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Abstract

Background: Text mining is increasingly used in the biomedical domain because of its ability to automatically
gather information from large amount of scientific articles. One important task in biomedical text mining is relation
extraction, which aims to identify designated relations among biological entities reported in literature. A relation
extraction system achieving high performance is expensive to develop because of the substantial time and effort
required for its design and implementation. Here, we report a novel framework to facilitate the development of a
pattern-based biomedical relation extraction system. It has several unique design features: (1) leveraging syntactic
variations possible in a language and automatically generating extraction patterns in a systematic manner, (2)
applying sentence simplification to improve the coverage of extraction patterns, and (3) identifying referential
relations between a syntactic argument of a predicate and the actual target expected in the relation extraction task.

Results: A relation extraction system derived using the proposed framework achieved overall F-scores of 72.66% for
the Simple events and 55.57% for the Binding events on the BioNLP-ST 2011 GE test set, comparing favorably with the
top performing systems that participated in the BioNLP-ST 2011 GE task. We obtained similar results on the BioNLP-ST
2013 GE test set (80.07% and 60.58%, respectively). We conducted additional experiments on the training and
development sets to provide a more detailed analysis of the system and its individual modules. This analysis indicates
that without increasing the number of patterns, simplification and referential relation linking play a key role in the
effective extraction of biomedical relations.

Conclusions: In this paper, we present a novel framework for fast development of relation extraction systems. The
framework requires only a list of triggers as input, and does not need information from an annotated corpus. Thus, we
reduce the involvement of domain experts, who would otherwise have to provide manual annotations and help with
the design of hand crafted patterns. We demonstrate how our framework is used to develop a system which achieves
state-of-the-art performance on a public benchmark corpus.

Background
Due to the continued growth of biomedical publica-
tions, it has become very difficult for scientists to keep
up with the new findings reported in the literature. As
a consequence, we have observed an increase in the
effort spent on automatically extracting information from
research literature and developing biomedical text mining
tools.
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This paper aims to address the relation extraction task,
which identifies selected types of relationships among
entities (e.g., proteins) reported in text.
Approaches to the relation extraction task can be cat-

egorized into two major classes: (1) machine learning-
based approaches and (2) pattern-based approaches.
Machine learning-based approaches are data-driven and
can derive models from a set of annotated data [1-7].
The use of machine learning methods can be quite effec-
tive, but the performance of resulting systems depends
on the quality and the amount of annotated data. For
example, large annotated corpora become available for
the protein-protein interaction relation task, reflecting a
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general community-wide interest [8]. But this situation
does not always hold for relations of different scientific
interest, because preparing annotated corpora is gener-
ally time consuming and expensive and it also requires
domain expertise and significant effort to ensure accuracy
and consistency. In contrast, pattern-based approaches do
not require annotated data to train a system. However,
they do require domain experts to be closely involved in
the design and implementation of the system to capture
the patterns used for extracting the necessary informa-
tion. Some systems rely on extraction patterns defined
at the surface textual level or based on outputs from
a shallow parser [9-12]. Others use deep parsers with
hand-crafted patterns [13-17]. As found in OpenDMAP
[18], a semantic grammar may be utilized with text liter-
als, syntactic constituents, semantic types of entities, and
hyponomy. In all cases, rigid extraction patterns are man-
ually encoded in the systems. Owing to rigid patterns,
pattern-based approaches usually achieve a high precision
but are often cited for low recall. While it is feasible to
manually identify and implement high quality patterns to
achieve a good precision, it is often impractical to exhaus-
tively encode all the patterns necessary for a high recall in
this manner.
Our work enables the fast development of pattern-based

systems, while mitigating some of these concerns. We aim
to reduce the involvement of domain experts and their
manual annotation, and to attain high precision and recall.
Our approach starts by identifying a list of trigger words

for the target relation (e.g., “associate” for the binding
relation) and their corresponding Trigger specifications
(e.g., the number and type of arguments expected for each
trigger). Given this information, we make use of linguistic
principles to derive variations of lexico-syntactic patterns
in a systematic manner. These patterns are matched with
the input text in order to extract target relations.
To improve the applicability of the generated patterns,

we incorporate two additional design features. The first is
the use of text simplification. This allows us to design a
small set of lexico-syntactic patterns to match simple sen-
tence constructs, rather than try to account for all com-
plex syntactic constructs by generating an exhaustively
large amount of patterns. Second, the framework exploits
referential relations. With this method, two phrases refer-
ring to the same entity (e.g., coreference relation) or in a
particular relation (e.g., meronymy relation, also known
as part-of relation) are detected in text, and links are
established between them. These links can be used when
seeking the most appropriate phrase referring to the tar-
get entity and, hence, allow for extraction of target entities
beyond lexico-syntactic patterns.
The proposed approach is based on the property of

the language, rather than task-specific knowledge. There-
fore, it is generalizable for different trigger words and

potentially applicable to many different types of informa-
tion targeted in biomedical relation extraction tasks.
We acknowledge several studies underlying our proposed

framework. The automated pattern generation employed
in this study shares the fundamental assumptions of cer-
tain linguistic theories, such as Lexicalized Tree Adjoining
Grammar (LTAG) [19], Head-Driven Phrase Structure
Grammar [20], and Lexical Functional Grammar [21]. In
particular, we believe that the concept underlying our
method is similar to that of LTAG. The paradigm of infer-
ring patterns exploited in our method shares the ideas
with [22-30], but we focus on a specific set of patterns
pertaining to the expression of biomedical relations.
Simplifying a sentence as a prerequisite for biomedical

information extraction was studied in the past [9,11,31-34].
The use of meronymy and its opposite holonymy, among
other relationships found in the biomedical ontology, was
discussed in [35]. Some of these relations were later con-
sidered in biomedical information extraction systems in
order to improve their performance [36-38]. These rela-
tions and paradigms are in conjunction with our own
two additional referential relationships: coreference and
hyponymy. We integrate them in our framework and
examine their utility for biomedical relation extraction.
To evaluate the framework, we test it by producing an

extraction system for six relations that were part of the
BioNLP-ST 2011 and 2013 GE tasks. We show that by
just taking the specification of trigger words (root word
only), we produce a relation extraction systemwith results
that compare favorably with state-of-the-art results on
this corpus. We further show that we can achieve good
precision and recall with the patterns generated from
the trigger, and that simplification and referential relation
linking can increase the recall without compromising the
precision.

Methods
A. Architecture overview
The architecture of our framework has several com-
ponents (Figure 1), as summarized below and detailed
in sections B-F. The framework consists of four system
modules (Pattern generation, Pattern matching, Sentence
simplification, and Referential relation linking) and two
external modules (Parsing and Entity typing).
It also requires Trigger specifications and associated

Pattern templates to locate the relations of interest. An
example trigger specification is shown below:

(1) Trigger: phosphorylate 1
〈type〉 = phosphorylation 2
〈 frame〉 = Frame:NP0/NP1 3
〈NP0 type〉 = gene or gene product 4
〈NP1 type〉 = gene, gene product or protein part 5
〈NP0 role〉 ← agent 6
〈NP1 role〉 ← theme 7
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Figure 1 Framework architecture. The framework consists of four modules: Pattern generation, Pattern matching, Sentence simplification, and
Referential relation linking. There are two external modules: Parsing and Entity typing. The framework requires Trigger specifications and
pre-defined Pattern templates to generate patterns. Then it extracts relations from text using the generated patterns.

In the above example, Line 1 shows the trigger word,
“phosphorylate” in this case. Line 2 indicates that it is the
trigger for the relation “phosphorylation”. Line 3 specifies
that the trigger syntactically chooses two noun phrases,
designated as NP0 and NP1. Lines 4–5 add selectional
restrictions, by requiring NP0 to be a gene or gene prod-
uct (GGP) and NP1 to be either a GGP or a protein part.
Lines 6–7 show that if NP0 and NP1 can be extracted, and
if both NP0 and NP1 meet the above constraints, then the
framework will assign their semantic roles of agent and
theme, respectively.
Now consider the following example sentence:

(2) The c-Jun amino-terminal kinase phosphorylates
NFAT4.

From (2), we will extract “the c-Jun amino-terminal
kinase” as the agent and “NFAT4” as the theme of the
phosphorylation relation. This extraction is the result
of matching the text fragment with a pattern that
is partly derived from the trigger specification. This
pattern should not only capture the general syntac-
tic form of a clause involving a transitive verb in an
active voice, but also capture the selection restrictions
imposed by the word “phosphorylates” and the argu-
ments. Thus, this pattern contains information described
in two places: (1) lexical trigger that specifies the argu-
ments, the selection restrictions on the argument, and
the role they play, and (2) the syntactic constraints
corresponding to different constructs (in this exam-
ple, the active clause). We call the former “trigger
specification”, and the latter “pattern templates”. Actual
lexico-syntactic patterns are obtained by merging the
trigger specifications and pattern templates. As we shall

see later (section B), the combination of these two is
mediated by the frame that is mentioned in the trigger
specification.
We now briefly discuss four modules of the sys-

tem framework: Pattern generation, Pattern matching,
Sentence simplification, and Referential relation linking
(Figure 1).
The Pattern generation (section C) module uses trig-

ger specifications and predefined pattern templates to
derive lexico-syntactic patterns for each trigger word. The
Patternmatching (section D) module then matches frag-
ments of text with lexico-syntactic patterns, and extracts
the textual expressions in the trigger and argument posi-
tions. In order tomore effectively match with the patterns,
the Sentence simplification (section E) module is used
to preprocess the input text. It aims to ensure that the
lexico-syntactic patterns generated in the previous step
are able to be matched even in complex sentences. Finally,
the Referential relation linking (section F) module links
arguments identified by the pattern matching module
with the target entities they refer to, where applicable.
This step enables the system to find relations between
more appropriate entities than the ones referred by textual
expressions in the argument position.
In addition to the above four system modules, there are

two external modules. One is the Parsingmodule, which is
used by the pattern matching step. The other is the Entity
typing module, which assigns semantic types or categories
to noun phrases. Both are found to be useful to enhance
the precision of the relation extraction task [12,18,39].

B. Trigger specification
Trigger specifications are used to locate triggers and argu-
ments in text for target relations. To make it easier to
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specify triggers, we ask users to provide the trigger’s root,
which is the primary lexical unit of a word. From the
root morpheme, we can derive other forms of triggers
using our previous work [40]. For example, from “phos-
phorylate” we derive “phosphorylates”, “phosphorylated”,
“phosphorylation”, etc. In general, we generate different
possible forms of triggers and confirm whether they are
used in the literature. In a few cases, we ask the users for
this confirmation. This generation is based on well-known
English inflection rules, and this can be used to match to
the appropriate trigger template.
Next, we show two example trigger specifications for

the same root morpheme, “express”, but with different
semantic types for the argument, gene and RNA.

(3) Trigger: express.01
〈relation〉 = Gene_expression
〈frame〉 = Frame:NP0/NP1
〈NP1 type〉 = gene
〈NP1 role〉 ← theme

(4) Trigger: express.02
〈relation〉 = Transcription
〈frame〉 = Frame:NP0/NP1
〈NP1 type〉 = RNA
〈NP1 role〉 ← theme

Although these two specifications share the same trig-
ger word, they represent different types of relations: gene
expression and transcription. The gene expression rela-
tion requires its theme (NP1) to be a gene, whereas the
transcription relation requires its theme (NP0) to be an
RNA. These examples show that argument types in the
trigger specification are essential to the framework to
achieve a high precision, because they emphasize the
selection restrictions on arguments.

C. Pattern generation
Provided with a trigger specification, we use the “frame” to
associate a trigger with a set of pattern templates to derive
lexico-syntactic patterns. In the following subsections, we
will define frames and pattern templates, and then discuss
how they can be combined to generate lexico-syntactic
patterns.

C.1 Frames
A frame is a set of pattern templates sharing the same
syntactic nature of the constituents that are likely to be
associated with the trigger. It specifies the arguments of
the trigger. We found that the most frequent frame in
biomedical documents is:

(5) Frame:NP0/NP1

We distinguish NP0 and NP1, because semantically they
play different roles and have different types in the trigger
specification, and syntactically they represent different
grammatical constituents. The above frame may be real-
ized by the standard active form “NP0 V NP1”, where V is
a verb, and NP0 and NP1 appear at the left and right of the
verb, respectively.
Relations can be semantically “directional” or “non-

directional”. For example, phosphorylation is a directional
relation, but binding is non-directional. This is because
“A binds B” and “B binds A” may be used to specify
the same relation between “A” and “B”, but “A phos-
phorylates B” and “B phosphorylates A” represent two
different relations. If a relation is directional (or non-
directional), we would expect that all triggers for that
relation have the property as well. In our framework,
we use an additional binary constraint “〈direction〉 =
directional/non-directional” in the trigger specification
to distinguish non-directional relations from the other,
because currently it is the only place where users inter-
act with the framework. To generate appropriate patterns,
this directionality constraint in the trigger specification
will cause an appropriate defined frame to be chosen: the
non-directional frame differs from the directional one by
allowing for the swapping of the agent and the theme.

C.2 Pattern templates
A pattern template is specified by a sequence of words or
phrases β1, . . . ,βn, followed by a set of constraints. Each
constraint assigns a value for one of the βi features.
To reduce the number of pattern templates, we limit pat-

tern templates to capture one argument at a time. So the
pattern templates will capture pairs <trigger, NPi>. After
templates are instantiated and arguments are extracted,
we combine pairs if they have the same trigger. Thus we
can extract relations with multiple arguments. We believe
that considering one argument at a time is more flexible
and manageable, because such pairs can be applied inde-
pendently, while constraints on combinations can cover
many different relations.
We further categorize pattern templates into two

groups: one with explicit argument, and one with null
argument. We will discuss pattern templates for argument
realization in the next section, and then introduce meth-
ods to generate lexico-syntactic patterns. Lastly, we will
discuss pattern templates with null argument.

C.3 Pattern templates for argument realization
Argument realization, which is at the heart of the area of
linguistics, is the study of the possible syntactic expres-
sions of the arguments of a verb [41]. In this study, we
extend argument realization to nominal and adjectival
triggers derived from verbs as well.
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Verbal triggers Below are examples of pattern templates
for verbal predicate Vtr in active voice:

(6) Template: NP0 VG
〈VG head〉 = Vtr
〈VG head voice〉 = active
〈example〉 = “Runx3 binds”

(7) Template: VGNP1
〈VG head〉 = Vtr
〈VG head voice〉 = active
〈example〉 = “expresses KBF1”

An example template for a verbal predicate Vtr in pas-
sive voice is:

(8) Template: NP1 VG
〈VG head〉 = Vtr
〈VG head voice〉 = passive
〈example〉 = “OTF-1 is expressed”

We use NP1 in pattern templates (7) and (8) in contrast
to NP0 in template (6), because their roles are different.
For example, in trigger specification of (1), NP0 is always
the agent and NP1 is always the theme. Furthermore, in
combination with the constraints expressed within the
trigger specification, the use of template (6) will succeed
only if NP0 is GGP, whereas the use of template (8) will
succeed even if NP1 is a protein part.

Nominal triggers In addition to the standard pattern
templates that are based on verbal forms of the trig-
ger, we also consider cases where the trigger verb is
nominalized (Ntr). For example, “transcribe” can be
nominalized into “transcription” or “transcript”. Nom-
inalization of verbs can be divided into two classes.
The first class is where resulting nouns denote actions,
states, and processes. Their suffixes are typically “-ion”,
“-age”, and “-ance” (e.g., “transcribe”→“transcription”,
“cleave”→“cleavage”, and “appear”→“appearance”). The
second class is where resulting nouns refer to entities (e.g.,
“transcribe”→“transcript” and “produce”→“product”).
Because our primary interest is processes pertaining to
genes or proteins, we currently focus on the first class.
Typical pattern templates for nominal triggers are:

(9) Template: NPtr of NP1
〈NPtr head〉 = Ntr

〈example〉 = “expression of IFN-gamma”

(10) Template:
[
NP NP1 NPtr

]

〈NPtr head〉 = Ntr

〈example〉 = “c-fos expression”

Besides the theme, the agent can be incorporated via a
“by” phrase. A pattern template for such instances is:

(11) Template: NPtr by NP0
〈NPtr head〉 = Ntr

〈example〉 = “phosphorylation by Cdk5”

As for non-directional relations we discussed earlier, we
have additional templates, which are exemplified by the
following:

(12) Template:
[
NP NPtr of NP0 and NP1

]
or

[
NP NPtr between NP1 and NP0

]

〈direction〉 = non-directional
〈NPtr head〉 = Ntr

〈NP0 role〉 ← theme
〈NP1 role〉 ← theme
〈example〉 = “binding of p50 and p65”

Adjectival triggers English has a general morphologi-
cal process of adjective conversion (Adjtr), which enables
verbs to be used as adjectives. The pattern template for
adjective triggers is

(13) Template:
[
NP ADJ NP1

]

〈ADJ head〉 = Adjtr
〈example〉 = “expressed pseudogenes”

In this framework, adjectival derivations can be the
present participle (14a), the past participle (14b), and the
adjectivization (14c) of a verb.

(14) a. its proximal binding element P0
b. phosphorylated GSK3
c. transcriptional protein Sp1

C.4 Generation of patterns
The pattern generation module automatically creates
lexico-syntactic patterns given a list of trigger specifica-
tions and frames.
To associate pattern templates with frames, verb type

information is used. For example, one constraint in
English is that only transitive verbs can be passivized.
Therefore Frame:NP0/NP1 contains template (6), (7), and
(8), but Frame:NP0 contains template (6) only. Given the
trigger specification of (1) for “phosphorylate” having
Frame:NP0/NP1, we will automatically generate lexico-
syntactic patterns like “NP0 phosphorylates”, “NP1 is
phosphorylated”, etc..
The automatic generation procedure is similar to the

concept of LTAG. In LTAG, a tree family associates a
verb lexeme with a given subcategorization. The sub-
categorization includes a set of grammatical structures
that represent all the possible lexico-syntactic variations
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for that verb lexeme. So grammatical structures can be
obtained by combining lexical rules and syntactic trans-
formations. Compared with LTAG, the “frame” in our
approach is essential but not exactly a subcategoriza-
tion in LTAG. The trigger specifications are similar to
tree families in LTAG, which associate a trigger lexeme
with a given frame. In addition, we also consider verb
nominalization and adjectivization.

C.5 Pattern templates with null argument
There are cases when the writing style does not fol-
low the common trigger-argument association. When the
argument is omitted, but implied, we call them “elliptical
construction”. Following are some examples of (a) ellipti-
cal constructions, and (b) how they would be written if the
trigger-argument association would be required.

(15) a. When phosphorylated, PI-1 inhibits PP-1.
b. When is phosphorylated, PI-1 inhibits PP-1.

(16) a. LMP1 activated NF-kappa B via phosphorylation.
b. LMP1 activated NF-kappa B via phosphorylation.

Both (a) and (b) are grammatically correct and express
the same underlying idea in (15) and (16), but we tend to
write (a) rather than (b) as a shorthand. Such null argu-
ment structure is similar to the null complement anaphora
(deep anaphora) in a modern syntactic theory [42] and the
implicit argument in a semantic theory [43]. For the rela-
tion extraction task, we observe that the elided argument
may be found as its antecedent and determined by another
trigger that selects it. Our framework recovers them as
part of the relation extraction process, by applying for the
null argument pattern templates. It should be noted that
such elliptical constructions can appear in various posi-
tions of a sentence, e.g., at the beginning (15a) or at the
end (16a). These templates always rely on the whole sen-
tence construct, therefore are too cumbersome to express.
We designed some pattern templates to match sentences
like (15a) and (16a). Whether there exists a more general
and clearer way to express these types of pattern templates
needs to be further explored.

D. Pattern matching
Consider the text fragment where “JNK” and “NFAT4”
have already been tagged as gene or gene product.

(17) JNK phosphorylates NFAT4

This fragment is captured by the generated lexico-
syntactic patterns derived from Frame:NP0/NP1 and the
trigger specification “phosphorylate” in (1). The next step
is to extract the actual agent and theme. Specifically, pat-
tern template (7) matches the “phosphorylates” word as
a trigger, and “NFAT4” as NP1. The trigger specifica-
tion (1) checks NP1’s type, which is GGP, and assigns its

role for a theme. Therefore, we get<phosphorylatestrigger,
NFAT4theme>. Similarly, by using pattern template (6) we
can extract <phosphorylatestrigger, JNKagent>.
For pattern matching, we would like to mention two

issues. First, as illustrated above, the pattern matching
engine must be able to check the types of NPs are con-
sistent with those mentioned in the trigger specifications.
For this purpose, any method that assigns types to noun
phrases or named entities, such as BioNex [39] or Genia
tagger [44] can be employed. In our evaluation, we have
used the BioNex tool.
Secondly, in order to match a broader range of phrases,

we skip verbal auxiliaries and adjuncts for pattern match-
ing. By auxiliary verbs, we mean verbs used to express
tense, aspect, modality, etc. By adjuncts, we mean the
optional phrases that do not affect the main meaning of
a sentence. First, consider the following examples having
auxiliary verbs:

(18) a. has also been demonstrated to express gp70
b. PCC 6803 is able to express

The above examples belong to pattern templates (7) and
(8), respectively. However, none of them can be directly
matched because of the complex way in which the predi-
cates are expressed. This construction of consecutive verb
groups makes basic pattern matching extremely labori-
ous, because of the many variations they can introduce.
In this framework, we would like to avoid constructing
complex pattern templates, thereby reducing the burden
of system development. We notice that (1) syntactically,
such consecutive verb groups form a dependent-auxiliary
construction: dependent-auxiliary + main-verb, and (2)
semantically, the “agent” and “theme” are always related
to the last main-verb, rather than the auxiliary. Thus, we
match the consecutive verb group as a whole, then choose
the last verb as the head of the whole sequence.
Second, let us look at adjuncts in the following

sentences:

(19) a. p45 mRNA is abundantly transcribed in
the granulocyte fraction of human peripheral
blood cells.

b. Abundant expression of erythroid
transcription factor P45 NF-E2 mRNA
in human peripheral granurocytes.

The most frequent adjuncts that are likely to be skipped
are the adverbial adjuncts, e.g. “abundantly” and “in the
granulocyte fraction of human peripheral blood cells”
in (19a). In addition, adjective-nominal adjuncts are also
skipped, e.g “Abundant” and “in human peripheral gra-
nurocytes” in (19b).
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E. Sentence simplification
So far, we have discussed how arguments can be extracted
by matching patterns. But even with a large number of
patterns automatically generated in the proposed man-
ner, the recall of the resulting system is still low because
sentence constructions and writing styles vary consider-
ably in actual text, and the number of variations to be
considered is overwhelmingly high. For example, consider
sentence (20):

(20) Active Raf-1 phosphorylates and activates
the mitogen-activated protein (MAP) kinase/extracellular
signal-regulated kinase kinase 1 (MEK1), which in turn
phosphorylates and activates the MAP kinases/ extracel-
lular signal regulated kinases, ERK1 and ERK2. (PMID
8557975)

It is difficult to extract phosphorylation relation
<phosphorylatestrigger, ERK1theme> and <phosphory-
latestrigger, ERK2theme> from (20) by preconceiving com-
plex patterns required and exhaustively encoding them
along with all possible variations. On the other hand, if we
can simplify the syntactic structure of (20) and obtain the
following sentences, the automatically generated patterns
can easily match the simple sentences:

(21) a. Active Raf-1 phosphorylatesMEK1.
b.MEK1 in turn phosphorylates ERK1.
c.MEK1 in turn phosphorylates ERK2.

This and many other instances that we observed in
biomedical research articles motivated us to separate the
various structures of a sentence first, and then match
patterns to the simplified sentences.
Complex constructs, e.g., coordinations and relative

clauses, pose a challenge for state-of-the-art full parsers.
However, even if these constructs can be detected cor-
rectly using full parsers, new patterns are still needed to
skip parts of a construct (e.g., skipping conjuncts in a
coordination or skipping relative clauses). When using a
dependency parser, more collapsed rules involving prepo-
sitions, conjuncts, as well as information about the refer-
ent of relative clauses are used to get direct dependencies
between content words [45]. Both cases will increase the
complexity of patterns and, thus, increase the pattern
encoding effort.
Alternatively in this framework, we introduce sentence

simplification as a preprocessing module. Given an input
sentence, this module outputs a set of generated simplified
sentences, thus conceals the syntactic complexity from the
pattern matching step.

E.1 Complex constructs for simplification
In this section, we will describe syntactic constructs that
the preprocessing module simplifies. For further details of
our sentence simplifier, iSimp, we refer to [33].
Coordinations are syntactic structures that link two

or more items (conjuncts) of syntactically equal status
[46]. These conjuncts are linked by coordinating conjunc-
tions (e.g., “and”, “or”, and “but”). Our primary concerns
are coordinations of nouns (22a), noun phrases (22b),
verbs (22c), and verb phrases (22d).

(22) a. [DNMT] or [MBP]
b. both [the cytoplasm] and [the nucleus]
c. [activates] and [phosphorylates]
d. Foxp3 could [down-regulate . . . ] and [inhibit . . . ]

For a coordination, the original sentence can be split
into multiple ones, each containing one conjunct.
Relative clauses are clauses that modify noun phrases.

For example,

(23) a. a complex tertiary structure [that is essential for
their function]

b. the percentage of cells [expressing IFN-gamma]
c. . . . that is dependent on the interaction of CD40
with CD40 ligand [expressed on activated T cells]

There are two types of relative clauses that frequently
appear in biomedical text: full relative clauses and reduced
relative clauses. Full relative clauses (23a) are introduced
by relative pronouns, such as “which”, “who”, and “that”.
Reduced relative clauses (23b) and (23c) start with a
gerund or past participle and have no overt subject. A sen-
tence containing a relative clause can be simplified into
two sentences: the original sentence without the relative
clause and the other that consists of referred noun phrase
as a subject and the relative clause.
Appositions are constructs of two noun phrases next to

each other, typically separated by comma and referring to
the same entity. For example,

(24) a. the lymphocyte-specific protein tyrosine
kinase, [p56lck]

b. BV-173, [a bcr-abi-positive B-cell line]

Appositions can be detected by searching for two noun
phrases separated by a comma, when they are not part
of a coordination. In addition, because one noun phrase
(appositive) normally renames or describes the other, it
usually begins with a determiner or a number (as shown
above). Appositions can be simplified into two sentences:
one with the referred noun phrase and the other with the
appositive.
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Parenthesized elements are any words enclosed
within “()”, “[]”, and “{}”. They usually refer to or describe
preceding noun phrases.

(25) a. chronic myeloid leukemia (CML)
b. AzadC (or AzaC)

When simplifying parenthesized elements, an addi-
tional sentence is created only with the parenthesized
elements without the preceding nouns phrase.

E.2 Dealing with attachment ambiguities
Attachment of phrases poses one of the well-known prob-
lems in syntactic ambiguity.

(26) a. a dominant negative mutant of [referred NP TRAF2]
that is involved in TNF signaling

b. [referred NP a specific property] of immortalized cells
that can not be explained only by . . .

(27) a. [NP coordination UV irradiation and H202 treatment]
of T lymphocytes

b. methylational status and [NP-PP mRNA expression
of DNA methyltransferases]

(28) a. [monocyte adhesion] and [IFN-gamma]
b. PCR [primers and conditions]

Examples in (26) refer to relative clause attachment
ambiguities, where there is a complex NP of the type “NP1
prep NP2” followed by a relative clause. In such cases,
it is unclear whether to attach the relative clause to the
first noun phrase (NP1) or the second one (NP2). Other
kinds of attachment ambiguity include PP-attachment,
e.g., “NP1 and NP2 PP” (27), and the attachment involv-
ing coordination, e.g., “Adj NP1 and NP2” (28). Solving the
attachment problem is important in sentence simplifica-
tion, but we believe it is not a purely syntactic problem
[47]. Semantic information is also necessary to make a
decision. Therefore, in this study, we produce alternative
attachments as candidates while simplifying sentences,
and leave the decision to the pattern matching module
where type information is available.

F. Referential relation linking
By using patterns and sentence simplification, the sys-
tem can detect textual expressions in the argument
position. Sometimes, the referred entity is mentioned
somewhere else in the text. Consider example (29). The
system can extract binding relation <dimerizedtrigger, the
proteintheme> from (29), but the actual target entity is
“c-Fox”. To link these phrases, we developed patterns to
extract referential relations.

(29) The stability of c-Fox was decreased when the
protein was dimerized with phosphorylated c-Jun.

F.1 Referential relations
Referential relation patterns are designed to extract the
relationship of one nominal phrase to another, when one
provides the necessary information to interpret the other
[48]. By utilizing referential relations, an extraction sys-
tem is able to identify an actual target entity beyond the
initially extracted arguments.
Co-referential relations (or co-references) occur when

multiple expressions refer to the same referent. For
instance, in the previous example, “the protein” and
“c-Fox” both refer to the same object. In a co-referential
relation, the anaphoric reference can be a pronoun or def-
inite noun phrase, and its antecedent can be the actual
name of protein or gene. In this study, co-referential rela-
tions are not extracted, except for the case of a relative
pronoun, because we consider their detection as a sepa-
rate and independent task from pattern-based extraction.
Part-whole relations are useful when an argument

extracted for a trigger comprises a part of the target entity.
For example:

(30) Both Eomes and Runx3 bind at the Prf1 locus.

For biomedical information extraction, this framework
focuses on relations between protein parts and a protein,
e.g., a residue in a protein. Such part-whole relations in
example (30) can be captured by patterns like “NPwhole
contains NPpart” or by the existence of keywords like
“locus”, “promoter”, and “domain”.
Member-collection relations are useful in linking a

generic reference to a group of entities that are specified
in other places in text. For example:

(31) expression of adhesion molecules including
integrin alpha, L-selectin, ICAM-3, and H-CAM

The above example illustrates that the generic reference
“adhesion molecules” can be extracted as an argument
of the trigger “expression”. Meanwhile, specific referred
entities include “integrin alpha”, “L-selectin”, “ICAM-3”
and “H-CAM”. We consider patterns like “NP, such as NP
(, NP)*” to identify this type of relations.
Hyponymy relations are used when argument X is

a hyponym of argument Y, if X is a subtype of Y, or
when an instance of X refers to a concept Y. Thus,
in (32a), “CD14” is said to be a hyponym of “membrane
glycoprotein”, and in (32b), “p130 Crk-associated sub-
strate (Cas)” is a hyponym of “protein”. When linked,
the system extracts <expressedtrigger, CD14theme> and
<phosphorylatedtrigger, Castheme>, respectively.

(32) a. CD14 is amembrane glycoprotein expressed
specifically on . . .

b. p130 Crk-associated substrate (Cas) was originally
identified as a highly phosphorylated protein.



Peng et al. BMC Bioinformatics 2014, 15:285 Page 9 of 18
http://www.biomedcentral.com/1471-2105/15/285

To achieve this goal, we identify the fragments having
keywords such as “acts as” or “is identified as”, which are
similar to the ones in [49] and [50]. Moreover, the apposi-
tion construct can also hold a hyponymy relation between
the appositive and the referred noun phrase.

F.2 Linking entities through referential relations
Wewill use the example in Figure 2 to illustrate integrating
basic patterns and linking relations.
This example contains one transcription relation. Our

goal is to extract its trigger and argument, namely <tran-
scribedtrigger, tumor necrosis factor alphatheme> which
are highlighted in the sentence. We assume “tumor necro-
sis factor alpha” is typed as a gene.
Given the trigger “transcribe” and using pattern tem-

plate (8) as discussed earlier, we can extract <tran-
scribedtrigger, the earliest genestheme>. But “the earliest
genes” is not a named entity (This can be discovered
by using a named entity recognition tool). In addition,
we extract one member-collection relation <onemember,
the earliest genescollection> and one hyponymy relation
<tumor necrosis factor alphahyponym, onehypernym>. The
first relation enables us to infer <transcribedtrigger,
onetheme>, since the collection of genes (“the earliest
genes”) are “transcribed” and, then, one of its members
can be “transcribed” as well. Then, the latter relation
allows us to state “tumor necrosis factor alpha” is the “one”
in this context and hence to conclude <transcribedtrigger,
tumor necrosis factor alphatheme>.
The algorithm for the linking is as follows. First we col-

lect all referential relations in the document. Then we use
the patterns to get instances for a trigger. If the instance’s
argument is not an informative reference, we recursively
search for all of its references in the detected referential
relations. If an appropriate reference of an entity is found,
we link it to the trigger, by creating a new pair <trigger,
referred entity>. This search procedure ends when we
exhaust all possibilities. As a result, more than one pair
may be created and all pairs are proposed.

G. Evaluation design
Our framework is designed to extract a variety of rela-
tions. For the evaluation of our framework, we need test
sets containing different types of relations. Furthermore,
the data set should include trigger annotations needed

to automatically generate patterns. We chose to use the
corpora of BioNLP-ST (Shared Tasks) 2011 and 2013 GE
tasks, which included several event extraction subtasks
[51,52].

G.1 BioNLP-ST GE task
The BioNLP-ST GE task series aim to extract various
events from biomedical text. The first shared task work-
shop was held in 2009, and the most recent one in 2013.
In this study, both 2011 and 2013 corpora are used for the
evaluation. We will refer to them as “GE 2011” and “GE
2013” hereafter.
In GE 2011 task, evaluation results were reported

on (W)hole, (A)bstract, and (F)ull paper collections,
respectively. The abstract collection contains paper
abstracts, the full text collection contains full papers,
and the whole collection contains both abstracts and
full text. Following the same setting, we also report our
results on W, A, and F. GE 2011 corpus covers nine
types of events: Gene_expression, Transcription, Local-
ization, Protein_catabolism, Phosphorylation, Binding,
Regulation, Positive_regulation, and Negative_regulation.
Among these, we focused on events with simple entities as
themes. Thus, Regulation and its subtypes were removed
because their themes could be other events with other
triggers. As a result, only the first 6 types of events were
evaluated. The first five events were called “Simple Event”
collectively. In the GE 2013 corpora, we consider the same
events as well.

G.2 Trigger selection
Since our approach requires a list of triggers, we used the
triggers annotated in the corpus. To effectively evaluate
our framework, we further decided to focus on a selected
group of triggers. Among triggers in GE corpus, we chose
only the triggers that are based on verbs (e.g., phospho-
rylate) and their nominal and adjective forms (Table 1)
as discussed before. We did not use the triggers that are
pure nouns (e.g., level) or adjectives (e.g., positive). Addi-
tionally, we eliminated verb triggers like “find” and “form”
because they are not specific to particular biomedical
events.

G.3 Evaluationmeasurement
The evaluation was carried out by comparing the pre-
dicted annotation with the gold standard. We used the

Figure 2 An example of the referential relation linking. The pattern will extract “the earliest genes” as the theme first. Then with the
member-collection and hyponymy relations linking, the framework can identify “tumor necrosis factor alpha” as the actual theme of “transcribed”.
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Table 1 Selected triggers

Events Verb Derivation

Gene_expression express -ion, over-, co-, non-, re-

produce -ion, non-, co-

Transcription express1 See above

initiate -tion

produce1 See above

transcribe -tion, -tional, -tionally

Protein_catabolism cleave -age

degrade -tion, -tive

proteolyse -sis, -tic, -tically

Phosphorylation phosphorylate -ion, under-, hyper-

Localization accumulate -ation

appear -ance

detect

export

express2 See above

import

localize -ation, co-, re-

locate -ion, re-, trans-

migrate co-

mobilize -ation, im-

release

secrete -ion

transport

Binding associate -ion

bind DNA-

engage -ment

interact -ion

ligate -ion, co-

link cross-

oligomerize -ation

recruit -ment

immunoprecipitate co-

1. This predication is always used together with “mRNA”.
2. This predication is always used together with “surface”.
The Derivation column shows affix used to derive other forms of triggers.
Singular, past tense, and gerund forms are not shown.

approximate recursive matching decomposition mode as
in the GE task [51], which requires extracting equality
between the two events as follows:
1. the event types are the same;
2. the triggers are the same; and
3. the arguments are the same.
Same triggers and arguments means that “the given text

span is equivalent to a gold span if it is entirely contained

within an extension of the gold span by one word both
to the left and to the right.” For example, if (a1, b1) is the
given span and (a2, b2) is the gold span, they are the same
iff a1 ≥ a2 and b1 ≤ b2.

G.4 System implementation
This section describes one implementation of the framework.
The raw text was parsed by Charniak-Johnson parser

using David McClosky’s biomedical model [53]. We chose
Charniak-Johnson parser because it was convenient in
comparing the evaluation with existing systems [54,55].
But other constituent parsers would also work with little
integration effort.
We consider the typing as a critical component of the

framework. For example, (1) for relations like phosphory-
lation, the theme needs to be a noun phrase of type protein
or protein part; (2) for triggers like “associate”, the bind-
ing relation should not be extracted if its themes’ are not
proteins or protein parts; and (3) for triggers like “express”
and “detect”, the themes’ type must be gene or mRNA,
and the relation is either gene expression or transcription,
respectively. This implementation of the framework uses
a modified version of BioNex, which was developed based
on ideas from [39] and used in RLIMS-P [12]. BioNex
can detect semantic types of entities referred by nouns
or noun phrases, such as protein, gene, chemical or their
part. The type detection is based on considering the head
nouns and their suffixes, and comparing them with a
predefined list for each type.
Patterns were generated and matched from the parse

tree using the tree regular expression [56]. Thus pattern
templates were designed using tree regular expression as
well. 26 pattern templates were created. To extract the
predicate in a consecutive verb group, (e.g., “bind” in “is
known to bind”), we looked at the verb phrase subtree and
searched for its rightmost children. When the last verb
phrase in the group was found, we picked its head.
For the simplification task, we used iSimp, which is a

sentence simplifier specifically created for biomedical text
[33]. Currently, iSimp can detect six types of simplifica-
tion constructs: coordination, relative clause, apposition,
introductory phrase, subordinate clause, and parentheti-
cal element. It uses shallow parsing and state transition
networks to detect all forms of simplifications. The detec-
tion of various simplification constructs is based on the
chunks (noun phrases, verb groups, and prepositional
phrases), and from these, iSimp generates simplified sen-
tences. iSimp also handles nested constructs. For an in-
depth description of this process, we refer the reader
to [33].
For anaphora resolution, we used JavaRAP, which is

based on the algorithm of [57] and implemented by [58].
Other referential relation patterns were defined using tree
regular expressions.
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The discussion above describes an implementation of
the framework. In order to evaluate the framework using
the BioNLP-ST GE data, we implemented a relation
extraction system for the six events in these data sets. The
relation extraction system is obtained from this imple-
mentation by specifying the triggers, which were chosen
by considering a subset of the trigger words marked in the
training set for the six events in the GE 2011 training set.
In particular, we chose only frequently occurring verbal
trigger words. Note the trigger specifications require only
the base form of these verbal triggers (e.g., “phosphory-
late” and “interact”). Because this set of triggers are limited
in the subcategorization variety, they fall into a handful
set of predefined trigger specifications. As a result, we are
able to quickly complete the trigger specification for these
words.
This relation extraction system implementation is

available as a web service accessible: http://research.
bioinformatics.udel.edu/ixtractr. Unlike the evaluations
conducted in this paper, the web service does not have
gene mentions marked in the text as the input. Instead, we
integrated an in-house module to detect gene mentions.
Because this module only accepts PMIDs as the input
rather than full text, the current web service only supports
PMID input as well.

Results and discussion
A. Results on GE 2011 corpus
After trigger selection, events related to the selected trig-
gers were found to be very frequent in the corpus, cov-
ering 81.46% and 78.78% of all events in the training and
development sets of the GE 2011 corpus, respectively
(Table 2). This intrinsic limitation, however, led to an
upper bound of 89.78% and 88.13% in the F-score of our
system.
Table 3 summarizes the performance of our system

on the training set of the GE 2011 corpus. We provide

Table 2 Statistics of the data sets after modification

Events Training set Development set

(%) (%)

Simple Event 3,165 84.92 923 80.19

Gene_expression 2,094 86.64 614 79.23

Transcription 511 72.59 115 69.28

Protein_catabolism 105 92.11 22 95.65

Phosphorylation 185 94.87 107 95.54

Localization 270 90.91 65 86.67

Binding 874 71.00 380 75.55

Total 4,039 81.46 1,303 78.78

Statistics of events with selected triggers on BioNLP-ST 2011 ST GE task. If an
event’s argument is within an equivalence relation with nmembers, this event
will be counted n times. % = Events with selected triggers/All events.

results for the Simple Event averaging over five events,
results for each of the six individual events including Bind-
ing, as well as the overall results for all events. Overall,
we obtained a global F-score of 77.78% for the Simple
Event and 65.14% for the Binding Event. The second part
of the results shows the Precision/Recall/F-score when
we limited the task to subset events containing only
selected triggers. Here, we achieved an F-score of 85.18%
for the Simple Event and 79.44% for the Binding Event.
We also noted that our system attain a higher preci-
sion (> 90%) and a higher recall (> 70%) on this data
subset.
Table 4 summarizes our results on the development set

of the GE 2011 corpus. On the whole set, F-scores are
reported as 75.10% for the Simple Event and 62.20% for
the Binding Event. On the subset, F-scores are 84.27% and
73.55%, respectively. In our experiment, the development
set of GE 2011 task contains 1,654 events while the train-
ing set contains 4,956 events. Therefore, the numbers on
development sets are somewhat lower than those on the
training set because a single error or missing case has a
higher impact on the overall performance on this smaller
data set.
Table 5 shows the effects of different system compo-

nents on the overall results of our system. We considered
three scenarios: (1) using only the argument and null
argument patterns; (2) using also the sentence simpli-
fication; and (3) using both sentence simplification and
referential relation linking. Note that the result of sce-
nario (3) is the same as in the second part of Table 3.
Overall, sentence simplification increased the recall by
23%, while referential relation linking achieved an addi-
tional 8% increase. Likewise, results for the development
set shows an increase of 22% and an additional 7% in
recall by simplification and referential relation, respec-
tively (Table 6). Results in both tables indicated that with-
out increasing the number of patterns, simplification and
referential relation linking are helpful in extracting more
instances of relations.
Table 7 shows results from the test set of 2011 GE tasks.

Our system achieves an overall F-score of 72.66% for the
Simple Event, as compared to the F-score of 73.90% which
was the best score for the Simple Event subtask on the
GE 2011 test set [51]. Our system achieves an F-score of
55.57% for the Binding Event, as compared to the F-score
of 48.79% which was the best score for the Binding Event
subtask on the GE 2011 test set. The best rule-based sys-
tem achieved F-scores of 70.52% and 36.88% with Simple
and Binding events, respectively. Thus, our results com-
pare favorably with those of the top-achieving systems
that participated in the GE 2011 task.
We would like to note that although Table 3, 4, 5, 6, and

7 show the results on different partitions of the 2011 data
sets, the system remains unchanged because the trigger

http://research.bioinformatics.udel.edu/ixtractr
http://research.bioinformatics.udel.edu/ixtractr
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Table 3 Evaluation results on the whole, abstract, and full paper collections from the training set of BioNLP-ST 2011
GE task

Whole Abstract Full

P R F P R F P R F

Whole set

Simple event 92.40 67.16 77.78 93.11 66.87 77.84 89.36 68.44 77.52

Gene_expression 92.27 69.18 79.07 93.01 68.82 79.11 89.86 70.43 78.96

Transcription 92.43 55.54 69.39 92.88 55.67 69.61 89.66 54.74 67.97

Protein_catabolism 91.01 71.05 79.80 93.10 71.05 80.60 –

Phosphorylation 97.42 77.44 86.29 97.78 76.74 85.99 95.00 82.61 88.37

Localization 90.43 70.03 78.94 91.24 70.46 79.52 76.92 62.50 68.97

Binding 90.83 50.77 65.14 90.76 50.68 65.04 91.43 51.61 65.98

Total 92.08 63.10 74.88 92.60 62.57 74.68 89.61 65.83 75.90

Subset with selected triggers

Simple event 92.29 79.08 85.18 92.98 78.92 85.38 89.36 79.79 84.31

Gene_expression 92.27 79.85 85.61 93.01 79.25 85.58 89.86 81.94 85.71

Transcription 92.00 76.52 83.55 92.37 77.93 84.54 89.66 68.42 77.61

Protein_catabolism 91.01 77.14 83.51 93.10 77.14 84.38 –

Phosphorylation 97.42 81.62 88.82 97.78 81.48 88.89 95.00 82.61 88.37

Localization 90.04 77.04 83.03 90.83 77.65 83.72 76.92 66.67 71.43

Binding 90.25 70.94 79.44 90.11 70.47 79.09 91.43 75.29 82.58

Total 91.88 77.32 83.97 92.35 76.95 83.95 89.61 79.22 84.09

Performance is reported in terms of (P)recision/(R)ecall/(F)-score.

Table 4 Evaluation results on the whole, abstract, and full paper collections from the development set of BioNLP-ST 2011
GE task

Whole Abstract Full

P R F P R F P R F

Whole set

Simple event 92.06 63.42 75.10 92.04 65.61 76.61 92.08 61.05 73.42

Gene_expression 92.28 64.77 76.12 91.01 66.75 77.02 93.61 62.88 75.23

Transcription 89.13 49.40 63.57 94.55 57.78 71.72 81.08 39.47 53.10

Protein_catabolism 94.12 69.57 80.00 93.75 71.43 81.08 100.00 50.00 66.67

Phosphorylation 98.77 71.43 82.90 96.77 62.50 75.95 100.00 78.13 87.72

Localization 84.75 66.67 74.63 91.49 70.49 79.63 58.33 50.00 53.85

Binding 91.51 47.12 62.20 86.96 42.94 57.49 98.98 54.80 70.55

Total 91.92 58.46 71.47 90.65 57.62 70.46 93.53 59.53 72.76

Subset with selected triggers

Simple event 91.17 78.33 84.27 91.10 78.74 84.47 91.26 77.86 84.03

Gene_expression 91.18 80.78 85.66 89.93 82.51 86.06 92.48 79.10 85.27

Transcription 89.13 71.30 79.23 94.55 73.24 82.54 81.08 68.18 74.07

Protein_catabolism 94.12 72.73 82.05 93.75 71.43 81.08 100.00 100.00 100.00

Phosphorylation 98.77 74.77 85.11 96.77 65.22 77.92 100.00 81.97 90.09

Localization 83.05 75.38 79.03 89.36 79.25 84.00 58.33 58.33 58.33

Binding 90.73 61.84 73.55 85.71 57.02 68.49 98.98 70.29 82.20

Total 91.06 73.52 81.36 89.63 71.60 79.61 92.89 76.01 83.61

Performance is reported in terms of (P)recision/(R)ecall/(F)-score.
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Table 5 Comparative results of subset events with selected triggers on the whole, abstract, and full paper collections
from the training set of BioNLP-ST 2011 GE task

Whole Abstract Full

P R F P R F P R F

Basic patterns

Simple event 93.37 50.74 65.75 93.68 49.30 64.61 92.20 57.17 70.58

Binding 94.87 29.63 45.16 94.54 28.52 43.82 97.14 40.00 56.67

Total 93.58 46.17 61.84 93.81 44.44 60.31 92.64 54.97 69.00

Using simplification

Simple event 93.30 73.87 82.45 94.28 73.28 82.46 89.31 76.51 82.42

Binding 92.34 51.03 65.73 92.25 49.81 64.69 92.98 62.35 74.65

Total 93.14 68.93 79.23 93.92 67.79 78.75 89.69 74.70 81.51

Using simplification and referential relations

Simple event 92.29 79.08 85.18 92.98 78.92 85.38 89.36 79.79 84.31

Binding 90.25 70.94 79.44 90.11 70.47 79.09 91.43 75.29 82.58

Total 91.88 77.32 83.97 92.35 76.95 83.95 89.61 79.22 84.09

Performance is reported in terms of (P)recision/(R)ecall/(F)-score. The third part is reproduced from the second part of Table 3. “Basic patterns” = using pattern
templates for argument realization and pattern templates with null argument to generate patterns.

word list (extracted from the training set) remains the
same.

B. Analysis of false positives and negatives on GE 2011
corpus
We randomly chose 50 false positive (FP) cases and 180
false negative (FN) cases with 30 for each event type
from the training set of GE 2011 corpora in order to ana-
lyze reasons for failure. We identified two major types of
errors.

B.1 Parsing errors
A large proportion of failure was due to errors made by
the parser. Since the patterns rely on the parser output, the
system failed to recognize a true positive in these cases.
Some of the parsing errors were due to noun phrase coor-
dinations. Although the parser detected the coordination,
the resulting trees could have been shallow or deep.
Figure 3 shows two different parse trees of noun phrase
coordinations: (a) is correctly parsed, but (b) is not. Flat-
tening the coordination and applying relaxed matching

Table 6 Comparative results of subset events with selected triggers on the whole, abstract, and full paper collections
from the development set of BioNLP-ST 2011 GE task

Whole Abstract Full

P R F P R F P R F

Basic patterns

Simple event 93.01 51.90 66.62 91.67 48.99 63.85 94.42 55.24 69.71

Binding 94.95 24.74 39.25 91.67 22.73 36.42 100.00 28.26 44.07

Total 93.32 43.98 59.78 91.67 40.35 56.04 95.17 48.68 64.41

Using sentence simplification

Simple event 92.99 74.76 82.88 92.71 74.70 82.74 93.31 74.83 83.05

Binding 94.59 46.05 61.95 91.67 45.45 60.77 100.00 47.10 64.04

Total 93.31 66.39 77.58 92.47 65.08 76.40 94.38 68.08 79.10

Using sentence simplification and referential relations

Simple event 91.17 78.33 84.27 91.10 78.74 84.47 91.26 77.86 84.03

Binding 90.73 61.84 73.55 85.71 57.02 68.49 98.98 70.29 82.20

Total 91.06 73.52 81.36 89.63 71.60 79.61 92.89 76.01 83.61

Performance is reported in terms of (P)recision/(R)ecall/(F)-score. The third part is reproduced from the second part of Table 4. “Basic patterns” = using pattern
templates for argument realization and pattern templates with null argument to generate patterns.
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Table 7 Results on the (W)hole, (A)bstract, and (F)ull paper collections from the testing set of BioNLP-ST 2011 GE task 1

Event class Whole Abstract Full

P R F P R F P R F

Simple event 92.59 59.80 72.66 92.2 56.09 69.75 93.52 71.17 80.83

Gene_expression 91.89 62.18 74.17 91.29 58.03 70.96 93.15 72.86 81.76

Transcription 93.10 46.55 62.07 92.86 47.45 62.80 94.12 43.24 59.26

Protein_catabolism 100.00 66.67 80.00 100.00 64.29 78.26 100.00 100.00 100.00

Phosphorylation 92.52 73.51 81.93 91.51 71.85 80.50 95.12 78.00 85.71

Localization 96.67 45.55 61.92 97.33 41.95 58.63 93.33 82.35 87.50

Binding 89.58 40.28 55.57 89.20 35.40 50.70 90.10 51.12 65.20

Total 91.97 54.55 68.48 91.68 50.89 65.45 92.64 64.83 76.28

Performance is reported in terms of (P)recision/(R)ecall/(F)-score.

rules could have fixed most of these problems. For coordi-
nation simplifications in particular, we could apply noun
phrase and verb group similarity rules to detect coordi-
nation boundary and transform the subtree from (b) to
(a) [33].
Parsing errors also cause simplification errors. Figure 4

shows the parsing subtree of the fragment “the physi-
cal interaction we detected between Foxp2 and p300”. If
the parse tree were correct, we could remove the relative
clause “we detected” in the simplification step and extract
the binding relation between “Foxp3” and “p300”, but the
incorrect parse tree failed the system. As can be seen,

Figure 3 Two parse trees of coordinations. (a) Parsing tree of the
fragment “FGF1 signaling and NF-KappaB activation”. (b) Parsing tree
of the fragment “adhesion molecule and Hsp expression”.

errors in sentence simplification can propagate and cause
errors in subsequent processing. Most of the simplifica-
tion errors are due to incorrect coordination detection.
However, overall the number of simplification errors are
few, and as can be seen from Table 6, the boost in recall is
significantly more than the drop in precision.

Figure 4 Two parse trees of the fragment “the physical interaction
we detected between Foxp3 and p300”. Parse tree of the fragment
“the physical interaction we detected between Foxp3 and p300”, with
target relation <interactiontrigger, Foxp3theme> highlighted. (a) is the
incorrect parse tree generated by the parser. (b) is the correct parse tree.
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B.2 Missing pattern templates
Another case of false negatives is due to the trigger word
being a noun but not the head of the noun phrase. For
example, our pattern templates could be applied for frag-
ments “transcription of NP” and “expression of NP” but
could not be applied for fragments “

[
NP1 transcription

rate
]
of NP2” or “

[
NP1 expression level

]
of NP2”. We

impose such a constraint in order to maintain a high
precision. The analysis showed, however, that we could
generalize the constraints in the future with some effort,
especially in deciding on the words that can head the NPs.
Similarly, we need to generalize null argument struc-

tures further. For example, consider the fragment

(33) targets c-Fos for degradation

We have a pattern template using “via” but not “for”.
There are a few other cases, where null argument pat-
tern templates could have been applied, but these new
templates need to be further checked.

C. Results and analysis on GE 2013 corpus
Table 8 shows the results for the same six events of the
GE 2013 test set. We still used the trigger list from the
2011 training set. Thus, the system was the same one
used on the 2011 task, without any changes made for the
evaluation on the new corpus.
The system achieves F-scores of 80.07% for the Simple

Event and 60.58% for the Binding Event on the GE 2013
test set with an overall F-scores of 74.44% on the 2013
GE task. These scores compare favorably with the top-
ranking systems in the 2013 GE taska [59]. Our system
achieves the highest scores for Simple Event and Overall.
However there are two participated systems (BioSEM and
HDS4NLP), which have better scores for Binding Event. In

Table 8 Evaluation results from the training,
development, and testing sets of BioNLP-ST 2013 GE task 1

Event class P R F

Training set

Simple event 86.75 72.20 78.81

Binding 88.95 64.83 75.00

Total 87.12 70.82 78.13

Development set

Simple event 89.52 71.73 79.64

Binding 93.58 64.42 76.31

Total 90.68 69.39 78.62

Testing set

Simple event 90.48 71.80 80.07

Binding 71.80 52.39 60.58

Total 85.27 66.05 74.44

Performance is reported in terms of (P)recision/(R)ecall/(F)-score.

comparison with these systems, our system’s strength lies
in its precision, achieving 85.52%, whereas, the precision
of these systems ranges from 72.90% to 80.99%.
The testing set of the GE 2013 task is not available to

the public, hence we cannot directly examine the results.
Instead, we conducted experiments on the training and
development sets. Although the results on these two sets
are consistent with the corresponding results on 2011 cor-
pora, we noticed some differences between the GE 2013
and 2011 corpora: the former is completely comprised of
full-length articles, whereas the latter is mostly made up
of abstracts. We also observed that in the full-length arti-
cles, certain information is repeatedly mentioned within a
single section, therefore there is significant use of ellipses
in such sections. For instance, consider the example from
the GE 2013 development corpus in Figure 5.
For the trigger “phosphorylation” in the third sentence,

the author neglected to mention the theme because it can
be inferred from the context: (1) the previous sentence
also mentions this “BMP-6 induced phosphorylation”, but
its theme has a general term “Smad”, and (2) the actual
proteins “Smad1/5/8” are clearly specified in the first
sentence. As a result, to infer the theme of the trig-
ger “phosphorylation” in the third sentence, we not only
need the syntax information, but also the discourse-level
processing.
Note that the system used in this evaluation remains

the same as the one that was used on the GE 2011 task.
No changes were made to accommodate any differences
between the GE 2011 and 2013 corpora. The focus in this
framework is on the patterns and hence almost all pro-
cessing is syntax-based. While some of our earlier work
on relation extraction has integrated discourse-level pro-
cessing with syntax-based patterns [60], the integration
of such discourse-level processing is beyond the scope
of this work. However, examples as above suggest that
the need for discourse-level processing may be important
for full-length based extraction. We intend to investigate
incorporating the generalized discourse-level processing
into our framework in the future, so that it can be useful
for full-text based extraction.

Conclusions
In this work, we have designed a framework for devel-
opment of biomedical relation extraction systems. The
framework requires as input only a list of triggers and their
specifications to retrieve relations of interest. It utilizes
linguistic generalizations that help speed up the develop-
ment process by proposing various lexico-syntactic pat-
terns as well as improve the performance, particularly
the recall, by making use of sentence simplification and
referential relations.
To evaluate the framework, we developed a relation

extraction system, which was produced using general
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Figure 5 Sample use of ellipses in the paragraph. For the trigger “phosphorylation” in the third sentence, the author neglected to mention the
theme because it can be inferred from the context: (1) the previous sentence also mentions this “BMP-6 induced phosphorylation”, but its theme
has a general term “Smad”, and (2) the actual proteins “Smad1/5/8” are clearly specified in the first sentence.

resources and the only aspect specific to the evaluation
was the selection of trigger words that appear in the cor-
pus. Except for the specification of triggers, other aspects
(parser, typing system, simplification, pattern matching
system) are general purpose systems that already existed.
The fact that only the specification of the triggers is
required from domain experts, together with the fact that
no training set is required, meets our goals for devel-
oping the framework: ability to create effective relation
extraction systems for new relations where resources
(e.g., annotated corpus or database) are not publicly
available.
We evaluate the performance of the system by pro-

ducing a relation extraction system and evaluating it
on the BioNLP-ST 2011 and 2013 GE tasks. The sys-
tem achieved F-scores of 68.48% on the GE 2011 test
set, and 74.44% on the GE 2013 test set. Our analysis
shows that we can achieve high precision and good recall
with the range of patterns automatically generated from
triggers and that simplification and referential relation
linking serve to increase the recall while maintaining the
precision.
In the future, we would like to extend the framework

in two ways. So far, we only considered the triggers that
are verbs and their derived forms. Next, we would like
to account for triggers that are primarily nouns or adjec-
tives. Also, we would like to extend the framework to take
complex entities (e.g., relations themselves) as arguments
rather than just simple entities (e.g., genes or proteins).
We are developing systems for additional relations. In

general, it is a challenging task to identify all the trig-
gers for the relation and to complete their specifications.
This study demonstrates a generalizable relation extrac-
tion framework that can be quickly implemented for new
relations, initially focusing on a few triggers that appear
frequently. While not accounting for a long tail of less fre-
quent triggers, our framework allows additional trigger
specifications to be added with little impact on the exist-
ing trigger list. Thus as new triggers are found, they can
be integrated in the system. Using the framework and this

approach, we have developed a system for miRNA-target
extraction. Preliminary evaluation based on an in-house
corpus of 200 abstracts shows an F-score of the system
over 90% (manuscript in preparation). We would like to
use the experience in developing this and other relation
extraction to design a process involving user interaction
in generating trigger specifications for new relations. In
general, the specification of a trigger needs both domain
knowledge as well as linguistic knowledge. The domain
expert will be able to suggest the trigger words for a rela-
tion, whereas linguistic knowledge will be more useful in
preparing the trigger specifications of sub-categorization,
thematic roles, etc.
In our framework, we already have a predefined set of

subcategorization frames and thematic roles that can be
utilized in the specifications. This can be used to engage
the user in the interactive process. At the beginning, the
users who are domain experts will provide a list of trig-
ger words. Then the process will derive various forms
of triggers using the linguistic knowledge and ask users
to choose. If necessary, the process will use these trig-
gers to generate simple examples for the users to confirm
which predefined specification should be associated to the
trigger. The whole process will communicate with users
in an interactive way, which we expect is able to fur-
ther speed up the development of new relation extraction
systems.

Endnote
a Simple Event includes Phosphorylation as well, same

as in the BioNLP-ST 2011 GE Task 1.
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