long string

would require the infalling observer to perform coherent measurements on scales of order

the horizon size. The gas of excitations of an extremely low tension string (having a truly

tiny Hagedorn temperature) will be essentially impossible to detect for local observers, who

will not be able to distinguish it locally from the vacuum. A similar situation occurs in

perturbative string theory when a D-particle enters the cloud of a highly excited funda-

mental string; its ballistic motion through the cloud is largely undisturbed over modest

time scales. And in the black hole problem, the appropriate time scale is set by the proper

time of freely falling observers crossing the inter-horizon region.

The inter-horizon region is thus described by a coupled two-phase system — a Hagedorn

gas of the long string, weakly interacting with infalling ordinary strings. The experience

of infall may thus be smooth and uneventful until the observer hits the null singularity

at the inner horizon. The curvature singularity at the inner horizon is the signal that the

coupling between short and long strings has grown large. Tidal forces rip an infalling short

string apart at the curvature singularity and fractionate it, at which point it has become

absorbed into the long string sector.
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The extremely light tension of the long string provides the sort of ‘nonviolent nonlo-

cality’ [111] that can provide an escape route for information to flow out of the black hole

interior, again because the notion of locality is n1n5 times weaker for the long string than

for short strings. In this scenario, short strings pass freely through the ensemble geometry

all the way to the inner horizon, where they are fractionated into the long string density

of states and then gradually their information content is passed back into the short string

spectrum in Hawking radiation outside the black hole as the long string decays back to

extremality. The long string responds to a different geometry, one that has no horizon

or singularity, and thus has no difficulty communicating information in ways that short

strings cannot. And because outside of black hole regimes the long string is ‘confined’, it

will not do violence to cherished notions of locality and causality in other contexts.

So what is missing in Hawking’s calculation of black hole radiance? In hindsight, it

lacked a large, low-tension string in its Hagedorn regime, which interacts with the low-

energy degrees of freedom, but which ignores the light-cone structure of the black hole

geometry seen by those low-energy degrees of freedom. When one traces over the long

string degrees of freedom to obtain the ensemble geometry, one explicitly forgoes the abil-

ity to follow correlations between what fractionates into the long string sector when it hits

the inner horizon and what escapes from the long string via Hawking radiation. The de-

scription with the long string sector traced over seemingly has Hawking particles appearing

randomly out of the vacuum, instead of being causally radiated by the long string. In a

path integral derivation of Hawking radiance such as [129], one sums over all paths the

particle could take from the future singularity to future null infinity I+, see figure 7a. The

part running backwards in time from the future singularity to the future horizon is the path

integral description of the antiparticle member of the Hawking pair created at the horizon.

Running the path to the singularity instead of having it connect to a vertex operator on the

long string near the horizon, as in figure 7b, misses the fact that information is conveyed

from the singularity to the horizon by the very degrees of freedom one has traced over;

instead, the antiparticle path cannot causally connect the radiated particle to anything

inside the outer horizon, and so there is no way this procedure could have found anything

but information loss. The portion of the path backwards from the long string vertex to

the horizon, and then along the antiparticle trajectory into the singularity, is an incorrect

backward extrapolation by the asymptotic observer of where the particle came from — an

inappropriate substitute for the degrees of freedom that have been integrated out, which

are inhabiting the black hole.12

The picture of the fundamental origin of black hole radiance, as coherent radiation

from a long string that carries the black hole entropy, dates back to the original calcula-

tions of [130–132], which showed that at leading order in the deviation from extremality,

the processes of absorption and emission from the long string using effective vertex op-

erators could reproduce exactly the emission of low frequency Hawking quanta, including

greybody factors. One could have asked what happens to this picture of the Hawking pro-

12In particular, in the full theory, there is nothing particularly Planck scale going on other than at the

singularity of the effective geometry.
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Figure 7. Two descriptions of the Hawking process: (a) In the ensemble geometry, a particle

traces a path from the singularity at the inner horizon backwards in time to the outer horizon,

and then out to infinity; the part travelling backward in time is interpreted as the negative energy,

antiparticle member of the Hawking pair produced at the horizon. (b) Radiation from the long

string, whose degrees of freedom concentrate near the inner horizon of the not-too-nonextremal

black hole but also extend out through the black hole interior to the vicinity of the outer horizon.

cess further from extremality, and how it connects to the effective geometry description.

The considerations above answer this question — the long string is still present; it inhabits

the interior of the black hole; it continues to carry the entropy; and it coherently emits the

Hawking radiation. It is perhaps not surprising that the same mechanism is in operation

far from extremality; the major surprise is that in order for it to remain operative, the

long string must react to the ambient short string geometry in such a different fashion

than short strings do. In order to get the information out of the interior of the black hole,

the causal structure of the long string dynamics must be such that its degrees of freedom

can float within the interior, and not collapse into a singularity like ordinary matter. That

different response to geometry appears to be responsible for both the resolution of the

black hole singularity (as the place where short strings go to die and become fractionated

into the long string), as well as the resolution of the puzzles and paradoxes of the flow of

information in and out of black holes.

Our considerations make it natural to propose that the covariant entropy bound is

giving us information about the support of the wavefunction of the long string degrees

of freedom, in that the differential version of the bound tells us the distribution of those

degrees of freedom in a given radial shell;13 the expression (2.25) also gives the local

13And that thus indeed the picture of the wavefunctions provided by the pure Higgs states of quiver

quantum mechanics would be misleading.
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temperature. Furthermore, the Hawking process is a mean field calculation that describes

the means by which short strings and long strings couple in the vicinity of the outer

horizon, while unfortunately not keeping track of quantum correlations in the process.

The D0-brane model sketched above points in the same direction — that the support of

the wavefunction of the accessible microstate degrees of freedom is the black hole interior,

out to the outer horizon. In hindsight, the covariant entropy bound applied to the black

hole interior is trying to tell us that there are degrees of freedom supported in the inter-

horizon region, that are not forced to head toward the singularity along with ordinary

matter; these degrees of freedom are instead impervious to the demands of the light cone

structure of the ensemble geometry, and instead float within the black hole and have their

own internal clock related to the temperature. Our proposal that the long string — the

object responsible for the entropy being counted by the covariant entropy bound — lives

at the correspondence point, provides a mechanism for how this could happen. It is truly

remarkable how general coordinate invariance of the effective theory keeps track of all the

degrees of freedom present, no matter how hidden they are from those which are explicit

in the effective theory.

As for the relation to exact dual CFT descriptions, it is of course hard to say given that

we know little about the symmetric product orbifold CFT (T4)N/SN at strong coupling.

The coupling in this theory is a transposition twist operator in the symmetric group, whose

role is to intertwine cycles. At the orbifold point, wavefunctions are diagonal in a basis

of words in the symmetric group; each word consists of a collection of cyclic permutations

of length ni with
∑

i ni = N . The interaction, turned up to large values to get to the

supergravity regime, can still be described in this basis but the basis will no longer diag-

onalize the Hamiltonian. At the orbifold point, global AdS is the ground state consisting

of all cycles in the word being of the shortest possible length, while the black hole states

are built on a single longest cycle whose length is of order N . In the interacting theory,

it seems reasonable that spacetimes without a black hole will continue to be described by

wavefunctions whose long cycle component is heavily suppressed, and the black hole tran-

sition is the Hagedorn transition where the long cycle sector opens up, and has significant

support in the wavefunction, but all the time having a detailed balance between the vari-

ous components of the wavefunction, which now include both short and long cycles. One

may imagine that, like an interacting string gas in the Hagedorn regime, in the black hole

states there will be an ‘equilibrium’ where the wavefunctions have both long cycles and

short cycles in detailed balance, and that the short cycles describe supergravity in a weakly

curved locally AdS spacetime, while the long cycle describes the black hole states of the

long string; and Hawking radiation is the transfer of information from the long cycle to the

short cycles. What is missing, because it is so difficult to extract bulk locality from this

description, is a sense that the long cycle is by and large only inhabiting the inter-horizon

region, and that the short cycles are also describing the inter-horizon region as well as the

black hole exterior as they are seen by supergravity observables.

Finally, it would be intriguing to say the least if there were applications in cosmology

of these sorts of two-phase systems of fractionated and non-fractionated objects interacting

with one another. Such a possibility has been explored by Verlinde [133], who suggests
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Figure 8. Eddington-Finkelstein diagram for de Sitter spacetime. The exterior r > rH of our

Hubble volume is shaded.

that one might think of dark energy and the low curvature of our universe as being due

to the presence of a nearly tensionless fractionated brane state, whose tension is of order

the horizon scale. Related ideas on the origins of de Sitter entropy have been explored by

Silverstein in a series of works beginning with [134].

In the model advocated here, the entire picture of black holes is inverted in the cosmo-

logical context, see figure 8. In this case we are living inside a bubble of metastable false

vacuum, namely our Hubble volume, which is inhabited by short strings. Instead of being

outside the horizon looking in, we are inside the horizon looking out. A generalization

of the ‘long string state’ made out of fractionated branes, etc.., inhabits the exterior of

our Hubble volume; the two subsystems interact with one another in the vicinity of the

de Sitter horizon. In this picture, de Sitter symmetry would be a unitary symmetry trans-

formation which acts to change the basis in the Hilbert space, moving some short string

degrees of freedom into the fractionated brane sector and vice versa, thereby going to the

frame appropriate to a different inertial observer. One imagines that, as in the black hole

context, the fractionated brane gas sees the geometry rather differently on distance scales

less than the horizon size; it may also see a different light cone structure than that of the

effective field theory, and be responsible for quantum coherence on super-horizon scales.

Rather than being an isolated system as in the black hole case, the fractionated brane

gas now occupies all of space. It should have a coherence scale, related to the horizon

size and associated Hawking-de Sitter temperature. Inflation is then a relaxation process,

wherein the coherence length of the fractionated brane gas increases, its Hawking-de Sitter
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temperature drops, and the part of the fractionated sector accessible to the short string de-

grees of freedom grows with it; the Hubble volume increases in response to its co-evolution

with the fractionated sector. The analogue of Hawking radiation is the excitation of short

string modes that are light compared to the Hubble scale. The effective field theory inter-

pretation of these fluctuations is that they are the evolution of the vacuum as modes are

drawn up from below the Planck scale and then stretched to super-horizon scales; however,

this would seem to be an incorrect extrapolation just as in the Hawking radiation case,

with the effective field theory calculation being a stand-in for a more coherent and unitary

process of radiation of short string modes by the fractionated brane gas. These modes

propagate out to larger radius, but in contrast to the black hole case this region is outside

the region accessible to local observers. During radiation or matter dominated eras, the

fractionated brane gas relaxes much more rapidly, its coherence length grows, and mode

fluctuations radiated during an earlier de Sitter era can re-enter the horizon.14

As the two-phase system of fractionated brane gas coupled to short strings relaxes, it

can presumably get trapped in metastable minima; this is the landscape of string vacua

seen by short strings. Our currently accessible component of this vast system is quite near

to ‘extremality’; this is the cosmological constant problem – to explain why our observed

Hawking-de Sitter temperature is so low, given the presumably many other metastable

minima the system can get trapped in where the short strings interact with many fewer

available degrees of freedom of the fractionated brane gas. Denef has been exploring anal-

ogous problems in the black hole context via ensembles of glassy brane bound states on

the Coulomb branch, see for instance [135–137].

Thus, perhaps the deepest mystery we currently face in cosmology is not the dark

energy problem, but rather the dark entropy problem — why is essentially the entire

entropy of the universe (i.e. the area of our current cosmological horizon in Planck units)

bound up in things we can’t see? From the perspective advocated here, we will not solve the

riddle of dark energy without cracking the conundrum of dark entropy; and dark entropy

— in both black hole physics and in cosmology — seems to have much to do with a sector

of fractionated charges in string theory.
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