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Abstract The kinematical nature of the spectral shift in different types of spacetime,
cosmological redshift and frequency shift in Schwarzschild spacetime being the most
prominent representatives, has been a subject of recent interest. We demonstrate that
the kinematical nature of the spectral shift is an inherent feature of the particular type
of spacetimes. The general solution is found: necessary and sufficient conditions for
the spectral shift arising from a kinematical origin are formulated. The status of the
relative speed is discussed.

Keywords Generalized Doppler effect · Relative and recession speeds ·
Schwarzschild spacetime · Friedmann–Lemaître–Robertson–Walker spacetime

1 Introduction

Communication by means of the exchange of electromagnetic signals is accompanied
by a frequency shift. This is a combined effect involving, in the general case, entan-
gled contributions of kinematical and gravitational origins. Recently, various aspects
of this problem have been discussed, displaying decoupling and in consequence, fac-
torization or partial factorization into gravitational and kinematical (time-dilation-like
and classical Doppler shift) contributions [1–3] in the case of Schwarzschild space-
time. Nevertheless, as shown long ago by Synge [4], the ratio of the frequencies, the
generalized Doppler shift, measured by observer O and sent from source S may be
expressed as
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ωO

ωS
= 1(√

1 − v2
SO

)−1

+ vR

(1)

where dimensionless notation here and in the rest of this paper, taking c = 1, is used.
In Eq. (1) two distinct speeds—the relative speed between the source and the observer
vSO and the so-called recession speed vR (see below)—have been introduced.

Recently, the nature of the cosmological redshift has been the subject of controversy
[5–7]. Narlikar [5] and then Bunne and Hogg [6] showed that cosmological redshift
depends solely on relative speed; hence it is a purely kinematical effect. Chodorowski
[7] argued that this is a more complex effect, involving also a gravitational contribution.
In both these views the relative speed, vSO , is defined in terms of the scalar product
of O’s velocity and parallel transported the velocity of S to O. The difference between
the claims of the authors in [5,6] and [7] appears to be due to the different paths for
the parallel transport: S′ velocity is shifted along a null geodesic in the former case,
and is shifted on the hypersurface of constant time in the latter case. Two particular
issues in this discussion are interesting. Firstly, it was shown in [5] that the frequency
shift for particular class of observers in Schwarzschild spacetime, takes the same
form as cosmological redshift in Friedmann–Lemaître–Robertson–Walker (FLRW)
spacetime. Secondly, the speed characterizing this ratio is applied in Ref. [7] to discuss
cosmological speeds; the author infers that the speeds in the expanding universe are
limited by the value of the speed of light (see however [8]).

The main issue of this paper is to establish how general this effect is, namely that the
spectral shift has a kinematic origin. We will discuss this question, providing what we
hope will be a definitive answer. The other side of this problem concerns the meaning
of the relative speed itself. Although there is no invariant definition of such a quantity,
one can find a suitable background for the discussion of the status of “relative speed”.
In this way one could validate the statements in [7] associated with the meaning of
speeds in the expanding universe.

The paper is organized as follows. In the following section we will show that the
kinematical origin of the spectral shift in Schwarzschild and in FLRW spacetimes is a
special case of a more general situation. The general character of this result will be the
subject of Sect. 3. In Sect. 4 the status of the relative speed will be considered within a
Schwarzschild spacetime. A final discussion and conclusions will be given in the last
section.

2 Kinematical origin of spectral shift: Schwarzschild spacetime
and FLRW geometry

In the general case of a source S and an observer O the ratio of the frequencies of
received and emitted electromagnetic signal may be expressed as a ratio of scalar
products:

ωr
O

ωe
S

= Uα
OkOα

Uα
S kSα

(2)
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where U denotes the 4-velocity vector, UαUα = 1, and k denotes a wave vector
(tangential to a null geodesic) kαkα = 0, indices r(e) stand for receiving(emitting).
The frequency shift (2) may be given in terms of two speeds, as shown in Eq. (1). It
was pointed out recently [5–7] that in specific cases further simplification occurs and
Eq. (2) is a function of a single parameter, namely relative speed:

ωr
O

ωe
S

=
√

1 ∓ vSO

1 ± vSO
. (3)

This is referred to as the kinematical origin of a spectral shift. It was shown [5,6],
that Eq. (3) with the upper label applies for co-moving observers in FLRW spacetime
resulting in the cosmological redshift. In the case of Schwarzschild geometry [5], for
resting S and O, Eq. (3) was found to reproduce the well-known gravitational red- or
blueshift. However different these two spacetimes are, the result (3) turns out to be a
common property and, as shown below, it holds for a wider class of observers. Having
this in mind, we will discuss a more general case.

Let us consider the case of S and O exchanging signals in the t − r , time-radial
(direction) region of a spacetime with a metric tensor block diagonal, t − r sector
orthogonal to the θ, φ one. We shall assume in the t − r region

ds2 = gtt dt2 + grr dr2 (4)

a special property of this spacetime, namely that the metric tensor is diagonal in this
range. One can express the spectral shift (2) in terms of the velocity vector US and wave
vector kS parallel transported from S to O, denoted as US/O and kS/O . Two obvious
relations hold. First of them is the conserved scalar product US/OkS/O = USkS .
Second, when they are parallel transported along a null geodesic, then kS/O = kS .
They lead then to the spectral shift (2) given as:

ωO

ωS
= U t

O + λUr
O

U t
S/O + λUr

S/O
(5)

where λ = ±
√∣∣∣∣ grr

gtt

∣∣∣∣. Indeed, k is a null vector, so

(
kr

O

kt
O

)2

= −grr

gtt
≡ λ2. (6)

On the one hand, relative speed is defined as:

Uα
S/OUOα ≡ 1√

1 − v2
SO

(7)

and on the other hand, UO and US/O obey, in this case, the relation:
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Uα
S/OUOα = gtt

(
U t

OU t
S/O − λ2Ur

OUr
S/O

)
. (8)

Utilizing Eqs. (5) and (8) one obtains:

Uα
S/OUOα = 1

2

(
ωO

ωS
+ ωS

ωO

)
. (9)

Applying definition (7) one reproduces the formula (3). Therefore, the spectral shift
may be given in terms of the relative speed vSO . It turns out to be a general property of
co-radial observers in the case of a spacetime with a block-diagonal metric tensor and
diagonal t −r sector. Schwarzschild’s spacetime and FLRW spacetime with the metric
tensor diagonal are important members of this type of spacetime. One can apply the
above considerations to illustrate how observers other than co-moving (FLRW) and
resting (Schwarzschild) might be taken into account.

Starting from Schwarzschild spacetime, we will explicitly re-derive the frequency
shift for arbitrary radial motion of source and observer as being of kinematic nature.

2.1 Schwarzschild spacetime

The line element expressed in Schwarzschild coordinates takes the form:

ds2 =
(

1 − rS

r

)
dt2 −

(
1 − rS

r

)−1
dr2 − r2dθ2 − r2 sin2 θdφ2

≡ gtt dt2 + grr dr2 + gθθdθ2 + gφφdφ2 (10)

A radial light ray, following a null geodesic, is characterized by a tangential wave
vector with (conserved) time component, kt (see [9]) and radial component, kr

given by

kt = ω∞, kr = ±ω∞
gtt

, (11)

where ω∞ is the frequency parameter (measured by a distant inertial observer); ±
corresponds to “in-” and “outgoing” signal respectively. Such a signal goes radially
from S to O. In the case of S and O, both at rest, Uα = 1√

gtt
δα

t , and the frequency
shift,

ωO

ωS
=

√
gtt (S)

gtt (O)
(12)

follows straightforwardly from Eqs. (2), (11). In the case of S being arranged in a
stronger gravitational field, rS < rO , redshift is observed, gtt (S) < gtt (O), and one
takes the upper label, “−” in formula (3); in the opposite case, gravitational blueshift
takes place corresponding to the lower label, “+” in (3). In the more general case of
arbitrary radial motion of S and O, frequency red- or blueshift would be described by
Eq. (3) with the upper or lower label, respectively.

123



On the nature of cosmological redshift and spectral shift 709

2.2 FLRW spacetime

In this case the line element is:

ds2 = dt2 − a2(t)

[
dr2

1 − kr2 + r2dθ2 + r2 sin2 θdφ2
]

(13)

A radial null geodesic is characterized by wave vector

kt = A

a(t)
kr = ± A√

1 − kr2
. (14)

The frequency shift (2) as measured by two co-moving cosmic observers S and O,
with Uα = δα

t , becomes an (almost) trivial calculation (see however [5]!),

ωO

ωS
= a(tS)

a(tO)
. (15)

This is the cosmological redshift and it is expressed by Eq. (3), with an obvious choice
of an upper label. In the more general case of an arbitrary radial motion of source and
observer, the frequency might in principle be red- or blueshifted, with upper or lower
label in Eq. (3), respectively.

3 The basis of the kinematical origin of spectral shift

The spectral shift is given by Eq. (3) for a class of observers and for the spacetimes
of different properties, satisfying the block-diagonal condition for the metric tensor.
But this is not the most general solution for the question of the kinematical origin of
the spectral shift. The solution is the following.

Let us consider the arrangement of the three vectors: UO , kO and US/O . Vectors
UO and kO constitute the plane, which will be denoted as ΠO . If US/O belongs to
that plane, then the frequency shift is expressed in terms of the relative speed and the
effect may be referred to as being of kinematical origin. If US/O does not belong to
this plane the frequency shift cannot be expressed in terms of the relative speed (only).

To prove this a unit spatial vector, VO , belonging to the plane ΠO , orthogonal to
UO ,

V 2
O = −1, VO · UO = 0 (16)

is introduced. One can choose its direction in such a way that kO · VO = kO · UO . If
US/O also belongs to ΠO , then it is decomposed as follows:

US/O = αUO + βVO (17)
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where the two components satisfy α2 − β2 = 1. In this case, the scalar product of
US/O and wave vector,

US/O · kO = αUO · kO + βVO · kO = (α + β)UOkO (18)

leads to the already known formula, (9)

α = US/O · UO = 1

2

(
ωO

ωS
+ ωS

ωO

)
. (19)

This result reproduces Eq. (3). So if the parallel transported velocity vector is co-planar
with the velocity vector and wave vector at the destination point O then the frequency
shift is expressed in terms of the relative speed. Let us also note that in this case β is
Synge’s “recession speed”, Eq. (1), vR = β. The rest of the proof is obvious and we
will skip it.

In this context one can make a more general comment about the kinematical origin
of the frequency shift in particular cases. The spacetimes identified in the previous
section, with FLRW and Schwarzschild spacetimes as the important representatives,
satisfy the condition of co-planar arrangement of UO , kO and US/O in the case of
arbitrary co-radial motion of S and O.

The case of Kerr spacetime is interesting due to its axial symmetry and the nondi-
agonal character of its metric tensor,

ds2 = gtt dt2 + 2gφt dφdt + grr dr2 + gθθdθ2 + gφφdφ2

=
(

1 − 2Mr

ρ2

)
dt2 + 4Mra sin2 θ

ρ2 dφdt − ρ2

�
dr2

−ρ2dθ2 −
[
(r2 + a2) sin2 θ + 2Mra2 sin2 θ

ρ2

]
dφ2, (20)

where ρ2 = r2 + a2 cos2 θ , � = r2 + a2 − 2Mr .
The condition US/O ∈ ΠO is satisfied in a more or less obvious case. It is the case of

a signal travelling along the symmetry axis, θ = 0. On this axis the metric trivializes to
the radial Schwarzschild-like metric. For arbitrary S and O motion along the symmetry
axis the condition of co-planar arrangement of the three vectors mentioned above is
satisfied: one reproduces the kinematic origin of the frequency shift.

The non-trivial case is the situation of exchange of signals between static observers
in the equatorial plane (above the ergo-sphere). In this case, due to an (energy) con-
servation law, one finds the frequency shift:

ωO

ωS
=

√
gtt (S)

gtt (O)
(21)

preserving the same form as in Schwarzschild spacetime. Co-radial arrangement of S
and O in Schwarzschild spacetime would result, as already argued, in the kinematical
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On the nature of cosmological redshift and spectral shift 711

origin interpretation. This is not the case in Kerr spacetime where O and S, Eq. (21),
are not even co-radial. Hence, the frequency shift is not of a kinematic origin in this
case even for resting S and O. However, at location O one can find an observer O′
whose relative speed with respect to S, v2

SO ′ = v2
SO and for whom the frequency shift

is of kinematical origin (3). This is done determining US/O , kO plane and spatial unit
vector VS/O , belonging to that plane and orthogonal to US/O ,

V 2
S/O = −1 , VS/O · US/O = 0.

Then one can find such an observer O′ (with velocity UO ′ ), whose speed relative
to S would be vS/O :

US/O · UO ′ = US/O · UO ≡ 1√
1 − v2

SO

. (22)

Indeed, UO ′ is the following (unit) vector

UO ′ = μUS/O + νVS/O (23)

where, μ = UO · US/O , ν = √
μ2 − 1 and consequently the relative speeds of O′ and

O versus S are the same and the frequency shift

ωO ′

ωS
=

√
1 ± vSO

1 ∓ vSO
(24)

is of kinematical origin. This is a general procedure and might be applied for arbitrary
observers in Kerr spacetime and also in other spacetimes. One of its consequences
is the fact that the spectral shift for such an O′, Eq. (24), is the largest possible, i.e.
ωO′
ωS

≥ ωO
ωS

≥ 1 or ωO′
ωS

≤ ωO
ωS

≤ 1.

4 The status of the relative speed (in Schwarzschild spacetime)

Relative speed is given in terms of velocity parallel transported along null geodesics.
Chodorowski [7] suggested that in FLRW spacetime parallel transport should be taken
on the hypersurface of the constant cosmic time with the resulting speed, referred to
as “recession speed”. This quantity was then utilized in cosmology leading to the final
conclusion that speeds in the expanding universe could not be superluminal. Relative
speed or recession speed is not an invariant quantity, as depending on the path of the
parallel transport so any ultimate statement concerning the status of each of them as
a meaningful tool describing a kinematical component of the spectral shift can hardly
be made. Indeed, there is concern regarding its physical sense (e.g. see [10]). We will
apply the relative speed in the case of Schwarzschild spacetime where there are no
doubts concerning the kinematical component of spectral shift and local speed is a
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well defined quantity. In these circumstances the status of the relative speed will be
discussed.

We shall consider two co-radial observers in Schwarzschild spacetime, in this sec-
tion denoted as A and B. The relation between frequency ωA and A’s speed vA as
measured by a local resting observer R, is [3]:

ωA = ω∞
1 ∓ vA

√
gA

√
1 − v2

A

(25)

where ∓ labels the parallel/antiparallel directions of vA and the light ray. In this way
kinematical and gravitational components factorize [3]. The relative speed may be
determined via frequency shift, by means of the scalar product (7).

Using these tools relative speed may be related to directly measurable quantities in
some specific cases:

(a) Static observers, A(rA), and B(rB)

Local speeds vanish, vB = vA = 0 and the nature of the frequency shift is purely
gravitational, (blue- or redshift)

ωr
B

ωe
A

≡ f (A → B) =
√

gA√
gB

= f −1(B → A) ≡
(

ωr
A

ωe
B

)−1

. (26)

Relative speed B versus A does not vanish and is given in terms of the strength of
the gravitational field

v2
B/A =

(
gA − gB

gA + gB

)2

≡ v2
A/B . (27)

This is a special case when values of relative speeds, vB/A and vA/B are equal.
(b) Static B(rB) and A infalling from the starting point rB

In this case vB = 0, vA �= 0; simple calculation shows (see [3]) that the frequency
shift turns out to be purely kinematical (the classical Doppler effect), see also [11]

ωr
A

ωe
A

≡ f (B → A) = 1

1 + vA
.

Relative speed v2
B/A is expressed via vA

v2
B/A =

(
1 − (1 + vA)2

1 + (1 + vA)2

)2

. (28)

There is no symmetry between signals B to A and A to B: vA → −vA.
Two outcomes are worth emphasizing. The relative speed does not vanish even in
the case of both A and B, being at the rest (27). Its value may come close to the
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On the nature of cosmological redshift and spectral shift 713

value of the speed of light when the location of one of the observers approaches
the event horizon. A well-known feature of the Schwarzschild spacetime [11] is
that when A approaches the event horizon, its speed tends to the speed of light,
vA → 1. Then,

v2
B/A →

(
3

5

)2

, and v2
A/B → 1 . (29)

Observer A, penetrating the range beneath the event horizon, would still receive
signals emitted above the horizon and the definition of relative speed of source and
observer may still be utilized. Below the horizon, applying Kruskal coordinates
[12], one can extend formula (28), finding:

v2
B/A =1−4

[
1+xA

1+(1+xA)2

]2
{r→rS−→ ( 3

5

)2

r→0−→ 1
where xA =

√
2M
rA

− 2M
rB√

1− 2M
rB

>
r<2M

1.

The relative speed vB/A → 1, for resting B and for A reaching the singularity.

5 Discussion and concluding remarks

In general the spectral shift may be expressed in terms of two parameters, the relative
speed and another one, a quantity, referred to by Synge as a recession speed. Both
of them are defined via the scalar product of velocity vector of an “observer” O
and parallel transported “source” S′ velocity. Recent interests were associated with
the particular case of a spectral shift being represented solely by relative speed. In
this situation, found in particular cases, the cosmological redshift being the most
prominent representative, the spectral shift was referred to as of kinematical origin.
We have studied here the nature of this property, namely, the spectral shift (or a
generalized Doppler effect) being of kinematical origin i.e. being expressed in terms
of the relative speed. It was shown that if at O’s location, three vectors, UO , kO

and US/O are co-planar then the frequency shift is a function of relative speed and
takes the form (3). It was found that co-radial observers in spacetimes with block-
diagonal metric (diagonal in t − r range) satisfy this condition. The metric tensors in
Schwarzschild and Schwarzschild-like spacetimes in Hor̂ava–Lifshitz gravity (see also
[13]) and FLRW spacetime are diagonal, so in these cases the spectral shift may reveal
a kinematic origin. This conclusion does not apply to Kerr spacetime though there are
some specific groups of observers recording a kinematic character of the frequency
shift. As discussed very recently [14], the Doppler shift derived both in terms of light
rays and beyond this approximation, does not appear to reveal either a kinematical
origin, or is expressed in terms of local speed(s). However, even in this case, one would
be able to reconstruct the arrangement of observers reproducing a frequency shift as
being of kinematic origin. The construction proposed in this context turns out to be
applicable in an arbitrary case.
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We have thrown light on the interpretation and status of relative speed, discussing
the case of Schwarzschild spacetime. It is well-known that the frequency shift for
two resting observers is a purely gravitational effect and that for a freely falling
observer receiving signals from its “mother station” it is a purely kinematic effect.
When expressed in terms of relative speed, the frequency shift takes the form (3),
apparently leading to the conclusion about its kinematical character in both cases. In
the case of resting observers, relative speed turned out to be a non-vanishing quantity.
It was found to tend to a peculiar limit 3/5, where the local speed approached 1.

On the basis of this discussion one can hardly regard relative speed as a characteristic
of the kinematic component of the spectral shift. Can one apply a similar tool for
interpreting speeds in an expanding universe? Chodorowski [7] argued that in FLRW
cosmology a proper way of discussing the kinematic component of the cosmological
redshift was “recession speed”. Not disregarding this tool we would like to underline
one of the main issues formulated in Ref. [7]: “definition (in Ref. [6]) and ours imply
the same very important conclusion: recession velocities (…) are subluminal”. Let us
emphasize then, that both “recession speed” as well as relative speed are by definition
subluminal. As shown above, yet in Schwarzschild spacetime relative speed, in the
extreme case of an observer approaching the black hole’s ultimate singularity, whose
speed appears to tend to infinity [in a sense of an above-event-horizon frequency shift
1/(1 + vA) approaching zero (see also [13,15])], tends to 1.

The final conclusion is the following. A kinematical description (i.e. a description
in terms of relative speed) of the spectral shift is artificial once one goes beyond a
narrow class of solutions and observers (namely co-radial observers in spacetimes
with a block-diagonal metric, which are also diagonal in the t − r range).
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