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Almost all existing approaches towards video coding exploit the temporal redundancy by block-matching-based motion estima-
tion and compensation. Regardless of its popularity, block matching still reflects an ad hoc understanding of the relationship
between motion and intensity uncertainty models. In this paper, we present a novel backward adaptive approach, named “least-
square prediction” (LSP), and demonstrate its potential in video coding. Motivated by the duality between edge contour in images
andmotion trajectory in video, we propose to derive the best prediction of the current frame from its causal past using least-square
method. It is demonstrated that LSP is particularly effective for modeling video material with slow motion and can be extended
to handle fast motion by temporal warping and forward adaptation. For typical QCIF test sequences, LSP often achieves smaller
MSE than 4× 4, full-search, quarter-pel block matching algorithm (BMA) without the need of transmitting any overhead.
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1. INTRODUCTION

Motion plays a fundamental role in video coding. Motion
compensated prediction (MCP) [1] represents the most pop-
ular approach towards exploiting the temporal redundancy
in video signals. In hybrid MCP coding [2], a motion vector
(MV) field is estimated and transmitted to the decoder and
motion compensation (MC) is the key element in removing
temporal redundancy. In the past decades, constant progress
has beenmade to an improved understanding of the relation-
ship betweenmotion and intensity uncertaintymodels under
the framework of hybrid MCP coding, which culminated in
the latest H.264/AVC video coding standard [3, 4].

Despite the triumph of hybrid MCP coders, MC only
represents one class of solution to exploit the temporal re-
dundancy. The apparent advantage of MC is its conceptual
simplicity—the optimal MV that most effectively resolves
the intensity uncertainty is explicitly transmitted to the de-
coder. To keep the overhead not to outweigh the advan-
tages ofMC, a coarseMV field (block-based or region-based)
is often used. The less obvious disadvantage of MC is its
(over)commitment to motion representation. Such commit-
ment is particularly questionable as themotion gets complex.
Take an extreme example—in the case of nonrigid motion, it
often becomes more difficult to justify the benefit of MC.

In this paper, we present a new paradigm for the video
coding that does not explicitly perform motion estimation
(ME) or MC. Instead, temporal redundancy is exploited by
a backward adaptive spatiotemporal predictor that attempts

to make the best guess of the next frame based on the causal
past. The support of temporal prediction neighbors is up-
dated on-the-fly in order to cover the probability distribu-
tion function (pdf) of MV field (note that we do not need
to estimate any motion vector but only its distribution for
any frame). Motivated by a duality between geometric con-
straint of edges in still images and iso-intensity constraint
along motion trajectory in video, we propose to locally adapt
the predictor coefficients by least-square (LS) method, which
is given the name “least square prediction” (LSP).

A tantalizing issue arising from such backward adapta-
tion is its capability of modeling video source. An ad hoc
classification of video source based on motion characteris-
tics is shown in Figure 1. The primary objective of this paper
is to demonstrate that LSP is particularly suitable for mod-
eling the class of slow and natural motion regardless of the
motion rigidity. Slowness is a relative concept—at the frame
rate of 30 fps, we assume that the projected displacement of
any physical point in the scene due to camera or object mo-
tion is reasonably small (e.g., fewer than 10 pixels). Natu-
ralness refers to the acquisition environment—natural scene,
normal lighting, stabilized camera, and no post-production
editing (e.g., artificial wipe effect).

It is from such modeling viewpoint that we argue that
LSP has several advantages over hybrid MCP. First, backward
adaptive LSP does not suffer from the limitation of explic-
itly representingmotion information in forward adaptive ap-
proaches. Such freedom from approximating the true mo-
tion field leads to more observable coding gain as motion
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Figure 1: Ad hoc classification of motion in video sequences: we
target at the modeling of slow and natural motion that is temporally
predictable.

gets more complex but remains temporally predictable (e.g.,
camera zoom). Second, LSP inherently attempts to find the
best tradeoff between spatial and temporal redundancies to
resolve intensity uncertainty, which is desirable in handling
the situations such as occlusions. Last but not the least, it
is possible to extend LSP by temporal warping and forward
adaptation to handle certain type of video with fast or dis-
turbed motion, which improves the modeling capability.

Experimental results with a wide range of test sequences
are very encouraging. Without transmitting any overhead,
LSP can achieve even better accuracy than 4× 4, full-search,
quarter-pel block matching algorithm (BMA) for typical
slow-motion sequences. We note that BMA with such setting
represents the current state-of-the-art in hybrid MCP cod-
ing (e.g., H.264 standard [4]). The prediction gain is particu-
larly impressive for the class of temporally predictable events
(motion trajectory is locally smooth within a spatiotemporal
neighborhood). The chief disadvantage of backward adaptive
LSP is the increased decoding complexity because decoder
also needs to perform LSP.

The rest of this paper is organized as follows. Section 2
revisits the role of motion in video coding and emphasizes
the difference between forward and backward adaptive mod-
eling. Section 3 deals with the basic formulation of LSP and
covers theoretical interpretation based on the 2D-3D duality.
Section 4 presents the backward adaptive update of LSP sup-
port and analyzes the spatiotemporal adaptation. Section 5
introduces temporal warping to compensate camera pan-
ning and forward adaptive selection of LSP parameters. In
Section 6, we use extensive experimental results to compare
the prediction efficiency of both LSP and BMA. We make
some final concluding remarks in Section 7.

2. ROLE OFMOTION REVISITED IN VIDEO CODING

2.1. Bless and curse ofmotion in video coding

Video source is more difficult to model than image source
due to the new dimension of time. In the continuous space,

temporal redundancy is primarily characterized by motion,
namely, intensity values along the motion trajectory remain
constant assuming invariant illumination conditions. How-
ever, there exists a fundamental conflict between the contin-
uous nature of motion and discrete sampling of video sig-
nals, which makes the exploitation of temporal redundancy
difficult. Even a small (subpixel) deviation of the estimated
MVs from their true values could give rise to significant pre-
diction errors for spatially-high-frequency components (e.g.,
edges or textures).

The task of exploiting motion-related temporal redun-
dancy is further complicated by the diversity of motionmod-
els in video. Even if for the class of video with rigid motion
only (translation, rotation, zoom), ME is twisted with mo-
tion segmentation problem [5] when the scene consists of
multiple objects at the varying depth. Despite the promise
of object-based (region-based) video coding [6], its success
remains uncertain due to the difficulty with motion seg-
mentation (one of the long-standing open problems in com-
puter vision). For the class of nonrigid motion, the benefit
of MC becomes even harder to justify. For example, the iso-
intensity assumption often does not hold due to the geomet-
ric deformation (e.g., flowing fluid) and photometric varia-
tion.

Those observations suggest that video coders wisely ex-
ploit motion-related temporal redundancy to resolve the in-
tensity uncertainty. Since motion field is both spatially and
temporally varying, video source is a nonstationary process.
However, when projected to a low-dimensional subspace
(e.g., within an arbitrarily small space-time cube), video is
locally stationary. Classification is an effective tool for han-
dling such nonstationary sources as image and video. The in-
terplay between classification and rate-distortion analysis has
been well understood for still images (e.g., wavelet-based im-
age coding [7–9]). However, motion classification has not at-
tracted sufficient attention from video coding community so
far. We will present a review of existing modeling approaches
from the adaptive classification point of view.

2.2. Adaptivemodeling of video source

Most existing hybrid MCP coders can be viewed as classify-
ing the video source in a forward adaptive fashion. A video
frame is decomposed into nonoverlapping blocks and each
block is assigned an optimal motion vector found by search-
ing within the reference frame.More sophisticated forward
adaptation involvesmultiple hypotheses [10] (e.g., long-term
memory MC [11], overlapped block MC [12]) and region-
based MC (e.g., segmentation-based [13]). The major con-
cern with forward adaptive approaches is that the overhead
might outweigh the advantages of MC. Such issue involves
both the estimation and representation of motion, which of-
ten makes it difficult to analyze the overall coding efficiency
of hybrid MCP coders.

By contrast, backward adaption is an attractive alterna-
tive in that we do not need to transmit any overhead—
decoder and encoder operate in a synchronous mode to pre-
dict the current frame based on its causal past. Backward
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Figure 2: An example of predictor based on 13 spatiotemporal causal neighbors (note that the ordering among them does not matter).

adaptation allows us to afford more flexible motion models
than block-based ones to resolve the intensity uncertainty.
Existing backward adaptive approaches [14, 15] exploit such
advantage by segmenting the motion field into regions in-
stead of blocks. Region-based segmentation is essentially
equivalent to the layered representation [16] that decom-
poses video into multiple motion layers. However, subpixel
MC remains difficult to be incorporated into the backward
framework because subpixel displacement along the motion
trajectory often does not exactly match the sampling lattice
of a new frame. Due to the importance of motion accuracy in
video coding [17], difficulty with subpixel MC appears to be
one of the major obstacles in the development of backward
adaptive video coders.

To fully exploit the flexibility offered by backward adap-
tation, we argue that explicit estimation of motion field is
neither necessary nor sufficient for exploiting the temporal
redundancy at least for the class of slow natural motion. In-
stead, we advocate an implicit approach of MC that does not
need to estimate MV at all. In our approach, motion infor-
mation is embedded into a new representation, namely pre-
diction coefficient vector field, which can be shown to achieve
implicit yet dense (pixel-wise) and accurate (subpixel) MC.
The basic idea behind our approach is that instead of search-
ing the optimal MC in forward adaptive scheme, we pro-
pose to locally learn the covariance characteristics within a
causal window and use it to guide the spatiotemporal predic-
tion.

3. LEAST-SQUARE PREDICTION: BASIC DERIVATION

As the starting point, we will study the simplified case—
video containing little motion. Though such class of video is
apparently limited, it is sufficient for our purpose of illustrat-
ing the basic procedure of LSP. We will first introduce some
notation to facilitate the derivation of the closed-form solu-
tion of LSP and then provide a theoretical explanation of how
LSP tunes the prediction support along the iso-intensity tra-
jectory in the spatiotemporal domain using the 2D-3D dual-
ity.

3.1. Least-square prediction

Suppose {X(k1, k2, k3)} is the given video sequence within
a shot (no scene change) where (k1, k2) ∈ [1,H] × [1,W]
are the spatial coordinates and k3 is the temporal axis. For
the simplicity of notation, we use vector �n0 = [k1, k2, k3] to
denote the position of a pixel in space-time and its causal
neighbors are labeled by �ni, i = 1, 2, . . . ,N . Figure 2 shows an
example including four nearest neighbors in space plus nine
closest in time [18] (note that their ordering does not mat-
ter because it does not affect the prediction result). Under
the little-motion assumption, we know the correspondent of
X(�n0) in the previous frame is likely to be located within the
3 × 3 window centered at (k1, k2). Therefore, we can formu-
late the prediction of X(�n0) from its spatiotemporal causal
neighbors by

̂X
(

�n0
) =

N
∑

i=1
aiX

(

�ni
)

, (1)

where N is the order of linear predictor (it is thirteen in the
example of Figure 2). In contrast to explicit ME, motion in-
formation is implicitly embedded in the prediction coeffi-
cient vector field �a = [a1, . . . , aN ]T . Note that (1) includes
both spatial and temporal causal neighbors, which allows the
adaptation between spatial and temporal predictions because
�a is seldom a delta function (we will illustrate such adapta-
tion in Section 4.2).

Under the assumption of Markov property with motion
field, the optimal prediction coefficients �a can be trained
from a local causal window in space-time. For example, we
might use a 3D cube C(T1,T2) = [−T1,T1] × [−T1,T1] ×
[−T2,−1] centered at �n0, which gives rise to the total of
M = (2T1 + 1)2T2 samples in the training window. Simi-
lar to the 2D case, we can write all training samples into an
M × 1 column vector �y. If we put the N causal neighbors for
each training sample into a 1 × N row vector, then all train-
ing samples generate a data matrix C with size of M × N .
The derivation of locally optimal prediction coefficients �a is
formulated into the following least-square problem [19]:

min
∥

∥�yM×1 − CM×N�aN×1
∥

∥

2
, (2)
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Figure 3: Duality between (a) edge contour in still images and (b)
motion trajectory in video.

and its closed-form solution is given by

�a = (CTC
)−1(

CT�y
)

. (3)

3.2. Theoretical analysis based on 2D-3D analysis

The suitability of using covariance estimation as an alterna-
tive toME can be best illustrated by the 2D-3D duality, which
is introduced next. The duality between 2D image and 3D
video can be understood by referring to Figure 3. If we in-
tentionally confuse spatial coordinates with temporal axis,
an image consisting of parallel rows (1D signals) is dual to
a video consisting of parallel frames (2D signals). Taking the
shoulder portion of lena image as an example, we can eas-
ily observe the following geometric constraint of edge [20]:
intensity field is constant along the edge orientation. There-
fore, conceptually the contour of an edge in 2D is equiva-
lent to the motion trajectory in 3D—they both characterize
the iso-intensity level set in the continuous space. Such du-
ality suggests that mathematical tools useful for exploiting
geometric constraint of edges lend themselves to exploiting
motion-related temporal redundancy as well.

Specifically, we note that in 2D predictive coding of image
signals [21], no estimation of edge orientation is required;
instead, the orientation information is learned from the co-
variance attributes estimated within a local causal window
and embedded into a linear predictor whose weights are ad-
justed on a pixel-by-pixel basis. The support of linear pre-
dictor is tuned to match the local geometry regardless of the
edge orientation. Using the duality, we might envision a 3D
predictive coding scheme without explicit estimation of mo-
tion trajectory. Similar to the 2D case, the motion informa-
tion can be learned from the causal past and embedded into
a linear predictor with adjustable weights.

To simplify our analysis of LSP, we opt to drop the ver-
tical coordinate k2 and consider a slice along the coordinate
of (k1, k3), as shown in Figure 4. Such strategy essentially re-
duces the analysis to 2D by only taking the horizontal motion
into account.1 In fact, the concept of spatiotemporal slice is
well known in the literature of motion analysis [22, 23] and
has found many successful applications from scene change
detection to shot classification. Here, we use spatiotemporal
slice as a tool for facilitating the analysis of LSP.

Figures 4(a) and 4(b) show the spatiotemporal slices for
two popular types of motion: camera panning and camera
zoom. The flow-like pattern in those slices corresponds to
the motion trajectory along which iso-intensity constraint is
satisfied. Intuitively, such pattern can be thought of as ge-
ometric constraint of “motion edges.” Statistical tools such
as LS are known to be suitable for tuning the predictor sup-
port to align with an arbitrarily-oriented edge. Therefore,
spatiotemporal LSP is also capable of predicting along the
motion trajectory as long as local training window contains
sufficient relevant data.

It is also enlightening to analyze LSP in the scenario of
aperture. Aperture is a problem with explicit motion esti-
mation (e.g., optical flow), which states that the motion in-
formation can only be reliably estimated along the normal
direction [24]. Such nonuniqueness of solutions calls for
regularization in ME (e.g., smoothness constraint in Horn-
Schunck method [25]). When local spatial gradients are not
sufficient to resolve the ambiguity of MVs along the tan-
gent direction, the rank of the covariance matrix (CTC) is
not full, which implies that multiple MMSE solutions exist.
However, since we do not need to distinguish them (i.e., mul-
tiple MMSE predictors work equally well on resolving the
intensity ambiguity of the current pixel), aperture does not
cause any difficulty to LSP.

As we consider more general motion such as camera
rotation or zoom, motion trajectory of an object becomes
more complicated curves in 3D (e.g., spirals, rays). How-
ever, locally within a small spatiotemporal cube, the flow
directions of motion trajectory is still approximately con-
stant. Therefore, LS-based adaptation is still able to tune the
predictor support to match the dominating direction within
the local training window. As the training window moves in
space and time, the dominating direction slowly evolves, so

1 Nevertheless, horizontal motion is often more dominant than vertical
motion in typical video sequences.
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Figure 4: Examples of spatiotemporal slices under camera panning, zooming, and jittering.

does the trained prediction coefficient vector. More impor-
tantly, subpixel spatial interpolation is implicit in our forma-
tion and therefore LSP automatically achieves subpixel accu-
racy with a spatially-varying interpolation kernel. Such capa-
bility of spatially adaptive subpixel interpolation attributes to
the excellent prediction accuracy in the cases of nontransla-
tional motion.

4. EXTENSIONOF LSP INTO SLOWAND
RIGIDMOTION

As motion becomes more observable, two issues need to
be addressed during the extension of LSP. The first is the
LSP support—instead of using a fixed temporal predictor
neighborhood in the LSP support as shown in Figure 2, we
need to adaptively select it from the motion characteris-
tic observed from the causal past. We will present a frame-
based scheme of updating temporal neighbors in LSP (spa-
tial neighbors are kept fixed because temporal coherence is
relatively more important than spatial one for video). The
second is the motion-related phenomenon such as occlusion,
which calls for the tradeoff between space and time. We will
demonstrate that LSP automatically achieves the adaptation
between spatial and temporal predictions.

4.1. Backward adaptive update of predictor support

The basic requirement is that the support of MV’s distribu-
tion should be covered by the support of LSP such that the
iso-intensity constraint along the motion trajectory can be
exploited. Note that adaptive selection of LSP support does
not require the segmentation of video, which is often inaccu-
rate and time-consuming. Instead, we target at extracting the
information only about the distribution of MVs from video
(i.e., what are the dominant motions?). Such reduction sig-
nificantly simplifies the problem and well matches the coding
applications where accurate segmentation is not necessary.

We propose to solve the problem of estimating the dis-
tribution of MV under a maximum-likelihood (ML) frame-
work. ML estimation of MV distribution is formulated as
follows. Given a pair of video frames, say X , Y , what is the
distribution of MV that maximizes the likelihood function,
that is, P(�v | X ,Y)? Note that such problem is different from
Bayesian estimation of MV [26]. Our target is not the MV
field �v = [v1, v2] but its distribution function because adap-
tive selection of predictor support only requires the knowl-
edge about dominant MVs.

Let us assume that the image domain Ω can be parti-
tioned into R nonoverlapping regions {Ωi}Ri=1 each of which
corresponds to an independent moving object with MV of
�vi = (vi1, v

i
2). So theoretically, the likelihood function of MV

can be written as

P(�v | X ,Y) =
R
∑

i=1
riδ
(

v1 − vi1, v2 − vi2
)

, (4)

where ri = |Ωi|/|Ω| is the percentage of the ith moving ob-
ject and δ(·) is the Dirac function. If we inspect the normal-
ized cross-correlation function cXY between X and Y defined
by [27]

cXY
(

v1, v2
) =

∑

k1,k2 X
(

k1, k2
)

Y
(

k1 − v1, k2 − v2
)

[∑

k1,k2 X
2
(

k1, k2
)∑

k1,k2 Y
2
(

k1, k2
)]1/2 ,

(5)

it will have peaks at (vi1, v
i
2) [28]. The amplitude of the peak at

(vi1, v
i
2) is proportional to ri and disturbed by some random

noise (correlation between nonmatched pixels). Since we are
only interested in the support of P(�v | X ,Y), cXY offers a
good approximation in practice.

When there are multiple (say K > 2) frames available, we
simply calculate theK−1 normalized cross-correlation func-
tions for each adjacent pair and then take their average as the
likelihood function. For small K values, motion across the
frames is coherent; averaging effectively suppresses the noise
interference and facilitates peak detection. Due to the com-
putational efficiency of FFT, we have found that such frame-
by-frame update of LSP support only requires a small frac-
tion of computation in the overall algorithm.

Figure 5 shows some examples of the final peak detec-
tion results (after thresholding the averaged cross-correlation
function) for different types of motion. The location of peaks
determines the support of temporal prediction neighbors
in (1). It can be observed that (1) in the case of slow ob-
ject motion (e.g., container), a small support is sufficient
to exploit temporal redundancy; (2) as motion gets faster
and more complex (e.g., mobile), a larger support is gen-
erated by the phase-correlation method. The support is of-
ten anisotropic—to capture the horizontal motion of camera
panning, the LSP support has to cover more pixels along the
horizontal direction than along the vertical one.

4.2. Spatiotemporal adaptation of LSP

One salient feature of LSP is that it achieves a good trade-
off between spatial and temporal predictions. For example,
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(e) zoom (f) jittering (g) panning (h) zoom

Figure 5: Top: starting frame of test video sequences (container, coastguard, flower-garden, andmobile); bottom: graphical representation of
LSP support at the starting frame (white dot indicates the origin, refer to Figure 2).

occlusions (covered/uncovered regions) represent a class of
events that widely exist in video with varying scene depth.
When occlusion occurs, covered (uncovered) pixels cannot
find the correspondence from previous (or future) frames.
Such phenomenon essentially reflects the fundamental trade-
off between spatial and temporal redundancies—for pixels in
occluded areas, temporal coherence is less reliable than spa-
tial one. However, as long as the local training window con-
tains the data of the same occlusion class, LS method can au-
tomatically shift the balance towards spatial prediction (i.e.,
assign more weights to the spatial neighbors than temporal
ones).

To illustrate the space-time adaptation behavior of LS
method, we use a typical test sequence garden. Two pix-
els locations are highlighted in Figure 6(a): A is in the oc-
cluded area where temporal prediction does not work and B
is located in nonoccluded areas. At point A, we have found
that LS training assigns dominant weights to spatial neigh-
bors, as shown in Figure 6(b); while at point B, it goes the
other way—the dominant prediction coefficient is located in
temporal neighborhood, as shown in Figure 6(c). Such con-
trast illustrates the adaptation of LS training to spatial and
temporal coherences. Figure 6(d) displays a binary image in
which we use white pixels to indicate where the largest LSP
coefficient is located in the temporal neighborhood. It can
be observed that spatial coherence dominates temporal co-
herence mostly around smooth or occluded areas.

5. EXTENSIONOF LSP INTO FAST AND
NONRIGIDMOTION

So far, we are constrained to the class of slow and rigid mo-
tion where a fixed training window in spatiotemporal do-
main is used. To handle video sequences with more generic

motion, we propose to extend LSP by adapting the training
window in the following two manners.

5.1. Camera panning compensation by adaptive
temporal warping

A significant source of fast motion in video is camera pan-
ning. A fast panning camera introduces global translational
motion to the video, which gives rise to irrelevant data in the
training window (refer to the red box in Figure 7(a)). Con-
sequently, the gain of LSP often diminishes due to the in-
consistency between training data and the targeted motion
trajectory. Note that such difficulty cannot be overcome by
increasing the temporal window size since the tunnel carved
by the object motion relative to the camera is in the slant po-
sition.

One convenient solution to compensate the camera pan-
ning is via temporal warping [29]. Under the assumption
that the camera panning is approximately along the horizon-
tal direction, the global translational motion can be compen-
sated by horizontally shifting the k3th frame by (k3−1)d pix-
els, where d is the camera panning speed (pixels per frame).
Figure 7 gives an example of shifting two frames k3 = 1, 2 in
the case of d = 1. Note that such temporal warping simply
relabels the indexes of each frame and does not involve any
modification of pixel values. Since warping is a deterministic
operation, it can be easily reversed at the decoder (assuming
the same d is used) and has no impact on the computational
cost.

The camera panning speed can be inferred from the
peaks in the phase-correlation domain. Unlike [29] that em-
ploys irreversible interpolation techniques to achieve sub-
pixel alignment, we only need to consider integer shifts here
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Figure 6: Illustration of space-time adaptation. (a) A and B represent two locations with and without occlusion; (b), (c) LSP coefficient
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Figure 7: Illustration of temporal warping for camera panning compensation: (a) before compensation; (b) after compensation. Note that
more relevant data are located inside the training window (red box) after the compensation.

because LSP itself implements subpixel accuracy interpola-
tion. As shown in Figure 7, the desirable impact of tempo-
ral warping is that the fixed spatiotemporal window contains
more relevant data suitable for LS training after the compen-
sation of camera panning. The gain brought by such camera
panning compensation will be justified later by experimental
results (refer to Figure 13).

5.2. Forward adaptation for temporally
unpredictable events

In addition to fast camera panning, change of camera pan-
ning/zooming speed or disturbance of camera positions also
has a subtle impact on the efficiency of LSP. Theoretically, we
can adaptively choose the training window C(T1,T2) for ev-
ery pixel to reach the optimal prediction efficiency. However,
since an optimal training window necessarily involves local
characteristics of motion trajectory (not just the distribution
of all MVs), it is difficult to achieve the adaptation without
explicit estimation or at least segmentation of the MV field.

One compromised solution is to update the training win-
dow on a frame-by-frame basis. For simplicity, we opt to fix
the spatial window size T1 = 3 and study the adaptive se-
lection of temporal window size T2 here. Such simplification
is based on the empirical observation that varying T2 often
has a more dramatic impact on the efficiency of LSP than
varying T1. Though the update of T2 can be done in a sim-
ilar backward fashion to LSP support, we suggest that for-
ward adaptation is more appropriate here because the over-
head is negligible (only one parameter per frame). To se-
lect the optimal T2 for each frame, we suggest the adop-
tion of recursive LS (RLS) [30] as an efficient implementa-
tion.

To illustrate the importance of adaptively selecting pa-
rameter T2, we compare two video sequences with similar
content (a talking person) but acquired in different envi-
ronments. The first video is acquired by a fixed camera and
the second is captured on a bumping moving vehicle (re-
fer to Figure 4(c)). Figure 8 shows the impact of varying T2
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Figure 8: Frame-by-frame MSE evolution as a function of T2 (circle, triangle, and cross correspond to T2 = 1, 3, 5, resp.): (a) akiyo
sequence—no jittering; (b) carphone sequence—with jittering.

(temporal window size) on the efficiency of LSP for two se-
quences. It can be observed that the optimal T2 is larger for
the second sequence in order to suppress the disturbance of
jittering on motion trajectory.

The more challenging situations involve fast and non-
rigid object motion that cannot be easily compensated or
predicted from the causal past. Note that such events dis-
tinguish from occlusions because they are temporally un-
predictable (the event of occlusion is at least temporally co-
herent and occluded pixels can still be predicted from ei-
ther the past or the future). Fundamentally speaking, such
temporally unpredictable events are innovations that do not
fit the backward adaptive framework. Therefore, we pro-
pose to handle them separately by forward adaption assum-
ing those events are spatially localized. To inform the de-
coder about the pixels that temporal prediction does not ap-
ply, we need to spend a small amount of overhead on cod-
ing their boundaries. Therefore, still background and mov-
ing objects can be decomposed into different layers [16]
and handled by backward LSP and forward MC, respec-
tively.

6. EXPERIMENTAL RESULTS

In this section, we use experimental results to demonstrate
the boundary of LSP—for a wide range of video material,
LSP is highly effective; in the meantime, we have also found
that LSP is inappropriate for certain type of material such as
sports video. The MATLAB codes of our implementation are
available at http://www.csee.wvu.edu/∼xinl/code/LSP.zip.

6.1. Experimental setup

In our implementation of LSP, two issues need to be ad-
dressed. First issue is how to select the threshold in deter-
mining the LSP support. Due to the variation of phase-
correlation function from sequence to sequence, no univer-
sal threshold exists. Instead, we suggest an adaptive threshold
th = max(th1, th2), where th1 = cmax/20 (cmax is the max-
imum of cXY ) and th2 is the magnitude of the 12th highest
peak in cXY . Second issue is how to handle the degenerated
case of LS estimation (i.e., CTC is not full-ranked). Such sit-
uation often occurs in smooth and still background which
does not require sophisticated LS optimization; instead, we
assign the default equal weights to all coefficients in the pre-
diction support.

Since BMA has been adopted by most existing video cod-
ing standards, we use it as the benchmark to show the po-
tential of LSP in video coding. In our implementation of
BMA, we choose the parameter setting at the QCIF reso-
lution: full-search, 4 × 4 block size, search range [−7, 7],
quarter-pel accuracy. It should be noted that such setting
is similar to the one adopted by H.264 and in favor of
prediction accuracy (larger block-size only renders higher
residue energy). The overhead of 1584 quarter-pel MVs per
frame is often a significant portion especially at low bit
rates. Since image borders cause problems to both BMA
(e.g., unrestricted MVmode in H.263) and LSP (not enough
training samples), we only calculate the MSE for prediction
residues ten pixels away from the border. The experimental
results are reported for the first 30 frames of all video se-
quences.

http://www.csee.wvu.edu/~xinl/code/LSP.zip
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Figure 9: Frame-by-frameMSE comparison between BMA (“◦”) and LSP (“+”) for sequences with slow translational motion: (a) container;
(b) forest.

6.2. Slowmotion

In order to more clearly demonstrate the performance of
LSP, we structure the comparison between LSP and BMA
into the following three categories with different motion
characteristics: (1) slow and translational (e.g., forest and
container); (2) slow camera zoom (e.g., mobile and tempete);
(3) slow nonrigid motion (e.g., coastguard and news). We
believe these three categories of video sequences reasonably
cover a wide range of motion in the real world.

Figure 9 shows the frame-to-frame MSE comparison be-
tween LSP and BMA for category-1 sequences. When cam-
era is fixed and object moves smoothly (container), we ob-
serve that the MSE values of both BMA and LSP are small;
however, LSP achieves even smaller MSE on the average than
BMA (about 3.8 dB reduction). When camera slowly moves
(forest), uneven camera motion gives rise to peaks in MSE
profile of LSP (e.g., frames no. 14, 16, 19 in forest). However,
the average MSE values between LSP and BMA are still com-
parable (8.93 versus 8.81); note that the overall coding gain
of LSP is still higher than BMA since it does not require any
overhead.

The advantage of LSP over BMA becomes even more
obvious as slow camera zoom is involved. Figure 10 shows
the MSE comparison results for two category-2 sequences.2

Since block-based model becomes less accurate for zoom-
related motion, forwardMC suffers from large errors around
block boundaries. Especially for the mobile sequence con-
taining abundant textures, LSP achieves 1.87 dB gain over

2 Since their QCIF versions contain severe aliasing, we use the top-left quar-
ter of CIF sequences in this experiment.

quarter-pel BMA (its average MSE is even smaller than that
of 1/8-pel BMA) without any overhead. For tempete se-
quence, we note that the largeMSE value of frame 27 is due to
the rapidly falling feather—a temporally unpredictable event
(refer to Figure 11(d)). Therefore, readers need to use extra
caution while evaluating the MSE comparison results for this
sequence.

Figure 12 compares the MSE results between BMA and
LSP for category-3 sequences. When video material con-
tains nonrigid motion such as flowing river or moving body,
we observe that forward MC and backward LSP achieve
comparable MSE performance though the origins for large
errors differ. In forward MC, large MCP errors attribute
to the block-based approximation of motion model and
the relaxation of iso-intensity constraint due to loss of
motion rigidity; in backward LSP, large errors arise from
sudden change of motion characteristics. It is interesting
to note that for the news sequence, backward and for-
ward approaches have complimentary behavior (e.g., val-
leys in BMA correspond to peaks in LSP). Such observa-
tion indicates an improved strategy—switch to forward MC
when LSP becomes ineffective (e.g., use the invalid param-
eter T2 = 0 to indicate the failure of temporal predic-
tion).

6.3. Fastmotion

For the category of video material with fast camera panning,
we demonstrate how temporal warping improves the predic-
tion efficiency. To simplify the comparison, we take the por-
tion (sized 144 × 176) of SIF/CIF sequences that does not
experience occlusion (it is located on the side opposite to
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Figure 10: Frame-by-frame MSE comparison between BMA (“◦”) and LSP (“+”) for sequences with slow zoom motion: (a) mobile; (b)
tempete.

(a) (b) (c) (d)

Figure 11: Residue image comparison between BMA and LSP for the 4th frame ofmobile (a,b) and the 27th frame of tempete (c,d): (a) BMA
(MSE = 48.0); (b) LSP (MSE = 26.9); (c) BMA (MSE = 48.7); (d) LSP (MSE = 88.6).

the camera panning direction). Figure 13 compares the MSE
profiles before and after the compensation with different hy-
pothesized camera panning speeds. As the panning speed d
increases, temporal warping gradually straightens the mo-
tion trajectory, which renders more relevant data being in-
cluded to the training window. Thus we observe that theMSE
produced by LSP with a fixed spatiotemporal windowmono-
tonically decreases with the increasing d.

The last category represents the most challenging situ-
ation for LSP, that is, video containing fast nonrigid mo-
tion. Such type of video is abundant with temporally unpre-
dictable and spatially localized events, which are not suitable
for LSP. Even in forward MC, it often requires the range of
motion vectors to be large enough (therefore increased over-
head is required). Figure 14 shows the comparison between
BMA and LSP for two test sequences foreman and football.
In both sequences, camera is approximately fixed but objects

(human head and body) move rapidly and involve deforma-
tion. The poor performance of LSP indicates that it has to be
combined with forward adaptation as suggested at the end of
Section 5.2.

6.4. Computational complexity

The computational bottleneck of LSP is the calculation of
covariance matrix CTC in (3)—it requires O(N2M) arith-
metic operations if implemented straightforwardly [31]. In
a typical parameter setting (T1 = 3,T2 = 2,N = 13),
brute force implementation amounts to around 17K arith-
metic operations per pixel. Such prohibitive computational
cost is the major disadvantage of LSP (note that encoder
and decoder have symmetric complexity since it is back-
ward adaptive). In the literature, there exists fast implemen-
tation of calculating covariances by exploiting the overlap of
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Figure 12: Frame-by-frame MSE comparison between BMA (“◦”) and LSP (“+”) for sequences with slow zoom motion: (a) coastguard;
(b) news.
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Figure 13: Temporal warping improves the prediction efficiency for video with camera panning: (a) flower-garden and (b) bus.

training window between adjacent pixels. For example, the
so-called “inclusion-and-exclusion” technique [32] can ef-
fectively reduce the complexity to about 1 K arithmetic op-
erations per pixel. We expect that with fast implementation
and more powerful computing resource available, the run-
ning time of LSP can be further reduced.

7. CONCLUSIONS AND FUTUREWORKS

In this paper, we challenge the existing paradigm of hy-
brid MCP coding for video signals by presenting an alter-
native LS-based backward adaptive predictive coding frame-
work. Motivated by the duality between edge contours in
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Figure 14: Frame-by-frame MSE comparison between BMA (solid) and LSP (dashed) for sequences with fast nonrigid object motion:
(a) slightly-fast foreman; (b) ultra-fast football.

image and motion trajectories in video, we propose to
estimate the instantaneous covariance attributes within
a causal spatiotemporal window and use them to de-
rive a linear MMSE predictor. In contrast to explicit ME
techniques, ours can be viewed as a localized learning-
based approach that implicitly exploits the temporal re-
dundancy. We use experiment results to demonstrate the
potential of the proposed backward approach—without
sending any overhead, LSP is able to achieve comparable
and often smaller MSE values than small block-size, full-
search, quarter-pel BMA for a wide range of QCIF test se-
quences.

There are three directions along which we plan to explore
in the future. First, we need to combine backward and for-
ward approaches to more effectively handle the class of video
containing fast nonrigid motion. One possible attack is to
backwardly segment video to obtain layered representations
[16] and adaptively process each layer. Second, we need to
design quantization and entropy coding suitable for LSP
and study scalability issues under this new framework. Due
to backward adaptation, quantization errors could degrade
the performance of LSP especially at low bit rates. Third, in
order to alleviate the burden of computational demand by
LSP on the decoder side, we need to pursue an improved
tradeoff between the performance and the cost.
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