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The well-known assumption of horizontal plane wave propagation is investigated and evidence suggests that elevation plays
a crucial role in defining the spatial correlation between signals on adjacent antenna array elements. To augment previously
published studies, an explicit relationship between the distribution of scatterers in three-dimensional (3D) space and the spatial
correlation is formulated. A novel approach is taken for modeling of the distribution of scatterers in space. More specifically,
the distribution of scatterers is modeled by the 3D von Mises-Fisher (vMF) distribution. In addition, a closed-form expression
is derived for the harmonic coefficients of the vMF density. The main derivation expresses the spherical harmonic coefficients
associated with an arbitrary mean direction on the sphere. Further, a closed-form expression for the spatial correlation function
(SCF) is derived, based on the spherical harmonic expansion (SHE) of plane waves as well as the harmonic coefficients of the
expanded vMF density. A novel approach is proposed for including the effect of directional antenna responses in the SCF. Finally,
the SCF is evaluated under the existence of multiple scatterer clusters in the channel.

1. Introduction

Multielement antenna systems have been the centre of
wireless communication research over the past decade due to
the significant increase in capacity that they offer. Operators
worldwide strive for capacity and coverage increase as the
number of subscribers grows and demanding multimedia
services are implemented. Complicated, expensive, and time-
consuming optimization techniques that aim to improve
the system performance, for example, drive test analy-
sis; antenna and/or power optimization should ideally be
avoided. Multielement antenna systems have been proven to
increase capacity and decrease interference through spatial
multiplexing and/or beamforming. Significant efforts are
continuously made to analyse and simulate such systems
with a high degree of accuracy although the nature of the
assumptions often being made is sometimes doubtful. For
instance, some studies in the literature assume that the
signals received at adjacent antenna elements are uncorre-
lated. This may be considered an oversimplification of the

challenges encountered in a wireless propagation channel.
Further, occassionally elevation is ignored, and the effect
of spatial correlation on the systems performance can be
misleading, especially in urban clutter types. Our conjecture
that elevation can have a significant effect on the correlation
function has motivated this work. Various spatial correlation
models have been proposed, where elevation is ignored
and the distribution of scatterers or equivalently the angle
of arrival (AoA) of paths at the mobile station (MS) (or
even base station (BS)) is modeled as a two-dimensional
(2D) uniform, Gaussian, von Mises, or Laplacian [1–5]
distribution. A drawback associated with distributions that
are defined on the line (e.g., Gaussian) is that the summary
statistics are calculated in such a way that the directionality
of the variables is not taken into consideration.

The need to investigate the spatial correlation between
signals on adjacent antenna elements is well known in the
research community. In [6], closed-form expressions for the
spatial correlation function (SCF) of antenna arrays in a
three-dimensional (3D) multipath environment are derived.
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However, in [6] the distribution of the angle of arrival of
multipaths is assumed to be uniform over a given range of
angles, and the azimuth is independently distributed from
elevation. In [7], a thorough review of different 2D spatial
correlation models is provided. By including the spatial
information, the authors derive a closed-form expression
for the ergodic capacity. In [8], the authors provide a
capacity analysis of a dense multielement antenna system
having obtained the spatial correlation values between the
antenna elements. In addition, the idea of 3D propagation
has also been considered in a number of other research
works [9–11]. Toeltsch et al. provided a statistical analysis
of 3D wideband measurement data after the application of
a multipath parameter extraction algorithm, namely Unitary
ESPRIT. The multipath components estimated were then
clustered in the angular and delay domains, allowing a
detailed statistical analysis of the propagation properties.
In [10], the authors derived a cross-polarized multielement
antenna channel model that takes into consideration the
azimuth as well as the elevation domains. In [11], a spherical
outdoor to indoor power spectrum model is developed for
the MS, where the necessity of including the third dimension,
that is, elevation becomes evident.

In this paper, the spatial correlation model derived
in [12] is reviewed under a three-dimensional scattering
distribution function, namely the von Mises-Fisher (vMF)
distribution. It is shown that the correlation is not insensitive
to elevation and that it is dependent on three key parameters,
that is, angular spread (concentration of scatterers within a
cluster), mean AoA in azimuth and elevation, and position
of the elements. The results of this paper suggest that
the correlation decreases significantly as elevation increases
while this is dependent on the three parameters stated previ-
ously. To better understand this effect, the vMF distribution
is expanded into spherical harmonics, and the harmonic
coefficients are obtained in a closed-form expression. This
closed-form expression is later used in the formulation of the
spatial correlation function (SCF).

The arguments for proposing the vMF model are out-
lined in [13, 14], where it is shown that this distribution
possesses excellent characteristics in describing the AoA of
paths at the MS. In [14], a mixture of distributions is used
in order to describe the scattering distribution function. This
is in agreement with the natural phenomenon reported in
[15, 16], that the channel clusters the incoming paths. For the
same reasons, in this paper, the concept of mixture modeling
is adopted for the characterization of the spatial correlation
function. Consequently, the spatial correlation is scaled by
the probability that each cluster contributes to the channel.
The estimated priors of the vMF mixture model may define
the magnitude of this relationship in terms of an assumed
or otherwise estimated power value emanating from each
scatterer cluster. The estimation of the parameters of the
vMF mixture model is achieved using a soft-Expectation
Maximization (soft-EM) algorithm [13]. The organization of
this paper is as follows. In Section 2, the basics on spherical
harmonics are provided, and a closed-form expression for
the harmonic coefficients of the vMF density is further
derived. In Section 3, a closed-form expression for the spatial

correlation based on the unimodal vMF assumption is
provided. In Section 3, the spatial correlation function is
evaluated for various scenarios (of a constrained spherical
array topology), where it is shown that elevation plays
a major role in defining correlation. Later in Section 4,
one element is elevated with respect to the other, and the
correlation is re-examined. In this section, a detailed analysis
on the effect of directional array responses on the SCF is
provided. In Section 5, the SCF is extended so to capture the
effect of multiple clusters of scatterers in the channel. Finally,
the conclusions are presented in Section 6.

2. Spherical Phase Modes and the vMFDensity

The vMF is a generic 3D model for directional data
distributed unimodally on the sphere. It can therefore be
considered as a suitable candidate for applications where
the variables are angular in nature [17]. These variables are
signified by ϑ and ϕ denoting the angles of the random
vector Ω widely used in the forthcoming analysis. The
distribution is closely related, and it is in fact analogous to
the multivariate Gaussian distribution. If the distribution
is defined on the normal sphere S2, its density function
is significantly simplified. More specifically, the density
function takes the following form:

fp
(
ϑ,ϕ | ϑo,ϕo, κ

)

= κ

4π sinh(κ)
eκ[sin ϑo sin ϑ cos(ϕ−ϕo)+cos ϑo cos ϑ] sin ϑ.

(1)

This equation is known as the general form of the vMF
distribution [17] and is dependent on the modal direction
µ (known as the axis of symmetry) and the dispersion
parameter κ. Note that µ is defined in terms of (ϑo,ϕo). The
interested reader is referred to [14] for further mathematical
details of the distribution and graphical illustrations for
its interpretation within a scattering context. The spherical
phase modes of the vMF are analyzed in the sequel.

2.1. Spherical Phase Modes. The spherical phase modes
or spherical harmonics are the angular portion of an
orthonormal set of solutions (on the surface of the sphere)
to Laplaces equation. The spherical harmonics are defined as
follows [18, 19]:

Ym
n

(
ϑ,ϕ

) =
√

(2n + 1)(n−m)!
4π(n + m)!

Pm
n (cos ϑ)eimϕ, (2)

where ϑ and ϕ are the elevation and azimuthal angles
in the spherical co-ordinate system, n is the degree of
the spherical harmonic, and m is the order. Pm

n are the
associated Legendre functions. The orthonormality principle
of spherical harmonics may be stated as [18]

∫∫

S2
Ym1
n1

(
ϑ,ϕ

)
Ym2†
n2

(
ϑ,ϕ

)
dS = δn1,n2δm1,m2 , (3)

where δn1,n2 , δm1,m2 denote the Kronecker delta defined by
δn,m = 1,n = m, δn,m = 0,n /=m. Knowing that the spherical
harmonics form a complete orthonormal basis over S2 allows
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the expansion of any square-integrable function (i.e., vMF)
as a linear combination of these

f
(
ϑ,ϕ

) =
∞∑

n=0

n∑

m=−n
fn,mY

m
n

(
ϑ,ϕ

)
. (4)

The spherical harmonic coefficients fn,m can be obtained (in
a closed-form expression) using the spherical Fourier trans-
form, otherwise the use of numerical integration techniques
might be necessary. The spherical harmonic coefficients can
be found by

fn,m =
∫∫

S2
f
(
ϑ,ϕ

)
Ym†
n

(
ϑ,ϕ

)
dS, (5)

where † denotes complex conjugation and dS = sin ϑdϑdϕ is
the element of the solid angle. Note that since we introduce
dS inside the double integral, there is no need to include the
sin ϑ term of the vMF distribution in (1). It is important to
distinguish between the pdf of (1) and the volumetric pdf
[20]. In the next sections, the volumetric pdf is used, that is
ignoring the last sin ϑ term in (1).

2.2. Closed-Form Expression for the Harmonic Coefficients of
the vMF Density. It is known that a function, f (γ) = eκ cos γ,
can be expanded as follows [21]:

f
(
γ
) = eκ cos γ =

∞∑

n=0

2n + 1
(
π

2κ

)1/2

In+1/2(κ)Pn
(
cos γ

)
. (6)

By (6), it follows that (1) can be expressed as

f
(
ϑ,ϕ | ϑo,ϕo, κ

) =
∞∑

n=0

2n + 1
4π

(
πκ

2

)1/2 In+1/2(κ)
sinh(κ)

Pn
(
cos γ

)
,

(7)

where cos γ = sin ϑo sin ϑ cos(ϕ − ϕo) + cos ϑo cos ϑ is the
displacement vector between the mean direction vector and
a vector pointing in a scatterer’s direction. Making use of (5)
and the Addition Theorem for spherical harmonics in (A.2),
the coefficients can be written in a closed-form expression as
follows:

fn,m =
∞∑

n=0

n∑

m=−n

In+1/2(κ)
I1/2(κ)

Ym†
n

(
µ
)
. (8)

The derivation of (8) for an arbitrary direction on the sphere
is detailed in Appendix A.1. In Appendix A.2, it is shown that
by conditioning the mean elevation angle, ϑo = 0◦ (North
Pole), a different spherical harmonic coefficient formulae
is obtained. The latter being a special case of the main
derivation.

3. Wavefield Decomposition and Spatial
Correlation Using Constrained Spherical
Antenna Arrays

Prior to proceeding into the relationship between the
spherical harmonic expansion (SHE) of plane waves and the

proposed vMF correlation function, it is vital to explain how
the characteristics of the antenna array are integrated into
this model. In the initial setup, each antenna comprising
the array is assumed to be an isotropic radiator (three
dimensions). In two dimensions, this corresponds to a
circular aperture being equally sensitive in all azimuthal
directions, thus revealing an omnidirectional pattern. Whilst
recognizing that this assumption hinders the realistic per-
formance of a multielement antenna system, it enables
us to study the broader picture of the spatial correlation
effect on the system’s performance (e.g., capacity). Includ-
ing realistic antenna patterns greatly complicates further
analysis, making analytical solutions very difficult if not
impossible. This simplification has helped us to decompose
the rather complicated problem posed by the inclusion of
mathematically untractable antenna patterns.

We proceed in the following directions. In Section 3.1, a
definition of spatial correlation is provided. The vMF SCF
is derived in Section 3.2. The rest of the parts comprising
this section are organised as follows. We begin with analyzing
the effect of an elevated cluster of scatterers in a constrained
spherical antenna topology (e.g., two elements are placed
in the median plane θ = 90◦) in Section 3.3. Our primary
interest is to later compare the spatial correlation estimation
of a 3D incoming wavefield (i.e., vMF distributed) to a
2D and 3D element arrangements. Finally, it is shown in
Section 3.4 that under the condition of isotropy the vMF SCF
reduces to the sinc function.

3.1. Spatial Correlation of Narrowband Sources. In [12], an
expression is derived that characterizes the SCF for an
arbitrary distribution of scatterers on the sphere. It was
shown that if the harmonic coefficients of the scattering
distribution function are obtained, a closed-form expression
for the spatial correlation can be derived. Note that it is
important to obtain those coefficients in an analytical form
which is often a difficult task. In case the coefficients are not
obtainable in a compact closed-form, then other numerical
integration techniques need to be identified, that is, Monte
Carlo integration. In [12], the authors conclude that the
correlation is relatively insensitive to restriction in elevation
having assumed a field uniform in azimuth. One of the
arguments of this paper is concerned with the scattering
distribution function to be used during this analysis. It is
reasonable that the correlation will be relatively insensitive
to elevation if the azimuth is uniformly distributed. In order
to identify the effect of elevation on the correlation function,
more realistic distribution functions need to be used. In the
sequel, it will be shown that using the vMF distribution we
can see exactly how the correlation scales as the elevation
changes. We observed that correlation decreases as elevation
increases and that the spatial correlation is dependent on
elevation.

First consider the signals s1 and s2 impinging on an
array with elements m1 and m2. Each element pattern is
assumed to be isotropic, and therefore each signal is assumed
to be received by an isotropic sensor. Under these conditions
the normalized spatial correlation between the complex
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envelopes of the two received signals is defined as in [12] and
may be expressed as

ρ(m2 −m1) =
∫∫

S2
P
(
ŷ
)
eik(m2−m1)·ŷdŷ, (9)

where k = ω/c is the wave number and ŷ is a unit vector
in the direction of wave propagation. Note that P(ŷ) is the
distribution function of scatterers on the unit sphere. Since
P(ŷ) is defined on S2, the scattering environment can be
specified given the spherical harmonic coefficients in (4), so
that P(ŷ) = f (ϑ,ϕ). In the following section, we attempt to
integrate the spatial correlation definition presented above
with the wavefield decomposition using a spherical antenna
array.

3.2. Spherical Harmonic Expansion of Plane Waves and the
Proposed vMF SCF. From the Jacobi-Anger expansion in
(10) and the Addition Theorem of spherical harmonics in
(A.2), the spherical harmonic expansion of plane waves can
be written as in (11) [22]

eikm·ŷ =
∞∑

n=0

in(2n + 1) jn(k‖m‖)Pn
(
cos γ

)
, m ∈ R3,

(10)

where jn denotes the spherical Bessel function of order n

eikm·ŷ = 4π
∞∑

n=0

m∑

n=−m
in jn(k‖m‖)Ym

n (m̂)Ym†
n

(
ŷ
)
. (11)

This equation expresses the expansion of plane waves
into spherical co-ordinates and shows that the spherical
harmonics only exhibit a spatial dependence related to the
directions of the distribution of scatterers (i.e., (ϑ,ϕ)). This
result is due to a spherical aperture that employs a unity
weighting function, and therefore is equally sensitive in all
directions (isotropic). Confining the elements in the 2D
plane results in the expansion of a plane wave on a circular
aperture of omnidirectional elements. Combining (9) and
(11) results in [22]

ρ(m2 −m1) = 4π
∞∑

n=0

in jn(k‖m2 −m1‖)

×
n∑

m=−n
fn,mY

m
n

(
m2 −m1

‖m2 −m1‖
)
.

(12)

In (12), fn,m is obtained from (8) to finally produce the
closed-form expression for the vMF spatial fading correla-
tion function

ρ(m2 −m1) = 4π
∞∑

n=0

in jn(k‖m2 −m1‖)
In+1/2(κ)
I1/2(κ)

×
n∑

m=−n
Ym†
n

(
µ
)
Ym
n

(
m2 −m1

‖m2 −m1‖
)
.

(13)

The vMF correlation function proposed in (13) is expressed
as a sum of terms, where each term either characterizes

the scattering environment or the antenna locations. As a
result, the effects of arbitrary antenna configurations and the
complex scattering environment on the SCF can easily be
investigated [7]. The correlation function in (13) has been
evaluated for element position m1 = 45◦ and m2 = 90◦.
In this array architecture, the elements are positioned in the
median plane. Consequently, the limiting case of a spherical
array reveals a circular topology of elements. A circular
aperture cannot discriminate 3D incoming signals with the
same level of accuracy as a spherical aperture. This becomes
apparent by realizing that the elevation of the incoming
source is considered only within the argument of the nth
order Bessel function. The azimuthal dependence, however,
is expressed in the exponential term. Thus, circular harmon-
ics can be rotated in azimuth but not in elevation. Also if
the directions of sources are not significantly attenuated in
elevation, then a circular topology cannot unambiguously
resolve the angles of arrival of the impinging signals.
Herein, a comparison is performed between the spatial
correlation estimates of the two array topologies under the
assumption of a 3D incoming wavefield. The choice of
angular position of elements was selected at random. Note
that the angular position of elements in (13) produces a
new two-dimensional (2D) vector given by mres ≡ m2 −
m1 = 157.5(π/180). Note that the vector mresultant depicted
in Figure 4 will be abbreviated as mres for convenience. In
spatial correlation terms, the quantity m1 −m2 should give
the same value although this time its corresponding resultant
vector mres = 337.5(π/180). Subsequently, the correlation
function is dependent on the angular position of elements.
The assumptions above can be generalized to any antenna
array topology, that is, linear or rectangular, which is a
distinctive feature of the proposed spatial channel model. To
carry out the multiple simulation scenarios presented in the
following section, the number of terms (N) in the sum of
(13) was set equal to thirteen (N = 23). The decision on
the appropriate number of terms to be used in the sum of
(13) was based on the extensive analysis provided in [23].
The authors showed that the multipath field can be safely
truncated by (N + 1)2 terms, where N = �πer/λ�, �·� is
the ceiling operator, e ≈ 2.7183, and r indicates the region
of space to which the field is coupled or equivalently the
radius of the circular or spherical region in consideration.
This region of space is where multiple antenna elements
may be located. In the analysis provided in this section,
we consider that all elements lie in a circular ring with a
maximum interelement spacing of ‖m2 −m1‖/λ = 2. Note
that ‖m2−m1‖/λ denotes the interelement spacing distance,
where ‖m2 − m1‖ = R, and this should not be confused
with the radius r of the circular array. With the use of simple
trigonometrical identities, it can be shown that if ‖m2 −
m1‖/λ = 2 and the angle between the two elements is 45◦, the
radius r 
 2.6. As a result, the maximum number of terms
required is N = 23. However, due to the restriction in the
multipath field, as defined by the concentration parameter κ,
the total number of terms required may be further reduced
in accordance with N = �ωer/λ�, where ω defines the spread
of the distribution [23].
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3.3. Evaluation of the Closed-Form SCF. The aim of this
section is threefold: firstly, to identify the effect of elevation
on the vMF SCF proposed in (13) (Section 3.3.1); secondly,
to examine the effect of the azimuth of arrival of propagating
waves on the SCF (Section 3.3.2); finally, to investigate the
influence of the concentration parameter κ on the vMF
correlation function (Section 3.3.3).

3.3.1. SCF for Varying Mean Elevation of Arrival. To generate
the coefficients fn,m, the concentration parameter κ and the
MAoA of the cluster must be specified a priori (or estimated
[13, 14]). To proceed, the initial κ value was set to twenty
(κ = 20) (Please note that in the proposed unimodal
vMF model the distance between the scatterer cluster and
the antenna array is not explicitly considered. If the MS
is moving towards this cluster of scatterers, its associated
κ value as seen at the MS will decrease. Consequently, a
decreasing concentration parameter κ can capture this effect.
By setting κ to a large value, that is, κ = 20, scenarios
where the scatterers are located in the far field of the
multielement antenna system can be modeled. A decreasing κ
value can therefore model the contribution of local scattering
to the spatial correlation experienced between the receiving
antennas. For this reason, a smaller value of κ is later
introduced in this section, and its effect on the correlation
function is investigated.) with a varying MAoA ϑo,ϕo =
(varying ϑo, constant ϕo = 337.5◦). The choice of the
mean azimuth angle ϕo can be explained by geometry since
ϕo = 337.5◦ lies in the fourth quadrant opposite to mres =
157.5◦. Figure 1(a) illustrates the evaluated vMF correlation
function in (13) for various elevation values ϑo, within
0◦–90◦ degrees and κ = 20.

Because of symmetry, there is no need to evaluate (13)
for ϑo greater than 90◦. It is evident that the correlation
decreases as elevation increases (as measured from 90◦)
and vice versa. Further, consider that a cluster is located
at mean azimuth ϕo = 30◦ with concentration parameter
κ = 20. The evaluation of (13) for this mean azimuth
angle results in Figure 1(b). Note again that as elevation
increases (from ϑo = 90◦ → 0◦) correlation decreases,
although the difference between the lowest and maximum
elevation points (ϑo = 90◦ and ϑo = 0◦, resp.) is now
smaller. The correlation experienced between elements m1

and m2 at a mean azimuth cluster angle ϕo = 157.5◦

is identical to the one presented in Figure 1(a) (due to
symmetry). The underlying reason is illustrated by geometry
in Figure 4. In Figure 1(c), the scaling of correlation with
elevation at ϕo = 300◦ is further provided. The spatial
correlation difference between minimum and maximum
ϑo’s has now been increased, since the vector ϕo = 300◦

is closer to the resultant mres = 337.5◦ than the vector
ϕo = 30◦ is to mres. Intuitively, this can be explained
by the fact that the angular difference between the first
pair of vectors is only 37.5◦ compared to the second pair
whose angular difference equals 52.5◦. The wider angular
range implies lower correlation values since as the distance
between any given pair of vectors increases as their associated

correlation decreases. Additionally, an interpretation of the
observable decrease in the SCF during the ascent of the
scatterer cluster to the north region of the sphere is that as
the spatial cluster is elevated, a larger deviation is projected
in the azimuthal plane. Consequently, maximum deviation
is realized when the mean direction vector aligns with the
vector directed along the z-axis. In view of this, we speculate
that the decrease in spatial correlation due to the spatial
cluster’s disposition from the azimuthal plane is justified.
The assumption of elements being positioned strictly on the
azimuthal plane needs to be retained.

3.3.2. SCF for Varying Mean Azimuth of Arrival. The problem
is now reversed in order to examine how the spatial
correlation scales while the mean azimuthal angle ϕo is
varied, and the mean elevation angle ϑo is kept constant at
90◦. Figure 2 illustrates this for ϕo = 0◦–180◦. Because of
symmetry, we do not need to evaluate for ϕo = 180◦–360◦. It
is apparent that maximum correlation is obtained at ϕo =
160◦ (Figure 2) for this range of angles. Note, however,
that maximum correlation for a varying ϕo is theoretically
obtained at ϕo = 337.5◦ and/or ϕo = 157.5◦. This is
because the two vectors coincide with the corresponding
mres vectors, producing a 0 angle, the cosine of which is 1
(hence maximum spatial correlation). The spatial correlation
slightly exceeds ρ(m2 − m1) = 0.7 at ϕo = 337.5◦ and
ϕo = 157.5◦.

3.3.3. SCF for Different Angular Spread. To extend the results
presented above, the concentration parameter κ is now
varied in order to investigate its effect on the SCF. As
expected, decreasing the value of κ decreases the spatial
correlation experienced between adjacent antenna elements.
In Figure 3, the estimated spatial correlation values for κ =
10, κ = 5, and κ = 1, respectively, are shown. The results
can be compared with the correlation values depicted in
Figure 1(a), where the concentration parameter κ = 20. A
decrease in the spatial correlation is evident.

The correlation function is clearly not insensitive to
elevation. This was also confirmed in [24], where the authors
made use of the more complex Fisher-Bingham 5-parameter
model. The Fisher-Bingham 5-parameter (FB5) model does
not have a well-known series expansion, andas a result,
its spherical harmonic coefficients cannot be obtained in a
closed-form expression. Although the FB5 model is more
generic, its complexity is a limiting factor. In [25], Shafi et al.
also showed that ignoring elevation can significantly under-
estimate capacity. This can be thought of as a direct conse-
quence of the fact that at higher elevation angles correlation
decreases, and therefore capacity increases. Interestingly, the
only angles at which the elevation effect vanishes are at ϕo =
67.5◦ and ϕo = 247.5◦, respectively (see Figure 1(d)). The
reason behind this observation is that at ϕo = 67.5◦ and
ϕo = 247.5◦, the cosine of the angle between the mres and
both of the vectors is 0. The vectors are at right angles to each
other. Figure 4 provides a geometrical explanation for this
effect. The spatial correlation is minimum at both locations
even for different elevation angles. Therefore, according to
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(c) Spatial correlation for a constant mean azimuth ϕo = 300◦
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Figure 1: Spatial correlation between 2 elements located at 45◦ and 90◦, respectively. Elevation is varied from ϑo = 0◦ to 90◦. This assessment
also includes multiple mean azimuthal angles for a given value of the concentration parameter κ = 20.

this study, the correlation becomes insensitive to elevation
when

(i) the concentration parameter κ = 0, in which case
the distribution of scatterers over the sphere becomes
completely isotropic;

(ii) the mean azimuthal angle of a cluster is on the plane
orthogonal to mres.

The above results are directly comparable to the results
obtained in [12]. Here, we will not present the results of
the uniform (although limited) azimuth/elevation scattering
distribution function presented in [12]. It was shown that
if the scatterer distribution is uniform in azimuth, the

correlation becomes insensitive to restriction in elevation.
As an addition to the significant work of [12], in this work,
we show exactly how elevation affects correlation if a more
realistic distribution of scatterers (i.e., vMF) is to be used. In
[13, 14], it was shown that the vMF provides a very accurate
fit for the AoA of multipaths at the MS and hence the
distribution of scatterers in space. This result has therefore
motivated the investigation of spatial correlation in antenna
arrays under the 3D vMF model. In Section 3.4, it is shown
that the proposed vMF model can also reduce to the well-
known sinc function when one of its parameters, namely κ,
is set to zero. This implies that the scatterers are isotropically
distributed on the surface of the sphere.
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Figure 2: Spatial correlation between 2 elements located at 45◦ and
90◦, respectively. Azimuth is varied from ϕo = 0◦ to 180◦ for a
constant mean elevation ϑo = 90◦ and κ = 20.

3.4. Isotropic Distribution of Scatterers. If the distribution
of scatterers is isotropic on the sphere, then the plane
waves will be incident on the elements from all directions.
Isotropic distribution implies that κ = 0, and therefore
only the order n = 0 is required for the calculation of
the spherical harmonic coefficients. Consequently, the vMF
density reduces to f (ϑ,ϕ) = sin ϑ/4π(Appendix A.2) and (5)
becomes f0,0 =

√
1/4πP0(cos ϑ) = 1/

√
4π. Upon substitution

of f0,0 and Y 0
0 in (12), the vMF SCF function reduces to

the classic result obtained in [26]. Note that the spherical
harmonic of degree n = 0 is given by Y 0

0 = 1/2
√
π. The

same result was obtained in [12] under a uniform (limited)
azimuth-elevation distribution on the sphere.

4. Wavefield Decomposition and
Spatial Correlation Using Directional
Antenna Responses

In the previous section, the so-called constrained spherical
array topology was examined under the condition of omni-
directional antenna responses. In this section, focus is mainly
shifted towards antenna responses that are directional in
nature, and the effect of an elevated element on SCF is only
briefly discussed. To achieve this, we introduce a weighting
function G(ϑ,ϕ, ϑo,ϕo) in order to include the effect of a
realistic antenna pattern while computing the spatial corre-
lation. This function describes the degree of sensitivity of the
antenna pattern towards some specific direction of interest.
Unfortunately, its introduction hinders the emergence of an
analytical solution as it will soon become evident. Therefore,
here, a numerical solution is sought due to the complexity
of the problem. This complexity escalates by adding other
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Figure 3: This figure illustrates the effect of the concentration
parameter κ on the spatial correlation experienced between 2
elements located at 45◦ and 90◦, respectively. Elevation is varied
from ϑo = 0◦ to 90◦ for a constant mean azimuth ϕo = 337.5◦ and
κ = 10, 5, 1.

impacting factors of antenna pattern properties, that is,
mutual coupling and antenna mounting platform effects.
The effect of the antenna mounting platform on the spatial
correlation function will be investigated in future work.

4.1. Spatial Correlation with an Elevated Element. A change
in both element’s positions with respect to elevation was
initially performed. Note that the rest of the parameters
related to the vMF distribution were left unchanged. There-
fore, an element was positioned at m1 = (45◦, 45◦) and
a second element positioned at m2 = (45◦, 90◦), where
the first angle in each element denotes its elevation θ and
the second its azimuthal φ position. Therein, the azimuthal
position of both elements examined earlier is unaffected,
while they are both shifted by 45◦ towards the North Pole.
In this case, the mean resultant vector’s (mres) angles are
θ,φ = 90◦, 157.5◦, and consequently the SCF behaves
identically. Note that this applies for all cases in which
the two elements are shifted equally in the elevation plane.
However, if one element’s position is elevated with respect
to its adjacent element position, then the resultant vector’s
orientation angles significantly change causing a change in
the spatial correlation as well. For instance, consider that
the position of m1 = (90◦, 45◦), while m2 = (45◦, 90◦).
The resultant vector is now at mres(θ,φ) = 45◦, 180◦.
The evaluation of the vMF SCF for this mres reveals the
dependency of the SCF on the resultant vector. Maximum
correlation is attained when a spatial cluster is located around
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ϑ,ϕ = 45◦, 180◦. Interestingly, the mean direction vector
that produces minimum correlation is at the mean elevation
angles ϑo1, ϑo2 = 90◦, 0◦. A similar interpretation may be
given as the one provided earlier for the constrained spherical
topology. the key point in here is that as the cluster mean
direction vector approaches the resultant vector, correlation
increases.

4.2. Spatial Correlation with Directional Antenna Patterns.
Directional antenna patterns are commonly used in practice,
and therefore the extension of this work to capture their
influence on spatial correlation is noteworthy. Base stations
usually employ directional patterns as opposed to mobile
terminals that should not in most cases favor any direction.
The influence of antenna directivity on the performance of
multipath channels is multidimensional. From a propagation
viewpoint, the antenna directivity not only affects the power
received at a terminal, but it also has a significant impact on
the angle spread of the channel. It is an important realization
that a directive antenna has the potential to change our per-
ception on the physical distribution of scatterers. Of course,
this is dependent on the antenna effective aperture, which is
in turn related to the gain of the antenna. Also, nonisotropic
antenna patterns yield weighted AoA components, and as
a result, they alter the power angular spectrum received
at the MS/BS. At this moment, the weighting function
G(ϑ,ϕ, ϑo,ϕo) is introduced, which essentially describes the
sensitivity of an infinitesimal point located on the array at
ϑ,ϕ. Note that the weighting function is also associated with
the look-direction ϑo,ϕo of the antenna pattern. This means
that the pattern may be rotated at any azimuth-elevation
pair of angles. Following the approach presented in [27], the
weighting function may be expressed as

G
(
γ
) =

∞∑

l=0

gl

√
2l + 1

4π
Pl cos

(
γ
)
, (14)

where γ was defined earlier in (7). Applying the Addition
Theorem for spherical harmonics (A.2) to (14) transforms
the above equation to

G
(
ϑ,ϕ, ϑo,ϕo

) =
∞∑

l=0

l∑

q=−l
gl

√
4π

2l + 1
Y

q†
l

(
ϑ,ϕ

)
Y

q
l

(
ϑo,ϕo

)
.

(15)

The application of this weighting factor to the inverse
spherical harmonics transform of a plane wave (5) results
in an expression for the harmonic coefficients (decomposed
wavefield) due to a directional antenna being present. This
expression can be written as

fn,m =
∫∫

S2
G
(
ϑ,ϕ, ϑo,ϕo

)
eikm·ŷYm†

n

(
ϑ,ϕ

)
dS. (16)

After substitution of the weighting function in (15) and the
equation corresponding to the plane wave expansion in (11)
to (16), it can be seen that the spherical harmonic coefficients
cannot be obtained in an analytical form since the integral
contains the product of three spherical harmonics. Conse-
quently, the equation that defines the expansion of plane

waves in spherical co-ordinates under a directional antenna
cannot be derived in a closed-form solution. In this respect,
(17) can only be evaluated numerically, and may be rewritten
as follows:

ρ(m2 −m1) =
∫∫

S2
P
(
ŷ
)
G
(
ŷ, µ̂
)
eik(m2−m1)·ŷdŷ, (17)

where G(ŷ, µ̂) = G(ϑ,ϕ, ϑo,ϕo). This rearrangement has a
meaningful interpretation since the product P(ŷ) × G(ŷ, µ̂)
defines the overall scattering response through the multi-
plication of the azimuth-elevation scattering response P(ŷ)
with the complex antenna pattern G(ŷ, µ̂). To exemplify this,
let us consider the case where the elements exhibit dipole-
like characteristics. Under this assumption, the weighting
function in (15) may be rewritten as

G
(
ϑ,ϕ, ϑo,ϕo

)

= cos γ = sin ϑ sin ϑo cos
(
ϕ− ϕo

)
+ cos ϑ cos ϑo,

(18)

whose associated expansion coefficients are given by

gl =

⎧
⎪⎪⎨

⎪⎪⎩

√
4π
3

, l = 1,

0, else.

(19)

However, this is of little significance at the moment since the
SCF will be evaluated numerically. Note that this is a first-
order dipole response whose elevation beamwidth is 90◦.
Increasing the order of the array reduces the corresponding
beamwidth. Second- and third-order dipole responses have
elevation beamwidths of 65◦ and 54◦, respectively, which
can be met in practical scenarios. The elevation beamwidth
of dipoles varies depending on the application. Typically,
antenna designs with high-directivity index have reduced
elevation beamwidths. Of course, elevation beamwidths of
azimuthally omnidirectional dipole patterns can be as small
as 7◦, but this should not compromise the generality of
the approach followed in here. Other practical designs
include the second- and third-order dipole, cardioid, and
hypercardioid directional responses. In general, a Jth order
array response may be expressed as [28]

G
(
γ
) =

J∏

j=1

ε j +
(

1− ε j
)

cos γ. (20)

This is the canonic form of the antenna response, and it actu-
ally factors (21) into its first-order terms. The normalised
directional array response may be rewritten in the following
form as a function of γ:

G
(
γ
) = α0 + α1 cos γ + α2 cos2γ + · · · + αjcos jγ. (21)

Solving (20) results in expressions for the εs in terms of
the αs. For a third-order array, for example, (20) and (21)
become

G
(
γ
) = [ε1 + (1− ε1) cos γ

][
ε2 + (1− ε2) cos γ

]

× [ε3 + (1− ε3) cos γ
]
,

(22)

G
(
γ
) = α0 + α1 cos γ + α2cos2γ + α3cos3γ, (23)
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Table 1: Parameters of the VMF mixture density. Note that ele-
vation is varied, while the azimuths and concentration parameters
have a fixed value.

ID ϑo ϕo κ priors

1 30–90 337.5 20 0.333

2 30–90 300 20 0.333

3 30–90 157.5 20 0.333

Table 2: Various directional array responses.

Type 1st order 2nd order 3rd order

Dipole cos γ cos2γ cos3γ

Cardioid (1 + cos γ)/2 (1 + cos γ)2/4 (1 + cos γ)3/8

Hypercadioid (1 + 3 cos γ)/4 (1 + 3 cos γ)2/16 (1 + 3 cos γ)3/64

respectively. In Table 2, some of these patterns are listed and
subsequently plotted in Figure 5.

In Figure 6, the correlation estimates of (17) are dis-
played for various interelement spacings and concentration
parameters. The look direction for all antenna responses is
set at ϑo, ϕo = 90◦, 157.5◦, and therefore the cluster mean
direction vector coincides with the look direction of each
antenna. This configuration produces the highest correlation
estimates. It becomes clear that the isotropic element pattern
assumption serves as a lower bound to the spatial correlation
function. Also, as the concentration parameter increases,
the weighted (including antenna effect) SCF approaches the
unweighted SCF. For low concentration parameter values,
that is, κ = 5, the dipole response produces the highest spatial
correlation estimates due to possessing the highest directivity
index in comparison to the other responses. The choice of
antenna response clearly depends on different factors, for
example, front-to-back ratio, beamwidth, and directivity,
and therefore an antenna response is application specific. The
approach followed is generic enough to allow any antenna
response to be included in the model. In the next section,
we mathematically describe the scenario of multiple scatterer
clusters and its inclusion on the spatial correlation function.

5. Mixtures of vMFDistributions in
a Spatial Correlation Context

During the last decade, directional channel measurements
have been extensively used in various measurement cam-
paigns worldwide. This is due to the fact that directional
channel measurements can reveal the clustered nature of
the propagation channel. Important findings related to these
measurements have been reported in [9, 15, 29–32], all of
which establish that channels with multiple scatterer clusters
often occur in nature. In [29], the authors identify the
existence of far scatterer clusters using measurements from
a campaign in Frankfurt, Germany. In [30], Kuchar et al. not
only mention the existence of far scatterer clusters that result
in increased delay dispersion but also report that 65% of the

incoming signal energy is incident with an elevation larger
than 10◦. The latter experiment was carried out in Paris,
France. The work in [31, 32] also confirmed the existence
of multiple scatterer clusters. Standardized models, such
as the one developed by the third-generation partnership
project (3GPP), namely the spatial channel model (SCM),
also accounts for multiple scatterer clusters. It is therefore
important to include the multiple scatterer cluster effect in
future channel models and to also recognize that far scatterer
clusters are an important propagation scenario in urban
environments.

The definition of a cluster is subject to different analysis
constraints. Usually the clusterization of multipath compo-
nents takes place in spatial, power, and temporal domains.
This paper aims at understanding of fading effects by exploit-
ing the spatial domain. In [13, 14], clustering is performed
in the spatial domain. It was shown that the vMF mixture
model provides a good fit to the angular estimates of the
multidimensional parameter extraction algorithm, namely
RiMAX [33]. The model-based approach followed uses the
soft-EM for mixtures of vMF distributions. Mathematically,
each distribution in the mixture of Q VMFs can be described
as f (Ω | κq,µq) = f (Ω | vq) with parameter vq = (κq,µq).
The overall density of the mixture model comprising of Q
vMF distributions can be described as

f
(
Ω | κ1,µ1,Ω | κ2,µ2, . . . ,Ω | κQ,µQ

)

=
Q∑

q=1

χq fq
(
Ω | κq,µq

)
=

Q∑

q=1

χq fq
(
Ω | vq

)
,

(24)

where the parameter vector V = {χ1, . . . , χQ; v1, . . . , vQ}, and
χQ defines the prior probability that vector Ω was generated
by the qth component. After taking into consideration (24),
the SCF in (13) can be modified accordingly, where the priors
∑Q

q=1 χq = 1. The resultant equation is the multimodal vMF
SCF function, the mathematical details of which are omitted
in here. A similar approach was followed in [34], where the
authors considered a mixture of 2D von Mises distributions.
To understand the implications of the multimodal density on
the SCF, let us assume that in a radio propagation channel
exist 3 clusters with different MAoAs, and concentration
parameters κ. In Table 1, the parameters are shown. We have
assumed equal contribution from each cluster. However, the
results can be generalized to any set of parameters, any
number of clusters, and any contribution from each cluster.
To sample a point from the mixture density in (24), the
qth vMF was randomly chosen with probability χq and
subsequently sample a point from fq(Ω | vq) [35]. The
evaluation of the multimodal SCF for this set of parameters
produces Figure 7. It is evident that maximum correlation
is obtained at ϑo = 90◦. To further explore the concept of
mixture modeling, we consider that the 2nd cluster has a
higher assigned prior (χ2 = 0.6) and that the rest of the
parameters remain the same (as in Table 1). In this case, the
contribution of the rest of the spatial clusters in the mixture
is χ1 = 0.2 and χ3 = 0.2, respectively. Evidently, the priors
of each cluster in the mixture can have a dramatic effect on
the correlation function as shown in Figure 8. The mixture
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Cluster 1

ϕo = 337.5◦

mresultant = m1 −m2 = 337.5◦

O

ϕ = 247.5◦

m2

mmean

m1

2nd element at 45◦
Cluster 2

ϕo = 67.5◦

mmean = m2 + m1 = 67.5◦

3rd element at 90◦
x

mresultant = m2 −m1 = 157.5◦

ϕo = 157.5◦
y

Cluster 3

Figure 4: This figure illustrates the geometric interpretation of correlation function for the results obtained earlier.

First-order dipole First-order cardioid First-order hypercardioid

Second-order dipole Second-order cardioid Second-order hypercardioid

Figure 5: This figure illustrates three first- and second-order antenna responses, that is, dipole, cardioid, and hypercardioid.
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Figure 6: Spatial correlation estimates for all first-order antenna
responses. The look direction for all antenna responses is set at
ϑ,ϕ = 90◦, 157.5◦.

correlation function does not only depend on the prior
contribution of each component, but on the mean elevation
AoA, mean azimuth AoA, and concentration parameter of
each cluster. Note that the priors can be a function of the total
power in a cluster. It is of common interest to direct focus
on the power-dominating clusters. Therefore, the priors χq in
the mixture density proposed can be changed to normalized
power-weighted values (after the soft-EM estimation). This
can be achieved by estimating the total power in each cluster,
and changing the

∑Q
q=1 = χq term to

∑Q
q=1 = pq, where pq is

the total power in each cluster.
It is important to observe that in the proposed vMF

mixture model, the distance from the scatterer cluster to the
antenna array system is considered, although indirectly, as
opposed to the unimodal case presented earlier. This is due
to the fact that the contribution of each cluster in the vMF
mixture is scaled in accordance with the power emanated
from it. It is therefore valid to expect that scatterer clusters
in the vicinity of the MS will have a higher associated power,
contributing more to the spatial correlation between the
receiving antennas. Equivalently, scatterer clusters in the far
field of the multielement antenna system are expected to have
a higher value of concentration and a lower value of power.
Evidently, the proposed model can fit to a wider range of
propagation scenarios.

6. Conclusions

In this paper, the assumption of traditional horizontal wave
propagation and its effect on the SCF have been reviewed.
A novel approach is proposed (vMF) for modeling the
distribution of scatterers in space. The spherical harmonic
coefficients of the vMF distribution were derived and
various simulations on the modified SCF function indicate
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Figure 7: Spatial correlation for the 3-component VMF mixture.
Note that the 3 clusters are located in different places and that their
(prior) contributions are the same.
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Figure 8: Spatial correlation for the 3-component VMF mixture. In
this case, the priors are set such that the 2nd cluster in the mixture
has a higher value, that is, ρ2 = 0.6, and the remaining two spatial
clusters have ρ1 = 0.2 and ρ3 = 0.2, respectively.

that the correlation decreases as elevation increases when
the elements are positioned on the median plane. The
proposed method directly links the spatial correlation with
the elevation of the incoming cluster of multipaths. It
was also observed that if an element is elevated while the
other is kept on the horizontal plane, signal correlations
change significantly. Since most of the practical array designs
include two-dimensional element configurations, the first
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case applies. The proposed model was further enhanced by
the inclusion of an arbitrary weighting function to describe
the effect of the antenna pattern on the spatial correlation.
Finally, the effect of multiple clusters of scatterers that is
frequently reported in the literature was also included in the
SCF. The proposed model can be used to study the capacity
in multielement antenna systems.

Appendix

A. Closed-Form Expressions for the Harmonic
Coefficients of the vMFDensity

A.1. Proof for the Harmonic Coefficients of the vMF Density for
an Arbitrary Mean Direction on the Sphere. To begin with we
rewrite (5) as follows:

fn,m =
∫∫

S2
f
(
ϑ,ϕ | ϑo,ϕo, κ

)
Ym†
n

(
ϑ,ϕ

)
dS

=
∫∫

S2

∞∑

n=0

2n + 1
4π

In+1/2(κ)
I1/2(κ)

Pn
(
cos γ

)
Ym†
n

(
ϑ,ϕ

)
dS.

(A.1)

According to the Addition Theorem of spherical harmonics,

Pn
(
cos γ

) =
n∑

m=−n

4π
2n + 1

Ym†
n

(
µ
)
Ym
n (Ω). (A.2)

We substitute (A.2) into (A.1) and make use of the orthonor-
mality principle in (3) in order to obtain the closed-form
expression for the harmonic coefficients

fn,m =
∫∫

S2

∞∑

n=0

n∑

m=−n

In+1/2(κ)
I1/2(κ)

Ym†
n

(
µ
)
Ym
n (Ω)Ym†

n

(
ϑ,ϕ

)
dS

=
∞∑

n=0

n∑

m=−n

In+1/2(κ)
I1/2(κ)

Ym†
n

(
µ
)
∫∫

S2
Ym
n (Ω)Ym†

n

(
ϑ,ϕ

)
dS

=
∞∑

n=0

n∑

m=−n

In+1/2(κ)
I1/2(κ)

Ym†
n

(
µ
)
.

(A.3)

Substituting (A.3) into the synthesis equation (4), we obtain
the expanded vMF density as follows:

f
(
ϑ,ϕ | ϑo,ϕo, κ

) =
∞∑

n=0

n∑

m=−n

In+1/2(κ)
I1/2(κ)

Ym†
n

(
µ
)
Ym
n

(
ϑ,ϕ

)
.

(A.4)

A.2. Special Case: Proof for the Harmonic Coefficients of the
vMF Density When µ Is Directed along the z-Axis. A special
case of the main derivation arises by conditioning the mean
direction vector of the distribution. More specifically, if the
mean direction µ = [0 0 1], the vMF density simplifies to

fp
(
ϑ,ϕ | κ) = 1

2π
κ

2 sinh κ
eκ cos ϑ. (A.5)

In (A.5), the marginal pdf of ϑ is given by

fp(ϑ | κ) = κ

2 sinh κ
eκ cos ϑ. (A.6)

The marginal (uniform) pdf of ϕ is given by g(ϕ) = 1/2π.
Clearly, coelevation is independently distributed from the
azimuth and its pdf as κ goes to zero tends to fκ→ 0(ϑ) =
sin ϑ/2 (since limκ→ 0κ/ sinh(κ) = 1). Combining g(ϕ)
and fκ→ 0(ϑ), the isotropic pdf on the sphere is obtained,
f (ϑ,ϕ) = sin ϑ/4π. From the above analysis, it is straight-
forward to derive the spherical harmonic coefficients when
µ = [0 0 1]. When µ = [0 0 1] ⇒ ϑo = 0◦ and from
(6), it follows that the series representation of the marginal
pdf of ϑ is

fp(ϑ) =
∞∑

n=0

2n + 1
2

In+1/2(κ)
I1/2(κ)

Pn(cos ϑ). (A.7)

Note that since the function fp(ϑ) is independent of the
azimuthal angle ϕ, the spherical harmonic in (2) is inde-
pendent of ϕ too. In this case, m = 0 and (2) reduces to
Y 0
n (ϑ, 0) = √

2n + 1/4πP0
n(cos ϑ). By substitution of (A.7)

into (5) and noting that when m = 0, the spherical harmonic
becomes independent of the azimuthal angle ϕ, we obtain

fn,0 =
∫ π

0
fp(ϑ)Y 0†

n (ϑ, 0)dϑ

=
∫ π

0

∞∑

n=0

2n + 1
2

In+1/2(κ)
I1/2(κ)

Pn(cos ϑ)

√
2n + 1

4π
P0
n(cos ϑ)dϑ

=
∞∑

n=0

2n + 1
2

In+1/2(κ)
I1/2(κ)

√
2n + 1

4π

×
∫ −1

1
Pn(cos ϑ)Pn(cos ϑ)d cos ϑ

=
∞∑

n=0

In+1/2(κ)
I1/2(κ)

√
2n + 1

4π
.

(A.8)

Upon substitution of (A.8) into (4) and making use of the
Y 0
n (ϑ, 0) relationship stated earlier, the vMF pdf when µ =

[0 0 1] is obtained in (A.5). In the above derivation,
we have used the orthogonality principle of Legendre
polynomials which states that

∫ −1

1
Pn(cos ϑ)Pn(cos ϑ)d cos ϑ = 2

2n + 1
. (A.9)

It is important to note that the spherical harmonic coeffi-
cients derived are independent of the antenna positions.
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