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Abstract This paper presents a novel approach to allocation of spatially correlated data, such
as emission inventories, to finer spatial scales, conditional on covariate information observable
in a fine grid. Spatial dependence is modelled with the conditional autoregressive structure
introduced into a linear model as a random effect. The maximum likelihood approach to
inference is employed, and the optimal predictors are developed to assess missing values in a
fine grid. An example of ammonia emission inventory is used to illustrate the potential
usefulness of the proposed technique. The results indicate that inclusion of a spatial depen-
dence structure can compensate for less adequate covariate information. For the considered
ammonia inventory, the fourfold allocation benefited greatly from incorporation of the spatial
component, while for the ninefold allocation this advantage was limited, but still evident. In
addition, the proposed method allows correction of the prediction bias encountered for the
upper range emissions in the linear regression models.

1 Introduction

The development of high-resolution emission inventories is essential for designing suitable
abatement measures. Spatial distributions of emissions can serve as an input for atmospheric
dispersion models, which in turn may produce concentration maps of pollutants contributing to
the adverse health effects, like ammonia emissions. For other air pollutants, such as green-
house gasses (GHG), spatial patterns become helpful in improving identification of distributed
emission sources.

Numerous issues underlying preparation of spatially resolved GHG inventory were
discussed e.g. in Boychuk and Bun (this issue), Bun et al. 2010 or Thiruchittampalam et al.
2010. In general, the task crucially depends on availability of spatially distributed activity data.
For instance, at present in Poland the activity data relevant to GHG emissions can be obtained
at a level of country regions (voivodships). Information of higher spatial resolution can be
often obtained only for some proxy data related to GHG emissions, such as land use and linear
emission sources. Recently, also nighttime lights observed by a satellite have been used for
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more accurate estimation of spatial distribution of CO2 emissions (Ghosh et al. 2010; Oda and
Maksyutov 2011).

Typically, the regression models have been applied for spatial allocation of emission data
(Dragosits et al. 1998; Oda and Maksyutov 2011). However, emissions in general tend to be
spatially correlated, which provides opportunity for potential improvements. This idea moti-
vated us to develop a more advanced approach for accurate disaggregation of air pollution data.

Making inference on variables at points or grid cells different from those of the
data is referred to as the change of support problem (Gelfand 2010). Several
approaches have been proposed to address this issue. The geostatistical solution for
realignment from point to a real data is provided by block kriging (Gotway and
Young 2002). Areal weighting offers a straightforward approach if the data are
observed at a real units, and the inference is sought at a new level of spatial
aggregation. Some improved approaches with better covariate modeling were also
proposed e.g. in Mugglin and Carlin 1998 and Mugglin et al. 2000.

In this study we propose to apply methods of spatial statistics to produce higher resolution
emission inventory data, taking advantage of more detailed land use information. The ap-
proach resembles to some extent the method of Chow and Lin (1971), originally proposed for
disaggregation of time series based on related, higher frequency series. Here, a similar
methodology is employed to disaggregate spatially correlated data.

Regarding an assumption on residual covariance, we apply the structure suitable for areal
data, i.e. the conditional autoregressive (CAR) model. Although the CAR specification is
typically used in epidemiology (Banerjee et al. 2004), it was also successfully applied for
modelling air pollution over space (Kaiser et al. 2002; McMillan et al. 2010). Compare also
Horabik and Nahorski (2010) for another application of the CAR structure to model spatial
inventory of GHG emissions. The maximum likelihood approach to inference is employed,
and the optimal predictors are developed to assess missing concentrations in a fine grid.

The application part of the study concerns an ammonia (NH3) emission inventory in a region
of Poland. Ammonia is emitted mainly by agricultural sources such as livestock production and
fertilized fields. Its high concentrations can lead to acidification of soils, forest decline, and
eutrophication of waterways. Ammonia emissions are also recognized for their importance in
contributing to fine particulate matter; hence its spatial distribution is of great importance.
However, agricultural emission sources cannot be measured directly, and spatial emission
patterns need to be assessed otherwise. This issue was addressed, among others, by Dragosits
et al. 1998, where agricultural and land cover data were used to disaggregate the national NH3

emission totals across Great Britain. We demonstrate that the straightforward approaches based
on linear dependences might be improved by introducing a spatial random effect.

Nevertheless, the proposed approach is of wider applicability, and can be used in numerous
situations where higher resolution of spatial data is needed. In the context of the greenhouse
gasses, the method might be particularly adequate to improve resolution of these activity data
which tend to be spatially correlated. The plausible sectors include agriculture, transportation
and forestry. Improved resolution may in turn contribute to reduction in uncertainties under-
lying GHG inventories.

2 Disaggregation framework

This section presents the statistical approach to the issue of spatial disaggregation. We have
available data on a spatially distributed variable (inventory of emissions) integrated in a coarse
grid. The aim is to estimate the distribution of this variable in a fine grid, conditional on some
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explanatory variables observable in this grid. It is assumed that the variable of interest is
spatially correlated. Its residual covariance structure is set and the conditional autoregressive
model is applied. An additional important assumption of the method is that the covariance
structure of the variable in a coarse grid is the same as that in a fine grid.

Below we specify the model and provide details on its estimation in the coarse grid as well
as on prediction in the fine grid.

2.1 Model

Fine grid We begin with the model specification in a fine grid. Let Yi denote a random
variable associated with a missing value of interest yi defined at each cell i for i=
1,…,n of a fine grid (n denotes the overall number of cells in a fine grid). Assume
that each random variable Yi follows the Gaussian distribution with the mean μi and
variance σY

2

Y i μij eGau μi;σ
2
Y

� �
: ð1Þ

Given the values μi and σY
2, the random variables Yi are assumed independent, thus the joint

distribution of Y=(Y1,…, Yn)
T conditional on the mean process μ=(μ1,…,μn)

T is the Gaussian

Y jμ eGaun μ;σ2
Y In

� �
; ð2Þ

where In is the n×n identity matrix; the superscript T stands for the transpose.
The mean μ represents the true process underlying emissions, and the (missing)

observations are related to this process through a measurement error with the variance
σY
2. The model for the mean process is formulated as a sum of the regression

component with available covariates, and a spatially varying random effect. For this,
the conditional autoregressive model is used. The CAR model is given through the
specification of the full conditional distribution functions of μi for i=1,…,n (Cressie
1993; Banerjee et al. 2004)

μijμ−i eGau xTi βþ ρ
X
j ¼1
j≠i

n wij

wiþ
μ j−x

T
j β

� �
;
τ2

wiþ

0
BBBB@

1
CCCCA; ð3Þ

where μ− i denotes all elements in μ but μi, wij are the adjacency weights (wij=1 if j
is a neighbour of i and 0 otherwise, also wii=0); wi+=∑ jwij is the number of
neighbours of an area i; xi is a vector containing 1 as its first element (for the
intercept β0) and k explanatory covariates of an area i as the next elements; β=(β0,β1,
…,βk)

T is a vector of regression coefficients. For calculation of the adjacency weights
we use the Queen Method, i.e. two cells are considered neighbours if they share a
side or a vertex. The CAR structure follows an assumption of similar random effects
in adjacent cells; this is reflected in the second summand of the conditional expected
value of μi, which is proportional to the average values of remainders μj−xjTβ for
neighbouring sites (i.e. when wij=1). This proportion is calibrated with the parameter
ρ. Thus ρ reflects the strength of spatial association. The variance of the full
conditional distribution of μi is inversely proportional to the number of neighbours
wi+, and τ2 is a variance parameter.
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Given (3), the joint probability distribution of the process μ is as follows, see e.g. Banerjee
et al. (2004)

μ∼Gaun Xβ; τ2 D−ρWð Þ−1
� �

; ð4Þ

where X is the matrix whose rows are the vectors xi
T

X ¼
1 x11 ⋯ x1k
⋮ ⋮ ⋱ ⋮
1 xn1 ⋯ xnk

2
4

3
5;

D is an n×n diagonal matrix with wi+ on the diagonal; and W is an n×n matrix with
adjacency weights wij. Equivalently we can write (4) as

μ ¼ Xβþ ε; ε eGaun 0;Ωð Þ; ð5Þ
where Ω=τ2(D−ρW)−1.

Coarse grid The model for a coarse grid (aggregated) observed data is obtained by multipli-
cation of (5) with the N×n aggregation matrix C consisting of 0’s and 1’s, indicating which
cells have to be aggregated together

Cμ ¼ CXβþ Cε Cε eGauN 0;CΩCT
� � ð6Þ

where N is the number of observations in a coarse grid. Now, suppose that the random variable
λ=Cμ is the mean process for random variables Z=(Z1,…,ZN)

T associated with observations
z=(z1,…,zN)

T of the aggregated model

Z jλ eGauN λ;σ2
ZIN

� �
: ð7Þ

Thus, random variables Zi, i=1,…,N are conditionally independent

Zijλi eGau λi;σ
2
Z

� � ð8Þ
where λi is the i-th element of the vector λ.

2.2 Estimation and prediction

Having available observations of Zi in the coarse grid, we can estimate parameters β,σZ
2,τ2 and

ρ with the maximum likelihood (ML) method. First, from (6) and (7) the joint unconditional
distribution of Z is derived

Z eGauN CXβ;M þ CΩCT
� �

; ð9Þ

where M=σZ
2IN, IN is the N×N identity matrix; see e.g. Lindley and Smith (1972). Next, the

log likelihood function associated with (9) is formulated

L β;σ2
Z ; τ

2; ρ
� � ¼ −

1

2
log M þ CΩCT

�� ��− N

2
log 2πð Þ

−
1

2
z−CXβð ÞT M þ CΩCT

� �−1
z−CXβð Þ;
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where | ⋅ | denotes the determinant. With fixed σZ
2, τ2 and ρ, the above log likelihood is

maximised for

β σ2Z ; τ
2; ρ

� � ¼ CXð ÞT M þ CΩCT
� �−1

CX
h i−1

CXð ÞT M þ CΩCT
� �−1

z;

which substituted back into the function L(β,σZ
2,τ2,ρ) provides the profile log likelihood

L σ2
Z ; τ

2; ρ
� � ¼ −

1

2
log M þ CΩCT

�� ��− N

2
log 2πð Þ

−
1

2
z−CX CXð ÞT M þ CΩCT

� �−1
CX

h i−1
CXð ÞT M þ CΩCT

� �−1
z

� �T
� M þ CΩCT
� �−1 � z−CX CXð ÞT M þ CΩCT

� �−1
CX

h i−1
CXð ÞT M þ CΩCT

� �−1
z

� �
:

Further maximisation of L(σZ
2,τ2,ρ) is performed numerically, including checks on ρ to

ensure that the matrix D−ρW is non-singular, see Banerjee et al. (2004).
To obtain the standard errors of the estimated parameters, one needs to derive the Fisher

information matrix. The asymptotic variance-covariance matrix of the ML estimators is ob-
tained by inverting the expectation of the negative of the second derivatives (the Hessian) of the
log likelihood function, and the expectation is evaluated at theML estimates. In other words, the
expected Fisher information matrix is used to obtain the standard errors of parameters.
Calculation of the Hessian with respect to the regression coefficients is relatively straightfor-
ward, but it becomes more burdensome for the covariance parameters. A detailed derivation of
the explicit formulas for the expected Fisher information matrix will be provided elsewhere;
here we report the standard errors of the parameter estimators obtained in the case study.

To estimate the required values in a fine grid, the following prediction procedure is applied.
Note that our primary interest is the underlying emission inventory process μ. The predictors
optimal in the minimummean squared error sense are given by E(μ|z). The joint distribution of
(μ,Z) is given by

μ
Z

� �eGauNþn
Xβ
CXβ

� �
;

Ω Ω CT

CΩ M þ CΩCT

� �	 

: ð10Þ

The distribution (10) allows for full inference, yielding both the predictor bμ ¼ bE μjzð Þ and

its error bσ2
μ ¼ Vbar μjzð Þ

bμ ¼ Xbβþ bΩCT bM þ CbΩCT
� �−1

z−CXbβh i
ð11Þ

bσ2

μ ¼ bΩ−bΩCT bM þ CbΩCT
� �−1

CbΩ; ð12Þ

whereb⋅ denotes the estimated values.

3 Case study

3.1 Data

The proposed procedure is illustrated using a real dataset of gridded inventory of NH3

(ammonia) emissions from fertilization (in tonnes per year) reported in the northern region
of Poland (the Pomorskie voivodship). The inventory grid cells are of a regular size 5 km×
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5 km, and the whole of cadastral survey compiles n=800 cells, denoted y=(y1,…,yn)
T, see

Fig. 1. For explanatory information we use the CORINE Land Cover Map for this region,
available at the European Environment (2010). Specifically, for each grid cell we calculate the
area of these land use classes, which are related to ammonia emissions. The following
CORINE classes were considered (the CORINE class numbers are given in brackets):

Non-irrigated arable land (211), denoted x1=(x1,1,…,xn,1)
T;

Fruit tree and berry plantations (222), denoted x2=(x1,2,…,xn,2)
T;

Pastures (231), denoted x3=(x1,3,…,xn,3)
T;

Complex cultivation patterns (242), denoted x4=(x1,4,…,xn,4)
T;

Principally agriculture, with natural vegetation (243), denoted x5=(x1,5,…,xn,5)
T.

Performance of the proposed disaggregation framework depends on a few factors. Perhaps
the most crucial ones are the following two: (i) explanatory power of covariates available in the
fine grid, and (ii) an extent of disaggregation, which is connected with preservation of the
spatial correlation. The impact of both these features will be evaluated in our case study.

Regarding the first factor, we will examine models with all the above land use classes (set
1), and compare the results with models including only two of them: non-irrigated arable land
and complex cultivation patterns (set 2). This subset of land use classes was chosen on the
basis of its explanatory power. When limiting the number of explanatory variables, these two
covariates provided the best results. Secondly, we compare linear regression with independent
(iid) errors versus spatially correlated errors modelled by the CAR process. We consider the
following models:

Model CAR1: - CAR errors, set 1 of covariates;
Model LM1: - iid errors, set 1 of covariates;
Model CAR2: - CAR errors, set 2 of covariates;
Model LM2: - iid errors, set 2 of covariates.

This setting of four models is intended to enable the analysis of extent to which a limited
number of explanatory information can be compensated by spatial modelling.

Regarding the second factor, we test the disaggregation from 10×10 km to 15×15 km
(coarse) grids into a 5 km×5 km (fine) grid. To examine performance of the disaggregation
procedure, first the original fine grid emissions are aggregated into respective coarse grid cells.
Next, the proposed model is fitted and ammonia emissions are predicted for a 5 km×5 km
(fine) grid. Finally, the obtained results are checked with the original inventory emissions of a
5 km×5 km (fine) grid. Thus, our simulation study tests the cases of a fourfold and ninefold

under 0.3
0.3 − 0.7
0.7 − 1
1 − 1.3
1.3 − 1.7
1.7 − 2
2 − 2.3
2.3 − 2.7
over 2.7

DATA − 5km
under 1.3
1.3 − 2.6
2.6 − 4
4 − 5.3
5.3 − 6.6
6.6 − 7.9
7.9 − 9.2
9.2 − 10.6
over 10.6

10km
under 3
3 − 5.9
5.9 − 8.8
8.8 − 11.8
11.8 − 14.7
14.7 − 17.6
17.6 − 20.6
20.6 − 23.5
over 23.5

15km

Fig. 1 Ammonia emissions: inventory data in 5 km grid, and aggregated values in 10 km and 15 km grids
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disaggregation. The aggregated values of the two coarse grids as well as the actual inventory
data in the fine grid are shown in Fig. 1.

3.2 Results of disaggregation from the 10 km grid

This subsection presents the model testing results for disaggregation from the 10 km grid.
Table 1 (the upper part) displays the maximum likelihood estimates (denoted by Est.) and
standard errors (denoted by Std.Err.) of the parameter estimators for each model. Note that
in the models with set 1 of covariates (CAR1, LM1) the regression coefficient β0 was
dropped as it was statistically insignificant. In the table, we can observe that the ML
estimates of the regression coefficients are similar for all the models. From the ratio of
regression coefficients and its respective standard errors (i.e. the t-test statistic), we can
roughly conclude that all the considered land use classes are statistically significant; in
fact, in each case respective p-values proved to be less than 0.05 (not shown). Next, let us
turn our attention to the error part of the models. Significantly lower values of σZ

2 estimates
under both the CAR models, as compared with their linear regression counterparts,
indicate that greater variability is explained by the models with spatially correlated errors
than by the corresponding models with independent errors. As expected, among the
spatially correlated models, both variance parameters σZ

2 and τ2 are higher for CAR2 than
for CAR1 model with five land use classes as explanatory variables. Furthermore, the
parameter ρ reflects strength of the spatial correlation. Note that ρ=0 corresponds to a
model with independent errors, see also Banerjee et al. (2004) for more details. A value of
parameter ρ is higher for CAR2 model, which illustrates that in the models of limited
explanatory power, the importance of spatial correlation becomes more pronounced.

The results of the four models are also summarized using the Akaike criterion (AIC). The
idea of AIC is to favour a model with a good fit and to penalize it for a number of parameters;
models with smaller AIC are preferred to models with larger AIC. Table 2 (the upper part)
displays AIC for each model, and additionally it reports the negative log likelihood (-L).
Naturally, the models with set 1 of covariates provide much better results than the models with
another set. Among these respective sets, the models with the spatial structure considerably
improve results obtained with the models of independent errors. Note, that this improvement is
higher for the models with set 2 of covariates (797.6–742.8=54.8) than for the models with set
1 of covariates (685.1–640.7=44.4).

The values of ammonia emissions predicted in a 5 km×5 km grid (yi
*) are featured in Fig. 2.

Differences between the four models are negligible, although a visual comparison with the
original emissions in Fig. 1 (the left-hand-side plot) suggests that the both models based on set
1 of covariates (CAR1, LM1) provide slightly better results. Since the mapped emission values
are classified into just 9 bins, therefore some features might not be easily distinguishable on the
maps in Fig. 2. To remedy this, Fig. 3 presents the model residuals (di=yi−yi*). Now the
difference in prediction results among the models is evident—the best results are obtained for
CAR1 model and the worst for LM2 model.

At this point it must be stressed that the values predicted in a fine grid (yi
*) are calculated

with the formula (11) based on the aggregated values of 10 km grid; the calculations are made
as if the true emissions were unknown. On the other hand, recall that these true emissions in
the fine grid (yi) are available; see the left-hand-side map in Fig. 1. From now on, our analysis
is based on a comparison between the prediction results obtained with the proposed technique
and the original fine grid ammonia emissions (observations).

Figure 4 presents, for each model, a scatterplot of predicted values yi
* versus observations yi.

The straight line has slope 1, thus if the predicted values are close to the original data, points
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are close to the straight line. This setting, once again, illustrates much better explanatory power
of models based on all the land use classes (set 1 of covariates). It also illustrates the
importance of the spatial structure component. In the case of models CAR2 and LM2, the
introduction of spatial dependence has evidently improved the accuracy of prediction.
Whereas in the case of models CAR1 and LM1, the applied spatial structure considerably
limited a number of highly overestimated predictions (points below the straight line).

Table 1 Maximum likelihood estimates

CAR1 LM1 CAR2 LM2

Est. Std.Err. Est. Std.Err. Est. Std.Err. Est. Std.Err.

10 km grid

β0 – – – – 0.386 9.29e-02 0.452 5.45e-02

β1 1.13e-07 3.26e-09 1.09e-07 2.46e-09 1.06e-07 5.03e-09 9.58e-08 4.43e-09

β2 2.56e-07 1.94e-07 4.48e-07 1.97e-07 – – – –

β3 9.77e-08 1.19e-08 1.08e-07 1.08e-08 – – – –

β4 1.18e-07 2.13e-08 1.21e-07 1.76e-08 1.27e-07 2.72e-08 1.60e-07 2.22e-08

β5 1.27e-07 1.32e-08 1.35e-07 1.11e-08 – – – –

σZ
2 0.334 0.073 1.165 0.109 0.522 0.111 1.95 0.184

τ2 0.536 0.082 – – 0.807 0.124 – –

ρ 0.948 9.98e-04 – – 0.972 9.98e-04 – –

15 km grid

β0 – – – – 0.424 1.04e-01 0.476 6.82e-02

β1 1.12e-07 3.95e-09 1.09e-07 3.42e-09 1.00e-07 7.01e-09 9.35e-08 5.79e-09

β2 – – – – – – – –

β3 1.07e-07 1.84e-08 1.16e-07 1.55e-08 – – – –

β4 1.24e-07 2.77e-08 1.29e-07 2.34e-08 1.56e-07 3.65e-08 1.75e-07 2.79e-08

β5 1.27e-07 1.65e-08 1.33e-07 1.49e-08 – – – –

σZ
2 2.339 0.424 3.50 0.474 2.681 0.548 5.55 0.753

τ2 0.214 0.088 – – 0.414 0.088 – –

ρ 0.966 4.91e-04 – – 0.982 5.55e-05 – –

Table 2 Model comparison and analysis of residuals (di=yi−yi*)

Model -L AIC MSE min(di) max(di) r

10 km grid

CAR1 312.3 640.7 0.064 −1.717 1.104 0.961

LM1 336.5 685.1 0.186 −2.544 0.268 0.882

CAR2 365.4 742.8 0.158 −1.917 1.362 0.901

LM2 394.8 797.6 0.291 −2.498 1.765 0.808

15 km grid

CAR1 220.6 455.3 0.136 −2.428 0.646 0.915

LM1 222.9 455.9 0.189 −2.600 0.516 0.880

CAR2 240.4 492.8 0.190 −2.132 1.446 0.880

LM2 248.1 504.4 0.295 −2.511 1.746 0.807
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Furthermore, we note that for a prevailing number of cases in the high emission range
(emissions over 1.5 tonnes) the linear regression LM1 provides biased (underestimated)
predictions, while CAR1 model allows overcoming this deficiency. This is due to the fact
that the analysed emissions are spatially correlated, that is, cells located nearby tend to have

under 0.3
0.3 − 0.7
0.7 − 1
1 − 1.3
1.3 − 1.7
1.7 − 2
2 − 2.3
2.3 − 2.7
over 2.7

CAR1 LM1

CAR2 LM2

Fig. 2 Ammonia emissions predicted in a fine grid—disaggregation from 10 km grid

under −1.4
−1.4 − −1.1
−1.1 − −0.8
−0.8 − −0.5
−0.5 − −0.2
−0.2 − 0.2
0.2 − 0.5
0.5 − 0.8
over 0.8

CAR1 LM1

CAR2 LM2

Fig. 3 Residuals from predicted values—disaggregation from 10 km grid
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similar values. In particular, the majority of high emission values are located in the eastern part
of the voivodeship as well as in the north-west stripe along the coastline (compare Fig. 1). The
covariates applied in the linear regression LM1 explain emission variability only to some
extent, and the point is that the unexplained variability remains spatially correlated. This can be
noticed on the map in Fig. 3 for LM1 model, where clusters of residual values (0.2–0.5) in the
mentioned areas indicate underestimated predictions. The autocorrelation term in the model
CAR1 allows for this feature. In Fig. 4 it can be seen as a slope of a dotted line, which is
visibly higher than 1 for LM1 model, while for CAR1 it lines up with the one of slope 1.

The residuals di are further analysed in Table 2 (the upper part). Namely, the mean squared
error (MSE) is calculated

MSE ¼ 1

n

X
i
yi−y

�
i

� �2
;

and it should be as low as possible. The mean squared error reflects how well a model predicts
data. In Table 2 we report also the minimum and maximum values of di, and the sample
correlation cofficient r between the predicted yi

* and observed yi values. In terms of both the
mean squared error and the coefficient r, the best model is CAR1 and the poorest one is LM2,
following the previous assessments. Interestingly, the remaining two models changed their
ranks compared with the AIC criterion. That is, CAR2 model has lower MSE=0.158 and
higher coefficient r=0.901 than the linear model based on set 1 of covariates (LM1 model with
MSE=0.186 and r=0.882). This proves that the model with a limited number of covariates but
having a spatial component (CAR2) can provide better disaggregation results than the model
based solely on linear regression, even though its covariate information is richer (LM1). Note
that the analysis based on residuals is more robust than the AIC rating, which basically tests a
model fit to the aggregated data.

Following the formula (12), we also calculate the prediction error. Since in the present case
study the correct values of predicted emissions are known, we are in a position to compare the

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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0
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5
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3.
0
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y

Fig. 4 Predicted (y*) versus observed (y) values—disaggregation from 10 km grid
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prediction error with the actual residuals (more precisely, with its absolute values). In Fig. 5
these values are presented for CAR2 model. It is noticeable that the prediction error is
significantly underestimated, and moreover, it does not reflect the diversification of the actual
residuals properly. Note that in the both maps the highest errors are reported on the border of
the domain; this fact is known in spatial modelling as the edge effect.

3.3 Results of disaggregation from the 15 km grid

Next, we present the results of disaggregation from the 15 km grid. The conducted analysis is
similar to the one of the 10 km grid and, where appropriate, both settings are compared.

The lower part of Table 1 contains the maximum likelihood estimates for the 15 km grid
data. In the models with set 1 of covariates, the regression coefficient β0 was again dropped.
Moreover, in all the models at this level of aggregation the land use class “Fruit tree and berry
plantations” (β2) was statistically insignificant, and thus it was also dropped. The remaining
land use classes were informative, with respective p-values lower than 0.05.

As regards the error part, all the comments reported for 10 km disaggregation remain valid
also here, although their degree is significantly lower. Both CAR models provide lower values
of σZ

2 than their linear regression counterparts. However, the reduction of unexplained variabil-
ity between the models, for instance, LM1 and CAR1 is only 1.5 (3.5/2.339), while it was over
3 (1.165/0.334) for respective models of 10 km disaggregation. This suggests that the spatial
correlation strength of the 15 km grid model is smaller than the 10 km grid one. Thus, here the
CAR models are less competitive than the LM models, as compared to the former grid.

The values of AIC criterion and of the negative log likelihood (-L) are reported in the lower
part of Table 2. Similarly as for the disaggregation from a 10 km grid, also in this case the
models based on set 1 of covariates provide better results. The CAR structure improves
obtained linear regression results of both respective covariate sets. Note, however, that in the
setting of 15 km disaggregation, the impact of the spatial component is not that substantial
anymore as it was previously. Again, a bigger improvement is noted for the models with a
limited number of covariates (504.4–492.8=11.6 in terms of the AIC criterion), and the gain
from incorporation of the spatial component is only marginal for the models with set 1 of
covariates (455.9–455.3=0.6).

For the four considered models, the maps of ammonia emissions disaggregated from the
15 km grid and predicted in the fine grid provided visually similar results (not shown). The
residual maps proved to be more informative, see Fig. 6. While for the 10 km disaggregation

under 0.34
0.34 − 0.38
0.38 − 0.43
0.43 − 0.47
0.47 − 0.51
0.51 − 0.55
over 0.55

Prediction error

under 0.23
0.23 − 0.45
0.45 − 0.68
0.68 − 0.91
0.91 − 1.13
1.13 − 1.36
over 1.36

Abs(Residual)

Fig. 5 Prediction error and absolute values of residuals for CAR2 model. Note that the maps are drawn in
different scales
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the residual maps clearly indicated discrepancies among the models, here it is not easily
visible. The models based on set 1 of covariates (CAR1, LM1) provide smaller residuals.
However, the differences between the spatial models and their linear regression counterparts
seem to be negligible.

Again, Table 2 (the lower part) provides further analysis of residuals. The mean squared
error MSE and the correlation coefficient r yield a consistent ranking of the models. Obviously
the best model is CAR1 with r=0.915 and MSE=0.136, while the poorest one is LM2 with r=
0.807 and MSE=0.295. When it comes to the remaining two models, LM1 slightly outper-
forms CAR2 (in terms of the mean squared error). Note that this order is reversed when
compared with the results of the 10 km grid disaggregation (the upper part of the table).
Therefore, when disaggregating from the 10 km grid, the spatial structure is more informative
than some of the covariates, but this is not true anymore when disaggregating from the 15 km
grid. From this we conclude that in this particular case study, the proposed framework offers an
efficient tool for a quadruple and nine-times disaggregation, but it may become less adequate
for higher order allocations.

The actual interplay among the four models is illustrated on the scatterplots in Fig. 7. In
general, the 15 km disaggregation preserves the features reported previously—the performance
of respective models is analogous as for the 10 km disaggregation. It means that for the models
based on set 2 of covariates, the spatial correlation significantly improves prediction quality.
Also for the other two models, the introduction of spatial structure is still beneficial as it allows
correction of the prediction bias and a slight reduction in the number of overestimates. We
highlight the difference between the models CAR2 and LM1 that yield almost the same MSE
and coefficient r, but provide completely distinct plots, see Fig. 7. The residuals of CAR2
model are more dispersed owing to a limited set of explanatory covariates. On the other hand,
improved covariate modelling of LM1 leads to the residuals gathered close to the diagonal, but
a lack of spatial averaging results in larger amount of overestimated values. Altogether, the
assessment of residuals for both models becomes the same.

under −2.1
−2.1 − −1.8
−1.8 − −1.4
−1.4 − −1.1
−1.1 − −0.7
−0.7 − −0.4
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CAR2 LM2

Fig. 6 Residuals from predicted values—disaggregation from 15 km grid
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4 Discussion and conclusions

The major objective of this study was to demonstrate how a variable of interest (here,
emissions) available in a coarse grid plus information on covariates available in a finer grid
can be combined together to provide the variable of interest in a finer grid, and therefore to
improve its spatial resolution. We proposed a relevant disaggregation model and illustrated the
approach using a real dataset of ammonia emission inventory. The idea is conceptually similar
to the method of Chow and Lin (1971), originally designed for time series data; see also
Polasek et al. (2010). It was applied to the spatially correlated data, and spatial dependence was
modelled with the conditional autoregressive structure introduced into a linear model as a
random effect.

The model allows for this part of a spatial variation which has not been explained by available
covariates. Thus, if the covariate information does not correctly reflect a spatial distribution of a
variable of interest, there is potential for improving the approach with a relevant model of a spatial
correlation. The underlying assumption of the method is that the covariance structures of the
variable in a coarse grid and in a fine grid are the same. In the present study of ammonia emissions
examined in 5 km, 10 km, and 15 km grids, this assumption proved to be reasonable.

Performance of the proposed framework was evaluated with respect to the following two
factors: explanatory power of covariates available in a fine grid, and the extent of disaggregation.
The results indicate that inclusion of a spatial dependence structure can compensate for less
adequate covariate information. For the considered ammonia inventory, the fourfold allocation
benefited greatly from the incorporation of the spatial component, while for the ninefold allocation
this advantage was limited, but still evident. In addition, the proposed method allowed to correct
the prediction bias encountered for upper range emissions in the linear regression models.

We note that in this case study we used the original data in a fine grid to assess the quality of
resulting predictions. For the purpose of potential applications, we developed also a relevant
measure of prediction error (the formula 12). Although not entirely faultless, it is the first attempt
to quantify the prediction error in situations, where original emissions in a fine grid are not known.
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Fig. 7 Predicted (y*) versus observed (y) values—disaggregation from 15 km grid
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Other approaches, such as a geostatistical model, might be potentially used in the case of spatial
allocation. Application of the geostatistical approach brings us to the concept of block kriging
(Gelfand 2010). However, it should be stressed that geostatistics is more appropriate for point
referenced data, while our proposition is dedicated to the case of emission inventories which involve
a real data. Thus, the choice between these two options should be considered on a case by case basis.

Another possibility to deal with the issue of spatial disaggregation could be to use some
expert knowledge and logical inference; compare Verstraete (this issue) for a fuzzy inference
system to the map overlay problem.

The described method opens the way to uncertainty reduction of spatially explicit emission
inventories, hence the future work will also include testing the proposed disaggregation
framework for inventories of greenhouse gasses.
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