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Abstract In this article, the three-point QCD sum rules are
used to compute the strong coupling constants of vertices
containing the strange bottomed (charmed) mesons with the
pion. The coupling constants are calculated when both the
bottom (charm) and the pion states are off-shell. A compar-
ison of the obtained results of the coupling constants with
existing predictions is also made.

1 Introduction

During the last ten years, there have been published numer-
ous research articles devoted to the precise determination
of the strong form factors and coupling constants of meson
vertices via QCD sum rules (QCDSR) [1–4]. The QCDSR
formalism has also been successfully used to study some
of the ‘exotic’ mesons made of quark–gluon hybrid (qq̄g),
tetraquark states (qq̄qq̄), molecular states of two ordinary
mesons, glueballs, and many others [5]. Coupling constants
can provide a real opportunity for studying the nature of
the bottomed and charmed pseudoscalar and axial vector
mesons. A more accurate determination of these coupling
constants plays an important role in understanding of the
final state interactions in the hadronic decays of the heavy
mesons. Our knowledge of the form factors in hadronic ver-
tices is of crucial importance to estimate hadronic amplitudes
when hadronic degrees of freedom are used. When all of the
particles in a hadronic vertex are on mass-shell, the effective
fields of the hadrons describe point-like physics. However,
when at least one of the particles in the vertex is off-shell,
the finite size effects of the hadrons become important. The
following coupling constants have been determined by var-
ious research groups: D∗ Dπ [6,7], DDρ [8], D∗Dρ [9],
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D∗D∗ρ [10], DD J/ψ [11], D∗D J/ψ [12], D∗D∗ J/ψ [13],
Ds D∗K , D∗

s DK [14], DDω [15] and V D∗
s0 D∗

s0, V Ds Ds ,
V D∗

s D∗
s , and V Ds1 Ds1 [16], in the framework of three-point

QCD sum rules. It is very important to know the precise func-
tional form of the form factors in these vertices and even to
know how this form changes when one or the other (or both)
mesons are off-shell [16].

In this review, we focus on the method of three-point
QCDSR to calculate the strong form factors and coupling
constants associated with the B1 B∗π , B1 B0π , B1 B1π ,
D1 D∗π , D1 D0π , and D1 D1π vertices, for both the bottom
(charm) and the pion states being off-shell. The three-point
correlation function is investigated from the phenomenolog-
ical and the theoretical sides. As regards the physical or phe-
nomenological part, the representation is in terms of hadronic
degrees of freedom, which is responsible for the introduction
of the form factors, decay constants, and masses. In QCD or
the theoretical part, which consists of two contributions, per-
turbative and non-perturbative (in the present work the calcu-
lations contributing the quark–quark and quark–gluon con-
densate diagrams are considered as non-perturbative effects),
we evaluate the correlation function in quark–gluon language
and in terms of QCD degrees of freedom, such as the quark
condensate, the gluon condensate, etc., with the help of the
Wilson operator product expansion (OPE). Equating the two
sides and applying the double Borel transformations with
respect to the momentum of the initial and final states, to
suppress the contribution of the higher states and continuum,
the strong form factors are estimated.

The outline of the paper is as follows. In Sect. 2, by intro-
ducing the sufficient correlation functions, we obtain QCD
sum rules for the strong coupling constant of the considered
B1 B∗π , B1 B0π , and B1 B1π vertices. With the necessary
changes in the quarks, we can easily apply the same cal-
culations to the D1 D∗π , D1 D0π , and D1 D1π vertices. In
obtaining the sum rules for physical quantities, both light
quark–quark and light quark–gluon condensate diagrams are
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considered as non-perturbative contributions. In Sect. 3, the
obtained sum rules for the considered strong coupling con-
stants are numerically analysed. We will obtain the numeri-
cal values for each coupling constant when both the bottom
(charm) and the pion states are off-shell. Then taking the
average of the two off-shell cases, we will obtain the final
numerical values for each coupling constant. In this section,
we also compare our results with the existing predictions of
other work.

2 The three-point QCD sum rules method

In order to evaluate the strong coupling constants, it is nec-
essary to know the effective Lagrangians of the interaction
which, for the vertices B1 B∗π , B1 B0π , and B1 B1π , are
[17,18]

LB1 B∗π = gB1 B∗π Bα1 (π
+B∗−

α − π−B∗+
α ),

LB1 B0π = igB1 B0π Bα1 (B
−
0 ∂απ

+ − ∂αB−
0 π

+)+ H.c.,

LB1 B1π = −gB1 B1πε
αβγσ ∂αB1β(∂γ B+

1σπ
− + π+∂γ B−

1σ ).

(1)

From these Lagrangians, we can extract elements associated
with the B1 B∗π , B1 B0π , and B1 B1π momentum dependent
vertices that can be written in terms of the form factors:

〈B1(p
′, ε′)|B∗(p, ε)π(q)〉 = gB1 B∗π (q

2)(ε′.ε) p.q

m B1
,

〈B1(p
′, ε′)|B0(p)π(q)〉 = gB1 B0π (q

2)ε′.q,

〈B1(p
′, ε′)|B1(p, ε)π(q)〉 = igB1 B1π (q

2)εαβγ σ ε′γ (p′)
× εσ (p)p′

βqα, (2)

where p and p′ are the four momenta of the initial and
final mesons; we have q = p′ − p, and ε, and ε′ are the
polarization vectors of the B∗ and B1 mesons. We study the
strong coupling constants B1 B∗π , B1 B0π , and B1 B1π ver-
tices when both π and B∗[B0(B1)] can be off-shell. The
interpolating currents jπ = q̄γ5q, j B0 = q̄ Q, j B∗

ν = q̄γνQ,
and j B1

μ = q̄γμγ5 Q are interpolating currents of the π , B0,
B∗, B1 mesons, respectively with q being the up or down
quark and Q being for the heavy quark fields. We write the
three-point correlation function associated with the B1 B∗π ,
B1 B0π , and B1 B1π vertices. For the off-shell B∗[B0(B1)]
meson, Fig. 1 (left), these correlation functions are given
by

B∗
μν(p, p′) = i2

∫
d4xd4 yei(p′x−py)

×
〈
0|T

{
j B1
μ (x) j B∗

ν

†
(0) jπ †

(y)
}

|0
〉
, (3)

B0
μ (p, p′) = i2

∫
d4xd4 yei(p′x−py)

×
〈
0|T

{
j B1
μ (x) j B0 †

(0) jπ †
(y)
}

|0
〉
, (4)

B1
μν(p, p′) = i2

∫
d4xd4 yei(p′x−py)

×
〈
0|T

{
j B1
μ (x) j B1

ν

†
(0) jπ †

(y)
}

|0
〉
, (5)

and for the off-shell π meson, Fig. 1 (right), these quantities
are

πμν(p, p′) = i2
∫

d4xd4 yei(p′x−py)

×
〈
0|T

{
j B1
μ (x) jπ †

(0) j B∗
ν

†
(y)
}

|0
〉
, (6)

πμ(p, p′) = i2
∫

d4xd4 yei(p′x−py)

×
〈
0|T

{
j B1
μ (x) jπ †

(0) j B0 †
(y)
}

|0
〉
, (7)

πμν(p, p′) = i2
∫

d4xd4 yei(p′x−py)

×
〈
0|T

{
j B1
μ (x) jπ †

(0) j B1
ν

†
(y)
}

|0
〉
. (8)

Correlation function in (Eqs. 3–8) in the OPE and in the
phenomenological side can be written in terms of several
tensor structures. We can write a sum rule to find the coef-
ficients of each structure, leading to as many sum rules as
structures. In principle all the structures should yield the same
final results, but the truncation of the OPE changes different
structures in different ways. Therefore some structures lead
to sum rules which are more stable. In the simplest cases,
such as in the B1 B∗π vertex, we have five structures, gμν ,
pμ pν , pμ p′

ν , p′
μ pν , and p′

μ p′
ν . We have selected the gμν

structure. In this structure the quark condensate (the conden-
sate of lower dimension) contributes in the case of bottom
meson off-shell. We also did the calculations for the structure
p′
μ pν , and the final results of both structures in predicting of

gμν are the same for gB1 B∗π , and in the B1 B0π vertex, we
have the two structures p′

μ and pμ. The two structures give
the same result for gB1 B0π . We have chosen the p′

μ structure.
In the B1 B1π vertex we have only one structure εαβμν pα p′

β

is written as

B∗(π)
μν (p2, p′2, q2) = (B∗(π)

per +B∗(π)
nonper )gμν + · · · ,

B0(π)
μ (p2, p′2, q2) = (B0(π)

per +B0(π)
nonper )p

′
μ + · · · ,

B1(π)
μν (p2, p′2, q2) = (B1(π)

per +B1(π)
nonper )ε

αβμν pα p′
βg

(9)

where · · · denotes other structures and higher states.
The phenomenological side of the vertex function is

obtained by considering the contribution of three complete
sets of intermediate states with the same quantum number
that should be inserted in Eqs. (3–8). We use the standard
definitions for the decay constants fM ( fπ , fB0 , fB∗ and
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Fig. 1 Perturbative diagrams
for off-shell bottom (left) and
off-shell pion (right)

fB1 ) and we have

〈0| jπ |π(p)〉 = m2
π fπ

mu + md
,

〈0| j B0 |B0(p)〉 = m B0 fB0 ,

〈0| j B∗
ν |B∗(p, ε)〉 = m B∗ fB∗εν(p),

〈0| j B1
μ |B1(p

′, ε′)〉 = m B1 fB1ε
′
μ(p

′).

(10)

The phenomenological part for the gμν structure associated
with the B1 B∗π vertex, when B∗(π) is an off-shell meson,
is as follows:

B∗(π)
μν = −gB∗(π)

B1 B∗π (q
2)

× m2
πm B∗ fπ fB∗ fB1(m

2
B1

− m2
π(B∗) − q2)

2(q2 − m2
B∗(π))(p

2 − m2
π(B∗))(p

′2 − m2
B1
)(mu + md)

×gμν + h.r. (11)

The phenomenological part for the p′
μ structure related to the

B1 B0π vertex, when B0(π) is an off-shell meson, is

B0(π)
μ = −gB0(π)

B1 B0π
(q2)

× m2
πm B0 m B∗ fπ fB∗ fB1(m

2
B1

+ m2
π(B0)

− q2)

2(q2 − m2
B0(π)

)(p2 − m2
π(B0)

)(p′2 − m2
B1
)(mu + md)

×p′
μ + h.r. (12)

The phenomenological part for the εαβμν pα p′
β structure

related to the B1 B1π vertex, when B1(π) is an off-shell
meson, is

B1(π)
μν = −igB1(π)

B1 B1π
(q2)

× m2
πm2

B1
fπ f 2

B1

(q2 − m2
B1(π)

)(p2 − m2
π(B1)

)(p′2 − m2
B1
)(mu + md)

×εαβμν pα p′
β + h.r. (13)

In Eqs. (11–13), h.r. represents the contributions of the higher
states and continuum.

With the help of the operator product expansion (OPE) in
the Euclidean region, where p2, p′2 → −∞, we calculate
the QCD side of the correlation function (Eqs. 3–8) con-
taining perturbative and non-perturbative parts. In practice,
only the first few condensates contribute significantly, the
most important ones being the 3-dimension, 〈d̄d〉, and the

5-dimension, 〈d̄σαβT aGaαβd〉, condensates. For each invari-
ant structure, i, we can write


(theor)
i (p2, p′2, q2)=− 1

4π2

∞∫

(md+mb)
2

ds′
∞∫

s1(2)

×ds
ρi (s, s′, q2)

(s − p2)(s′ − p′2)
+ C3

i 〈d̄d〉
+C5

i 〈d̄σαβT aGaαβd〉 + · · · , (14)

where ρi (s, s′, q2) is the spectral density, Ci are the Wilson
coefficients, and Gaαβ is the gluon field strength tensor. We
take for the strange quark condensate 〈dd〉 = −(0.24 ±
0.01)3 GeV3 [19] and for the mixed quark–gluon condensate
〈d̄σαβT aGaαβd〉 = m2

0〈dd〉 with m2
0 = (0.8 ± 0.2) GeV2

[20,21].
Furthermore, we make the usual assumption that the con-

tributions of higher resonances are well approximated by the
perturbative expression

− 1

4π2

∞∫

s′
0

ds′
∞∫

s0

ds
ρi (s, s′, q2)

(s − p2)(s′ − p′2)
, (15)

with appropriate continuum thresholds s0 and s′
0.

The Cutkosky rule allows us to obtain the spectral den-
sities of the correlation function for the Lorentz structures
appearing in the correlation function. The leading contri-
bution comes from the perturbative term, shown in Fig. 1.
As a result, the spectral densities are obtained in the case
of the double discontinuity in Eq. (15) for the vertices; see
Appendix A.

We proceed to calculate the non-perturbative contribu-
tions on the QCD side that contain the quark–quark and
quark–gluon condensate. The quark–quark and quark–gluon
condensate is considered for the case when the light quark
is a spectator [22,23]. Therefore only three important dia-
grams of dimension 3 and 5 remain from the non-perturbative
part contributions when the bottom mesons are off shell.
These diagrams, named quark–quark and quark–gluon con-
densates, are depicted in Fig. 2. For the off-shell pion, there
are no quark–quark and quark–gluon condensate contribu-
tions.

After some straightforward calculations and applying the
double Borel transformations with respect to p2(p2 → M2)
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and p′2(p′2 → M ′2),

Bp2(M2)

(
1

p2 − m2
u

)m

= (−1)m

�(m)

e− m2
u

M2

(M2)m
,

B
p′ 2(M ′2)

(
1

p′ 2 − m2
b

)n

= (−1)n

�(n)

e− m2
b

M ′2

(M ′2)n
,

(16)

where M2 and M ′2 are the Borel parameters, the contribu-
tions of the quark–quark and quark–gluon condensate, for
the bottom meson off-shell case, are given by

bottom
(non−per) = 〈dd〉 Cbottom

M4 M ′4 . (17)

The explicit expressions for Cbottom
B1 B∗π [B1 B0π(B1 B1π)] associated

with the B1 B∗π , B1 B0π , and B1 B1π vertices are given in
Appendix B.

The gluon–gluon condensate is considered when the
heavy quark is a spectator [24], the bottom mesons are off-
shell, and there is no gluon–gluon condensate contribution.
Our numerical analysis shows that the contribution of the
non-perturbative part containing the quark–quark and quark–
gluon diagrams is about 13 % and the gluon–gluon contribu-
tion is about 4 % of the total and the main contribution comes
from the perturbative part of the strong form factors and we
can ignore the gluon–gluon contribution in our calculation.

The QCDSR for the strong form factors are obtained after
performing the Borel transformation with respect to the vari-
ables p2(Bp2(M2)) and p′2(B2

p′(M ′2)) on the physical (phe-
nomenological) and QCD parts; equating these two repre-
sentations of the correlations, we obtain the corresponding
equations for the strong form factors as follows.
• For the gB1 B∗π (Q2) form factors:

gB∗
B1 B∗π (Q

2)= 2(Q2 + m2
B∗ )(mu + md )

m2
πm B∗ fπ fB∗ fB1 (m

2
B1

− m2
π + Q2)

e
m2
π

M2

× e
m2

B1
M ′2

⎧⎪⎨
⎪⎩− 1

4π2

s′
0∫

(mb+md )
2

ds′
s0∫

s1

dsρB∗
(s, s′, Q2)

× e− s
M2 e− s′

M ′2 + 〈dd̄〉C B∗
B1 B∗π

M2 M ′2

⎫⎪⎬
⎪⎭ , (18)

gπB1 B∗π (Q
2)= 2(Q2 + m2

π )(mu + md )

m2
πm B∗ fπ fB∗ fB1 (m

2
B1

− m2
B∗ + Q2)

× e
m2

B∗
M2 e

m2
B1

M ′2

⎧⎪⎨
⎪⎩− 1

4π2

s′
0∫

(mb+md )
2

ds′

×
s0∫

s2

dsρπ (s, s′, Q2)e− s
M2 e− s′

M ′2

⎫⎪⎬
⎪⎭ . (19)

• For the gB1 B0π (Q
2) form factors:

gB0
B1 B0π

(Q2) = 2(Q2 + m2
B0
)(mu + md )

m2
πm B0 m B1 fπ fB0 fB1 (m

2
B1

+ m2
π + Q2)

× e
m2
π

M2 e
m2

B1
M ′2

⎧⎪⎨
⎪⎩− 1

4π2

s′
0∫

(mb+md )
2

ds′

×
s0∫

s1

dsρB0 (s, s′, Q2)e− s
M2 e− s′

M ′2 +〈dd̄〉 C B0
B1 B0π

M2 M ′2

⎫⎪⎬
⎪⎭,

(20)

gπB1 B0π
(Q2) = 2(Q2 + m2

π )(mu + md )

m2
πm B0 m B1 fπ fB0 fB1 (m

2
B1

+ m2
B0

+ Q2)

× e
m2

B0
M2 e

m2
B1

M ′2

⎧⎪⎨
⎪⎩− 1

4π2

s′
0∫

(mb+md )
2

ds′

×
s0∫

s2

dsρπ (s, s′, Q2)e− s
M2 e− s′

M ′2

⎫⎪⎬
⎪⎭ . (21)

• For the gB1 B1π (Q
2) form factors:

gB1
B1 B1π

(Q2) = −i
(Q2 + m2

B1
)(mu + md )

m2
πm2

B1
fπ f 2

B1

× e
m2
π

M2 e
m2

B1
M ′2

⎧⎪⎨
⎪⎩− 1

4π2

s′
0∫

(mb+md )
2

ds′

×
s0∫

s1

dsρB1 (s, s′, Q2)e− s
M2 e− s′

M ′2 +〈dd̄〉 C B1
B1 B1π

M2 M ′2

⎫⎪⎬
⎪⎭,

(22)

gπB1 B1π
(Q2) = −i

(Q2 + m2
π )(mu + md)

m2
πm2

B1
fπ f 2

B1

× e
m2

B1
M2 e

m2
B1

M ′2

⎧⎪⎨
⎪⎩− 1

4π2

s′
0∫

(mb+md )
2

ds′

×
s0∫

s2

dsρπ(s, s′, Q2)e− s
M2 e− s′

M ′2

⎫⎬
⎭ , (23)

where Q2 = −q2, s0, and s′
0 are the continuum thresholds,

and s1 and s2 are the lower limits of the integrals over s, thus

s1(2) = (m2
d(b) + q2 − m2

u − s′)(m2
us′ − q2m2

d(b))

(m2
u − q2)(m2

d(b) − s′)
. (24)
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Fig. 2 Contribution of the
quark–quark and quark–gluon
condensate for the bottom
off-shell

3 Numerical analysis

In this section, the expressions of QCDSR obtained for the
considered strong coupling constants are investigated. We
choose the values of the meson and quark masses as mu =
(1.7–3.3) MeV, md = (3.5–6.0) MeV, mπ = 14 MeV,
m B∗ = 5.32 GeV, m D∗ = 2.01 GeV, m B1 = 5.72 GeV,
m D1 = 2.42 GeV, m B0 = 5.70 GeV, and m D0 = 2.36 GeV.
Also the leptonic decay constants used in this calculation are
taken as fπ = 130.41 MeV [25], fB∗ = 238 ± 10 MeV,
fD∗ = 340 ± 12 MeV [26], fB1 = 196.9 ± 8.9 MeV,
fD1 = 218.9 ± 11.3 MeV [27], fB0 = 280 ± 31 MeV,
and fD0 = 334 ± 8.6 MeV [28]. For a comprehensive anal-
ysis of the strong coupling constants, we use the follow-
ing values of the quark masses mb and mc in two sets: set
I, mb(M S) = 4.67 GeV [29], mc = 1.26 GeV [16,30]
and set II, mb(1S) = 4.19 GeV [29], mc = 1.47 GeV
[16,30].

The expressions for the strong form factors in Eqs. (18–
23) should not depend on the Borel variables M2 and M ′2.
Therefore, one has to work in a region where the approx-
imations made are supposedly acceptable and where the
result depends only moderately on the Borel variables. In
this work we use the following relations between the Borel

masses M2 and M ′2 [8,9]: M2

M ′2 = m2
π

m2
B1

−m2
b

for the bot-

tom meson off-shell and M2 = M ′2 for the pion meson
off-shell. The values of the continuum thresholds s0 =
(m +�)2 and s′

0 = (m B1 +�)2, where m is the π mass, for

B∗[B0(B1)] off-shell and the B∗[B0(B1)] meson mass, for
π off-shell and � varies between 0.4 GeV ≤ � ≤ 1 GeV
[16,30].

Using � = 0.7 GeV, mb = 4.67 GeV, and fixing
Q2 = 1 GeV2, we found a good stability of the sum rule
in the interval 10 GeV2 ≤ M2 ≤ 20 GeV2 for the two cases
of bottom and pion being off-shell. The dependence of the
strong form factors gB1 B∗π , gB1 B0π , and gB1 B1π on the Borel
mass parameters for off-shell bottom and pion mesons are
shown in Fig. 3.

We have chosen the Borel mass to be M2 = 13 GeV2.
Having determined M2, we calculated the Q2 dependence
of the form factors. We present the results in Fig. 4 for the
gB1 B∗π , gB1 B0π , and gB1 B1π vertices. In these figures, the
small circles and boxes correspond to the form factors in the
interval where the sum rule is valid. As is seen, the form
factors and their fit functions well coincide.

We discuss a difficulty inherent to the calculation of cou-
pling constants with QCDSR. The solution of Eqs. (18–23)
is numerical and restricted to a singularity-free region in the
Q2 axis, usually located in the space-like region. There-
fore, in order to reach the pole position, Q2 = −m2

m , we
must fit the solution, by finding a function g(Q2) which
is then extrapolated to the pole, yielding the coupling con-
stant.

The uncertainties associated with the extrapolation pro-
cedure, for each vertex, are minimized by performing the
calculation twice, first putting one meson and then another
meson off-shell, to obtain two form factors gbottom and gpion,
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Fig. 3 The strong form factors gB1 B∗π , gB1 B0π , and gB1 B1π as functions of the Borel mass parameter M2 for the two cases of bottom off-shell
meson (left) and pion off-shell mesons (right)
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Fig. 4 The strong form factors gB1 B∗π , gB1 B0π , and gB1 B1π on Q2 for the bottom off-shell and the pion off-shell mesons. The small circles and
boxes correspond to the form factors via the 3PSR calculations

Table 1 Parameters appearing in the fit functions for the gB1 B∗π ,
gB1 B0π , and gB1 B1π vertices for �1 = 0.7 GeV and mb(M S) =
4.67 GeV (set I) and mb(1S) = 4.19 GeV (set II)

Form factor Set I Set II

A B A B

gB∗
B1 B∗π 2.26 8.73 4.35 11.56

gπB1 B∗π 129.87 2.23 301.25 6.12

gB0
B1 B0π

2.06 39.93 2.47 37.53

gπB1 B0π
41.77 8.44 308.03 54.43

gB1
B1 B∗π 2.46 219.04 2.59 132.90

gπB1 B1π
21.77 6.60 205.82 60.51

and equating these two functions at the respective poles. The
superscripts in parentheses indicate which meson is off-shell.
In order to reduce the freedom in the extrapolation and con-
strain the form factor, we calculate and fit simultaneously the
values of g(Q2) with the pion off-shell. We tried to fit our
results to a monopole form, since this is often used for form
factors [31].

For the off-shell pion meson, our numerical calculations
show that the sufficient parametrization of the form factors
with respect to Q2 is

g(Q2) = A

Q2 + B
, (25)

and for the off-shell bottom meson the strong form factors
can be fitted by the exponential fit function as given by

g(Q2) = A e−Q2/B . (26)

The values of the parameters A and B are given in Table 1.
We define the coupling constant as the value of the strong
coupling form factor at Q2 = −m2

m in Eqs. (25) and (26),
where mm is the mass of the off-shell meson. Considering the
uncertainties that result with the continuum threshold and the
uncertainties in the values of the other input parameters, we
obtain the average values of the strong coupling constants in
the different sets as shown in Table 2.

We see that the two cases considered here, the off-shell
bottom and pion meson, give compatible results for the cou-
pling constant.

With the same method as described in Sect. 2 with
little change in the containing perturbative and
non-perturbative parts, where ρ

charm(pion)
D1 D∗π [D1 D0π(D1 D1π)] =

ρ
bottom(pion)
B1 B∗π [B1 B0π(B1 B1π)]|b→c, Ccharm

D1 D∗π [D1 D0π(D1 D1π)] =
Cbottom

B1 B∗π [B1 B0π(B1 B1π)]|b→c, we can easily find similar results
in Eqs. (18–23) for strong form factors gD1 D∗π , gD1 D0π , and
gD1 D1π , and also we use the following relations between the

Borel masses M2 and M ′2: M2

M ′2 = m2
π

m2
D1

−m2
c

for the charm

meson off-shell and M2 = M ′2 for the pion meson off-shell.
The values of the continuum thresholds s0 = (m +�)2 and
s′

0 = (m D1 +�)2, where m is the π mass, for D∗[D0(D1)]

Table 2 The strong coupling
constants gB1 B∗π , gB1 B0π , and
gB1 B1π

Coupling constant Set I Set II Average

Bottom-off-sh Pion-off-sh Bottom-off-sh Pion-off-sh

gB1 B∗π 57.63 ± 15.53 58.72 ± 15.43 50.32 ± 13.24 49.38 ± 14.26 54.01 ± 15.51

gB1 B0π 4.68 ± 1.44 4.96 ± 1.08 5.87 ± 1.34 5.66 ± 1.13 5.29 ± 1.40

gB1 B1π (GeV−1) 2.86 ± 0.43 3.31 ± 0.27 3.31 ± 0.25 3.89 ± 0.18 3.57 ± 0.53
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Fig. 5 The strong form factors gD1 D∗π , gD1 D0π , and gD1 D1π as functions of the Borel mass parameter M2 for the two cases of charm off-shell
meson (left), and pion off-shell meson (right)
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circles and boxes correspond to the form factors via the 3PSR calculations

off-shell and the D∗[D0(D1)] meson mass, for theπ off-shell
and � with 0.4 GeV ≤ � ≤ 1 GeV.

Using � = 0.7 GeV, mc = 1.26 GeV and fixing
Q2 = 1 GeV2, we found a good stability of the sum rule in the
interval 7 GeV2 ≤ M2 ≤ 17 GeV2 for the two cases of charm
and pion off-shell. The dependences of the strong form fac-
tors gD1 D∗π , gD1 D0π , and gD1 D1π on the Borel mass param-
eters for the off-shell charm and pion mesons are shown in
Fig. 5.

We have chosen the Borel mass to be M2 = 10 GeV2.
Having determined M2, we calculated the Q2 dependence
of the form factors. We present the results in Fig. 6 for the
gD1 D∗π , gD1 D0π , and gD1 D1π vertices.

The dependence of the above strong form factors on Q2

for the full physical region is estimated, using Eqs. (25)
and (26), for the pion and charm off-shell mesons, respec-
tively. The values of the parameters A and B are given in
Table 3.

Considering the uncertainties that result with the contin-
uum threshold and the uncertainties in the values of the other
input parameters, we obtain the average values of the strong

Table 3 Parameters appearing in the fit functions for the gD1 D∗π ,
gD1 D0π , and gD1 D1π vertices for �1 = 0.7 GeV and mc = 1.26 (set I)
and mc = 1.47 (set II)

Form factor Set I Set II

A B A B

gD∗
D1 D∗π 9.41 5.72 9.58 5.83

gπD1 D∗π 63.07 31.30 86.40 4.18

gD0
D1 D0π

2.55 12.97 2.37 13.05

gπD1 D0π
185.69 46.40 32.98 8.49

gD1
D1 D∗π 2.75 49.54 2.21 14.40

gπD1 D1π
50.54 17.44 13.79 3.92

coupling constants in different values of the different sets
shown in Table 4.

In Table 5 we compare our obtained values, with the find-
ings of others, previously calculated. From this Table we see
that our result of the coupling constants is in a fair agreement
with the calculations in Refs. [32,33,35].
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Table 4 The strong coupling
constants gD1 D∗π , gD1 D0π , and
gD1 D1π

Coupling constant Set I Set II

Charm-off-sh Pion-off-sh Charm-off-sh Pion-off-sh Average

gD1 D∗π 19.07 ± 4.21 20.14 ± 4.49 19.16 ± 3.87 20.77 ± 3.92 19.78 ± 3.32

gD1 D0π 3.92 ± 0.93 4.03 ± 1.01 3.63 ± 0.84 3.89 ± 0.73 3.87 ± 0.86

gD1 D1π (GeV−1) 3.09 ± 0.63 2.90 ± 0.52 3.31 ± 0.54 3.54 ± 0.61 3.21 ± 0.49

Table 5 Comparison of our results with the other published results

gB1 B∗π gB1 B0π gB1 B1π (GeV−1) gD1 D∗π gD1 D0π gD1 D1π (GeV−1)

Our result 54.01 ± 15.51 5.29 ± 1.40 3.57 ± 0.53 19.78 ± 3.32 3.87 ± 0.86 3.21 ± 0.49
Ref. [32] 56 ± 15 5.39 ± 2.15 – 23 ± 5 3.43 ± 1.37 –

Ref. [33] – – – 19.12 ± 2.42 – 2.59 ± 0.61

Ref. [34] 68.64 ± 8.58 – – 12.10 ± 2.42 – –

Ref. [35] 58.89 ± 9.81 4.73 ± 1.14 2.60 ± 0.60 – – –

The results of Refs. [32,34] are from light-cone QCDSR, the result from Ref. [33] is from the QCDSR and the short distance expansion, and the
result of Ref. [35] is from the light-cone QCDSR in HQET

4 Conclusion

In this article, we analyzed the vertices B1 B∗π , B1 B0π ,
B1 B1π , D1 D∗π , D1 D0π , and D1 D1π within the frame-
work of the three-point QCDSR approach in an unified way.
The strong coupling constants could give useful information
about strong interactions of the strange bottomed and strange
charmed mesons and also are important ingredients for esti-
mating the absorption cross section of the J/ψ by the π
mesons.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Funded by SCOAP3 / License Version CC BY 4.0.

Appendix A: Perturbative contributions

In this appendix, The perturbative contributions for the sum
rules defined in Eqs. (18–23) are

ρ
B∗(π)
B1 B∗π = 4Nc I0k

[
2A

(
m1 − m3(2)

)− m1m2m3 + m2m2
3 + m3

3

−m1m2
3 − �

2
(m2 + m3)+�′

2
(m1 − m3)+ m3u

2

]
,

ρ
B0(π)
B1 B0π

= 4Nc I0

[
B2

(
m2m3 − km1m2+km1m3 − m2

3+�− u

2

)

+km2
3 − m3m1 − k

�

2

]
,

ρ
B1(π)
B1 B1π

= 4i Nc I0 [B1 (m3 − km1)+ B2 (m2 + m3)+ m3] .

The explicit expressions of the coefficients in the spectral
densities entering the sum rules are given as

I0(s, s′, q2) = 1

4λ
1
2 (s, s′, q2)

,

� = (s + m2
3 − m2

1),

�′ = (s′ + m2
3 − m2

2),

u = s + s′ − q2,

λ(s, s′, q2) = s2 + s′2 + q4 − 2sq2 − 2s′q2 − 2ss′,

A = − 1

2λ(s, s′, q2)
[4ss′m2

3 − s�′2 − s′�2

−u2m2
3 + u��′],

B1 = 1

λ(s, s′, q2)

[
2s′�−�′u

]
,

B2 = 1

λ(s, s′, q2)

[
2s�′ −�u

]
,

where k = 1, m1 = mu , m2 = mb, m3 = md for the bottom
meson off-shell and k = −1, m1 = mu , m2 = md , m3 = mb

for the pion meson off-shell, Nc = 3 represents the color
factor.

Appendix B: Non-perturbative contributions

In this appendix, the explicit expressions of the coefficients
of the quark–quark and quark–gluon condensate of the strong
form factors for the vertices B1 B∗π , B1 B0π , and B1 B1π on
applying the double Borel transformations are given:

C B∗
B1 B∗π =

(
7M2m2

bm2
0

24
− M2 M ′2m2

0

6
+ M ′2m2

bm2
0

8
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−m2
0m4

b

8
− M2 M ′2mbmd

4
+ M2 M ′2m2

b

2

− M2m3
bmd

4
+ M2mbmdq2

4
− M2m2

bm2
d

2

− M2m2
0mbmu

4
− 3M ′2m2

0mbmu

4

−M2 M ′2mbmu + m2
0m3

bmu
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+ M ′2m2

0m3
bmu

2M2

− M2 M ′2md mu

4
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bmdmu

2

+ M ′2m2
bmdmu

4
+ M2mbm2

dmu

2
+ M ′2mbm2

dmu

2

−m3
bm2

dmu

2
+ M2m2

0m2
u

24

+ M ′2m2
0m2

u

4
+ M2 M ′2m2

u

2
− m2

0m2
bm2

u

4

− M ′2mbmdm2
u

2
− M ′2m2

dm2
u

2
+ m2

bm2
dm2

u

2

+m2
0mbm3

u

4
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0mbm3
u
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u

4
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dm3

u

2
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4
− 7M2m2
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24
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0q2

8
− M2 M ′2q2

2
+ m2

0m2
bq2

4

+ M2m2
dq2

2
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dq2

2
− m2

bm2
dq2

2

−m2
0mbmuq2

4

)
× e− m2

u
M2 e− m2

b
M ′2 ,

C B0
B1 B0π

=
(

M2m2
0mb

4
− M2m2

bmd

2
− M2mbm2

d

2

−3m2
0 M ′2mu

4
− M2 M ′2mu + m2

0m2
bmu

4

− M2mbmdmu

2
+ M2m2

dmu

2
− m2

bm2
d mu

2

− M2mdm2
u

2
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u

2
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2
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0m3

u

4
− m2

dm3
u

2
+ M2mdq2

2

−m2
0muq2

4
+ m2

dmuq2

2

)
× e− m2

u
M2 e− m2

b
M ′2 ,

C B1
B1 B1π

= i

(
7m2

0 M2

12
+ 3m2

0 M ′2

4
+ M2 M ′2

−m2
0m2

b

2
− M2mbmd

2
− M2m2

d − M ′2m2
d

+ M ′2md mu
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0m2
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