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Abstract Free energy differences are calculated for a set

of two model host molecules, binding acetone and meth-

anol. Two active sites of different characteristics were

constructed based on an artificially extended C60 fullerene

molecule, possibly functionalised to include polar interac-

tions in an otherwise apolar, spherical cavity. The model

host systems minimise the necessary sampling of confor-

mational space while still capturing key aspects of ligand

binding. The estimates of the free energies are split up into

energetic and entropic contributions, using three different

approaches investigating the convergence behaviour. For

these systems, a direct calculation of the total energy and

entropy is more efficient than calculating the entropy from

the temperature dependence of the free energy or from a

direct thermodynamic integration formulation. Further-

more, the compensating surrounding–surrounding energies

and entropies are split off by calculating reduced ligand-

surrounding energies and entropies. These converge much

more readily and lead to properties that are more straight-

forwardly interpreted in terms of molecular interactions and

configurations. Even though not experimentally accessible,

the reduced thermodynamic properties may prove highly

relevant for computational drug design, as they may give

direct insights into possibilities to further optimise ligand

binding while optimisation in the surrounding–surrounding

energy or entropy will exactly cancel and not lead to

improved affinity.

Keywords Entropy � Enthalpy � Ligand-surrounding

energy � Fullerene model system � Thermodynamic

integration � Thermodynamics

1 Introduction

Drug design (DD) often requires the binding affinity opti-

misation of lead compounds or known drugs, which is

commonly achieved by the substitution of atoms or groups

of atoms in the molecule or by restricting the conforma-

tional freedom of the molecules. These modifications

should not affect the pharmacophoric features or the

interactions with the binding pocket negatively in a sig-

nificant way, but rather increase binding affinity, that is,

induce a favourable change in binding free enthalpy

(DGbind). Therefore, improving DGbind forms the main

focus during the optimisation process. However, retro-

spective analyses [1] have shown that a rational modifi-

cation often only leads to a moderate improvement in

DGbind, due to a compensation of the enthalpy (DH) and the

entropy (DS). A shift from mainly entropically driven

binding towards mainly enthalpically driven binding, or

vice versa, is commonly observed [2–4]. This phenomenon

is largely due to the current trend to optimise ligands for

more enthalpic binding. It is common that the entropic

contribution is dominant for a compound that is the first

of its class, while further optimisations lead to stronger

enthalpic binding in the best of its class [5].

In the last few years, experimental approaches that

attempt to take into account all three mentioned thermo-

dynamic terms, DG, DH and DS, have gained popularity
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[6, 7]. Examples are isothermal titration calorimetry (ITC)

and surface plasmon resonance (SPR) techniques. These

methods offer valuable insight into the effect of modifi-

cations in the molecular structure on the affinity and help to

adjust design strategies in directions that improve either the

enthalpic or the entropic contributions. An accurate esti-

mation of DG, DH and DS, by computational means allows

for focus of the design on DH or DS, depending on the

specific aims for the ligand. However, estimating DH and

DS in silico still proves to be a challenge and computa-

tionally expensive [8, 9]. Simplified host–guest systems

offer an attractive tool to assess the accuracy and efficiency

of free energy calculations [10, 11].

Here, an attempt is made to estimate DG, DH and DS of

binding for two simple host models previously used to

illustrate the efficiency of free energy methods [12]. The

two host models, as shown in Fig. 1, are C60 fullerenes

with carbon–carbon bonds extended to 0.2 nm, which can

be considered to be representative for a mostly rigid

hydrophobic binding pocket. The only difference between

the first (CAPO) and second (CHB) host model is that the

latter has an acetamide group, –(C=O)NH2, attached to

one of the carbon atoms which introduces hydrogen bond

forming capabilities. Correspondingly simple ligands,

acetone and methanol, were chosen and kept inside the

host models in all simulations. These simplifications result

in a minimal computational system that allows for faster

convergence of molecular interactions and characterisation

of various methods to estimate enthalpic and entropic

effects.

A popular approach to estimate entropic contributions to

ligand binding is through the calculation of configurational

entropies through heuristic [13] or quasi harmonic analysis

[14] or variations thereof [15–17]. Relevant interpretations

of experimental data have been possible with this approach

[18, 19]. However, it is clear that entropic contributions

due to the solvent may play significant roles [20]. Ideally,

the applied methodology should not only consider the

(favourable) enthalpic interaction between the protein and

the ligand and the (unfavourable) loss of configurational

entropy, but also include the enthalpic and entropic con-

tributions of (partial) desolvation [21].

Various computational methods to estimate DH and

DS were assessed for reliability and efficiency. Apart from

calculating the full enthalpy and entropy, we also investi-

gated reduced terms by excluding the compensation in

enthalpic and entropic contributions due to changes in the

interactions within the surroundings of the ligand. From

solvation studies, the reduced terms are known as the sol-

ute–solvent enthalpy and entropy [22, 23], which we here

generalise to a ligand-surrounding enthalpy and entropy.

Solvation studies have also shown that the exactly com-

pensating solvent–solvent contributions may obscure a

proper interpretation of enthalpic and entropic contribution

to the free energy [24]. Also, in DD, the interpretation of

the enthalpic and entropic contribution in terms of

molecular interactions is often complex and possibly not

unambiguous due to a cancellation of effects [25]. The

convergence and use of the generalised reduced thermo-

dynamic terms will be investigated and discussed. The

methods will be outlined in the following theory section,

followed by a description of the applied simulation meth-

odology and settings and by a discussion of the results and

the main conclusions.

2 Theory

The free enthalpy, DG, enthalpy, DH, and entropy, DS are

connected via the Gibbs equation,

DG ¼ DH � TDS ð1Þ

where T is the absolute temperature in Kelvin. For

experiments and simulations at constant volume rather

Fig. 1 Open view of ‘extended’ fullerene model. Light arrows depict

ligand-surrounding energy terms, that is, ligand–solvent, ligand–ligand

and ligand–protein interactions. Dark arrows depict surrounding–

surrounding energy terms, that is, protein–protein, protein–solvent and

solvent–solvent interactions. The CAPO model (left) emulates a mostly

rigid hydrophobic protein pocket. The CHB model (right) has an

additional –(C=O)NH2-group and emulates a mostly rigid hydrophobic

protein pocket with hydrogen bond forming capability
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than constant pressure, we use the Helmholtz free energy

(DA) and total energy (DE) to write,

DA ¼ DE � TDS ð2Þ

For ease of notation, and in line with the simulations per-

formed in this work, we will restrict ourselves to the

Helmholtz free energy below.

In the first approach, long molecular dynamics (MD)

simulations at the end-states of a given process, for

example, acetone or methanol in CAPO or CHB, were used

to estimate DE, while thermodynamic integration (TI) [26]

was used to obtain DA using,

DA ¼
Z1

0

oH kð Þ
ok

� �
k

dk; ð3Þ

where H is the Hamiltonian of the system and k is a

coupling parameter that connects the initial state (k = 0),

the final state (k = 1) and a series of intermediate states

(0 \ k\ 1). The angular brackets represent an ensemble

average obtained from a simulation at a state corresponding

to the indicated k-value. The integral of the (ensemble)

average of the derivative of the Hamiltonian with respect to

k gives DA. DS is subsequently calculated from the esti-

mated DA and DE, using Eq. (2).

The second approach uses a different thermodynamic

property which follows from Eq. (2):

DS ¼ � dDA

dT
ð4Þ

Equation (4) implies that DS may be obtained from a linear

regression over multiple DA estimates at different tem-

peratures, obtained using, for example, TI.

The third approach estimates DS directly from TI [8],

using Eq. (5):

DS ¼ 1

kB � T2

Z1

0

oH kð Þ
ok

� �
k

H kð Þh ik
�

� oH kð Þ
ok
H kð Þ

� �
k

�
� dk;

ð5Þ

where kB is the Boltzmann constant. This equation is

known to converge badly, because it involves correlations

between the Hamiltonian and its derivative [8].

Next, we attempt to quantify the compensation of

energetic and entropic contributions solely due to the sur-

roundings of the ligand by defining reduced terms which

stem from differences in interactions involving the ligand

in two systems or states [22]. In solvation, such reduced

terms were shown to converge more readily than the full

energy and entropy differences [23]. We can generalise the

approach by splitting the Hamiltonian (H) into a k-

dependent term for the ligand–surrounding interaction

(Hls) and a k-independent term for the surrounding–sur-

rounding energies (Hss),

H kð Þ ¼ Hls kð Þ þ Hss; ð6Þ

where Hls is defined as the sum of all non-bonded and

bonded energy terms specific to interactions between the

ligand and its surrounding. The non-bonded energy terms

include ligand–ligand, ligand–protein and ligand–solvent

Van der Waals and electrostatic interaction energy terms.

The bonded energy terms include contributions from the

ligands bonds, angles, improper dihedrals and dihedrals.

Hss refers to the surrounding–surrounding energies, here,

made up of the protein–protein, protein–solvent and

solvent–solvent interaction energies. Accordingly, we can

write the energy difference as

DE ¼ Hh i1� Hh i0
¼ DEls þ DEss ¼ Hlsh i1� Hlsh i0þ Hssh i1� Hssh i0

ð7Þ

Rewriting Eq. (5) while taking into account Eq. (6) now

gives for the entropy difference

DS¼ 1

kB �T2

Z1

0

oHls kð Þ
ok

� �
k

Hls kð Þh ik�
oHls kð Þ

ok
Hls kð Þ

� �
k

�

þ oHls kð Þ
ok

� �
k

Hssh ik�
oHls kð Þ

ok
Hss

� �
k

�
�dk ð8Þ

We can also write the k-derivative of the ensemble

average of Hss as

d

dk
Hssh ik ¼

d

dk

RR
Hsse

�H kð Þ=kBT dpdrRR
e�H kð Þ=kBT dpdr

¼
ZZ
Hss

d

dk
e�H kð Þ=kBTRR

e�H kð Þ=kBT dpdr
dpdr

¼
ZZ
Hss

"
�1

kBT

oH kð Þ
ok

e�H kð Þ=kBTRR
e�H kð Þ=kBT dpdr

�
e�H kð Þ=kBT

RR �1
kBT

oH kð Þ
ok e�H kð Þ=kBT dpdrRR

e�H kð Þ=kBT dpdr
� �2

#
dpdr

¼ �1

kBT
Hss

oHls kð Þ
ok

� �
k

� Hssh ik
oHls kð Þ

ok

� �
k

� 	

ð9Þ

where we explicitly write the ensemble average as a

normalised integral over all positions (r) and momenta (p).

We can now rewrite Eq. (8) as
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DS¼ 1

kBT2

Z1

0

(
oHls kð Þ

ok

� �
k

Hls kð Þh ik

� oHls kð Þ
ok

Hls kð Þ
� �

k

)
�dkþD Hssh i

T
¼DSlsþ

D Hssh i
T

;

ð10Þ

defining the ligand-surrounding entropy DSls as

DSls ¼
1

kBT2

Z1

0

oHlsðkÞ
ok

� �
k

HlsðkÞh ik
�

� oHlsðkÞ
ok

HlsðkÞ
� �

k

�
� dk ð11Þ

Together with the ligand-surrounding energy

differences, DEls, in Eq. (7), we can write,

DA ¼ DE � TDS ¼ DEls � TDSls ð12Þ

From Eq. (12), we can see that the free energy is only

defined by the k-dependent energy and the k-dependent

entropy while the energetic and entropic contributions from

the k-independent part, Hss, exactly cancel in the free

energy.

As will be outlined below, harmonic distance restraints

were applied to restrain non-interacting dummy particles

to a given position during the simulations. The contribu-

tion of these distance restraints to the free energy (DAr)

and entropy (DSr) was calculated using Eqs. (13) and (14):

DAr ¼ �kBT � ln V

2pkBT
Kb


 �3
2

ð13Þ

DSr ¼ �kB � ln
V

2pkBT
Kb


 �3
2

� 3

2
kB ð14Þ

where Kb is the force constant used during the simulation

and V is the simulation box volume. Both equations are

derived from comparing the partition functions of a three-

dimensional harmonic oscillator with the partition function

of a freely translating particle [27, 28].

3 Methods

3.1 Thermodynamic cycles

A direct assessment of DA, DE and TDS for ligand–protein

binding from simulations of the actual binding event is

very demanding [29], if not impossible [9]. However, DA,

DE and TDS are state functions. Therefore, it is possible to

estimate relative changes of terms utilising thermodynamic

cycles. A total of nine thermodynamic cycles composed of

fifteen TI legs, shown in Fig. 2, were devised to study DA

at a defined temperature. This allows us to carefully assess

the convergence of the calculations, by determining the

total free energy change along closed cycles, which should

be 0 kJ mol-1 by definition. Moreover, we can determine

the absolute and relative binding free energies of the two

compounds or two host model systems by the appropriate

combination of free energy terms. For instance, in a first

TI, the acetone inside CHB (H:Aq) changes into methanol

(H:Mq) which yields DAm(H:Lq). Performing similar sim-

ulations for the ligand-in-solvent [yielding DAm(Lq)]

allows for the calculation of the relative binding free

energies (DDAb) as the difference in binding free energy of

methanol [DAb(H:Mq)] and acetone [DAb(H:Aq)] to the

host CHB:

DDAb ¼ DAbðH:MqÞ � DAbðH:AqÞ
¼ DAmðH:LqÞ � DAmðLqÞ

ð14Þ

Similarly, from the starting state of acetone-in-CHB

(H:Aq), charges may be removed from the acetone

molecule (leading to H:An), followed by removal of the

Van der Waals interaction (leading to H:Adr). The

resulting molecule, a so-called ‘dummy’ molecule, does

not interact with its environment anymore, but still has a

mass and a distance restraint which is introduced during

the process to prevent the non-interacting acetone mol-

ecule from drifting through the complete simulation box,

requiring extremely long simulations in the final stages

of this TI leg [30, 31]. Equation (13) is used to calculate

the contribution [DAr(H:Adr)] of the distance restraint to

reach the state H:Ad. The transfer of the non-interacting

dummy molecule between solvent and the host system

is not associated with a free energy change, that is,

DAb(H:Ad) : 0. Repeating these calculations for meth-

anol-in-CHB, for the ligands-in-CAPO and the ligands-in-

solvent now permits estimation of the absolute binding

free energy (DAb) of the free ligand to CAPO or CHB,

e.g.:

DAbðH:AqÞ ¼ DAelðAqÞ þ DAvdwðAnÞ þ DAbðH:AdÞ
� DArðH:AdrÞ � DAvdwðH:AnÞ
� DAelðH:AqÞ ð15Þ

Note that the term absolute binding free energy, commonly

used in the field, still refers to a free energy difference

along the binding process [30, 32].

Thermodynamic cycles can be used to determine inter-

nal consistency independent from experimental data. Many

more cycles may be derived from Fig. 2, and a successful

DA cycle closure is required before proceeding to calculate

other terms.

A similar approach was used to study cycle closure for

DS and DSls where Eq. (14) was used instead of Eq. (13) for

calculating the distance restraint contribution.
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3.2 Simulation setup

A single topology representation of both ligands (Fig. 3)

was placed inside CAPO and CHB and solvated in a periodic

cubic box containing 1781 simple point charge (SPC)

water molecules [33]. A similar setup for ligand-in-CHB

requires 1792 SPC water molecules. Ligand-in-solvent

simulations contained 1170 SPC water molecules. No

counter ions were added. The GROMOS11 package for

biomolecular simulations [34] was used for all simulations.

Force field parameters were taken from the 54A7 united-

atom force field [35]. Hard-coded SPC water parameters

were used to speed up the simulations. The number of

particles, the volume and the temperature were kept con-

stant during all simulations. Solvent and solute degrees of

freedom were coupled separately to two temperature baths

with a relaxation time of 0.1 ps using the weak-coupling

method [36]. We are aware of the fact that the weak-cou-

pling does not result in energy fluctuations exactly corre-

sponding to the canonical ensemble [37]. Therefore, the

application of Eq. (5) may not lead to the exact entropy of

the canonical ensemble. However, the aim of this study is

not to establish the entropy for a (unphysical) host–guest

model system, but to establish the convergence behaviour

of Eq. (5). The mutation of acetone to methanol has been

repeated using a Nosé–Hoover chains thermostat, leading

to very comparable convergence behaviour (see Fig. S1 in

supplementary material). The leap-frog algorithm [38] with

a timestep of 2 fs was used. All bonds were constrained to

their minimum energy values using the SHAKE algorithm

[39]. Centre of mass translation was removed every 1,000

steps. All solute molecules were defined as separate energy

groups and all solvent molecules defined as one energy

group. Energies and free energy derivatives were written

out every 50 steps in ligand-to-dummy simulations and

every 100 steps in acetone to methanol simulations. In all

TI simulations, non-bonded interactions involving ligand

atoms are described by a Lennard–Jones soft-core param-

eter of 0.5 and a Coulomb-reaction-field soft-core param-

eter of 0.5 nm2 [40].

Non-bonded interactions were calculated using a triple-

range cut-off scheme. Interactions up to a short-range

distance of 0.8 nm were calculated at every timestep from

a pairlist that was updated every 5 steps. At pairlist con-

struction [41], interactions up to an intermediate range of

1.4 nm were also calculated and kept constant between

updates. A reaction field contribution [42] was added to the

forces and energies to account for a dielectric continuum

with relative permittivity of 61 beyond the cut-off sphere of

1.4 nm [43].

Fig. 2 A 3-dimensional representation of the free energy (DA)

thermodynamic cycles. All arrows originate from a system in a

certain state. With the exception of distance restraint terms (DAr), all

terms along the vertical and horizontal arrows were estimated using

thermodynamic integration. Terms along diagonal arrows were

calculated either by exploiting a thermodynamic cycle or by

theoretical means. A ligand (L) can change into another ligand

(DAm) or into its dummy state by the removal of electrostatic

interactions (DAel), follow by the removal of Van der Waals

interactions (DAvdw) while applying a distance restraint (DAr) that

confines the dummy ligand to the geometrical centre of the ‘extended’

fullerene. The system and state from which values of a term are

derived is always denoted between brackets. The ligand-in-CAPO and

ligand-in-solvent thermodynamic cycles are similar to the ligand-in-

CHB cycles, but are only partially illustrated

Fig. 3 Single topology representations of acetone (left) and methanol

(right). Atoms in grey are non-interacting dummy particles. By

switching the interaction function parameters, one molecule may be

modified into the other or be switched off completely in a

thermodynamic integration simulation
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Velocities corresponding to an initial temperature of

60 K were randomly assigned to all atoms before the

equilibration process of each simulation, during which

systems were heated to the desired temperature through

gradual increase of temperature (DT = 60 K) while

simultaneously decreasing an imposed position restraint

on all solute atoms from 2.5 9 104 to 0 kJ mol-1 nm-2 in

5 discrete simulation steps of 20 ps each.

MD simulations of 100 ns were used to estimate DE and

DEls between the states acetone-in-solvent (Aq), methanol-

in-solvent (Mq), CAPO-in-solvent (A), CHB-in-solvent (H),

acetone-in-CAPO (A:Aq), methanol-in-CAPO (A:Mq), ace-

tone-in-CHB (H:Aq) and methanol-in-CHB (H:Mq) at

300 K.

TI simulations were performed by adjusting the force

field parameters provided in the supplementary material

between k = 0 and k = 1 for the corresponding states and

monitoring the value of oH=ok according to the GROMOS

functional form [44]. Note that in GROMOS, 1,2- and 1,3-

neighbours are excluded from the non-bonded interactions

and that the polar hydrogen atom does not have Van der

Waals parameters. As the methyl groups in acetone have

zero partial charges, the intramolecular non-bonded inter-

actions amount to zero at all times. TI simulations were

performed for the mutations DAm(Lq), DAm(A:Lq) and

DAm(H:Lq) in Fig. 2 using 51 equidistant k-values. For the

processes DAVdW and DAel, the k-value was increased by

0.04 between k = 0 and k = 0.4 and by 0.02 between

k = 0.4 and k = 1, yielding 41 separate simulations. Pre-

liminary calculations showed that convergence was suffi-

cient in these simulations even though a slightly coarser

approach was used (data not shown). DAm(Lq), DAm(A:Lq)

and DAm(H:Lq) were calculated at 220, 250, 280, 290, 300,

310, 320, 350 and 380 K while DAVdW and DAel were only

calculated at 280, 300 and 320 K. The simulations were

performed for 10 ns at every k-value at 300 K and 1.2 ns

per k-value at all other temperatures.

3.3 Accuracy and efficiency determination

The simulations described so far allow us to analyse the

accuracy and precision of the various properties and

approaches as a function of simulation time retrospectively.

The total amount of simulation time was restricted to

100 ns while maintaining the most precise DA estimate in a

non-automated manner. First, all k-values that are believed

to have minimal effect on the DA estimate were excluded.

This was done by multiple iterations of plotting data,

excluding k-values at what seem to be linear regions and

evaluating the influence of the excluded k-values on DA.

This is followed by the determination of the minimal

simulation time required at each remaining k-value in two

rounds which was achieved by monitoring oH=ok as a

function of time followed by a careful consideration of the

trade-off between accuracy and simulation time. This way,

the total simulation time for each calculated value was

initially reduced to 100 ns. The total simulation time was

further reduced to 10 ns in a second round by reducing the

lengths of the simulations by a factor 10.

A similar approach was applied to optimise the calcu-

lation of DSls with a given amount of overall simulation

time. As DS is known to converge worse than DSls, the

k-values found to be optimal for DSls were also used for

DS. Data reduction for DE and DEls was done by deter-

mining the minimal simulation time required per

simulation.

Error estimates for the averages obtained from simula-

tions were determined from block averaging and extrapo-

lation to infinite block length [45]. Error estimates in the

thermodynamic terms are subsequently obtained from

standard propagation of the error estimates on the simula-

tion averages [46].

4 Results

It is well-known that DA and DS converge differently [8].

Figure 4 shows the profiles of dA/dk, dS/dk and dSls/dk for

the acetone to methanol mutation in solvent (see Fig. S2

and S3 in supplementary material for the profiles of dA/dk,

dS/dk and dSls/dk in the host systems). As a minimal

requirement for internal consistency, the thermodynamic

cycle closure for DA was evaluated first. For the various

thermodynamic cycles in Table 1, a cycle closure of

maximally 2.5 kJ mol-1 (kB T) at 300 K was obtained.

This observation also holds for the cycles studied at 320 K.

However, lowering the temperature to 280 K noticeably

affects cycle closures, with deviations up to 4.5 kJ mol-1.

Careful consideration of many possible factors that might

affect the simulations at all three temperatures, including

geometrical aspects of the ligand and its environment,

various contributing energy terms and possible calculation

errors, has led to the conclusion that the cycles are inter-

nally consistent. We will subsequently attempt to calculate

TDS and TDSls from the same simulation data at 300 K.

The cycles that do not close at 280 K most likely imply

that due to reduced dynamics, additional sampling is still

required for these systems at 280 K.

The situation is different for the cycles at 300 K for

TDS, as obtained using Eq. (5), which are also presented in

Table 1. Although some cycles seem close to closing, the

error estimates clearly show that these values are far from

converged. The main issue here is that the estimated errors

are several orders of magnitude larger than the estimated

value itself. In sharp contrast, the TDSls cycles calculated

using Eq. (11) are comparable to the DA cycles. The
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statistical errors are still about 10-fold larger than the

estimated values, but are substantially smaller when com-

pared to the estimated errors from the TDS cycles.

Table 2 presents estimates of DA, DE, TDS and TDSls

from all three different approaches for each system. We

denote the direct application of Eq. (2) as approach I, the

utilisation of multiple simulations at different temperature

(Eq. 4) as approach II and the application of the thermo-

dynamic integration formula (Eq. 5) as approach III. If all

available simulation data are taken into consideration,

approaches I and II (Eqs. 2, 4) seem to yield a similar

TDS for ligand-in-solvent and ligand-in-CHB, even though

the estimated errors of the second approach are relatively

large. Approach III is completely off, which was already

observed for the thermodynamic cycle closures and con-

firms that TDS estimation using Eq. (5) remains a chal-

lenge, even with 510 ns of total simulation time for a very

simple process as the mutation in water or in a purely

hydrophobic environment.

Although DA estimation using TI is rather precise, using

approach II to estimate TDS does not yield the most precise

values. As can be seen from the curves in Fig. 5, the slopes

of the Van ’t Hoff plots are almost identical, independent

of the simulation time invested. This indicates that the

estimates of TDS using this approach is robust and only

slightly affected by data reduction. The relatively large

error estimates are due to the error propagation over the

linear regression. The large overall amount of simulation

time is divided over many individual simulations with

(reasonable) error estimates, which are mostly additive in

the final error estimates. In the other approaches, the

overall simulation time is divided over fewer, longer sim-

ulations, more efficiently reducing the error estimates.

For the current system, approach I seems to yield the

most precise estimates of the entropy. However, we have to

note that this may be different for more realistic systems,

for example, for a large flexible host molecule, undergoing

slow conformational motion DE may not converge to a

sufficient level to apply this approach. Approach II was

previously applied efficiently for systems involving a

smaller alchemical modification [47, 48].

The lower half of Table 2 presents the results for the

reduced terms DEls and TDSls. It can be seen that both DEls

and TDSls converge substantially better than their full

counterparts, DE and DS. The ligand-in-solvent simulation

data in Fig. 6 shows that both reduced terms require about

5-fold less simulation time per k-value to reach convergence

and estimated errors for each term are substantially smaller.

Ligand-in-CAPO and ligand-in-CHB data (see Fig. S4 and S5

in supplementary material) follow a similar trend. The

reduced noise for the ligand-surrounding energy and entropy

indicates that the noise in the full energy and entropy esti-

mates are mostly due to the surrounding–surrounding energy

and entropy terms, which cancel exactly in the free energy,

which hence converges more readily as well.

The values of TDSls as calculated from approach III

(Eq. 11) are consistently 2.4–4.2 kJ mol-1 lower than the

values calculated from approach II (Eq. 12). The discrep-

ancy could be traced to the use of bond-length constraints

in the simulation, that is, SHAKE, and a change of the C=O

bond of 0.123 nm in acetone to a C–O bond of 0.153 nm in

methanol. This leads to a slight change of the constraint

forces as calculated in the SHAKE algorithm, which is

included in the overall estimate of DA through the appro-

priate contribution to dA/dk [49]. As, however, a constraint

to a (modified) minimum energy value is not reflected in an

energy change, it will occur neither in the estimate of

DE nor in the estimate of TDS using Eq. (5). The same

holds for the calculations of the reduced terms DEls and

TDSls using Eq. (11). Indeed, the free energy difference

Fig. 4 The profiles of dA/dk, dS/dk and dSls/dk for the acetone to

methanol mutation in solvent. The profile of dS/dk is a clear example

of a profile of a term that does not converge properly, note that the

error bars fall off the scale of the graph, while the other two profiles,

with a smoother curve, belong to terms that do converge to an

acceptable degree
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between rigid rotors of lengths 0.123 nm and 0.153 nm

amount to about 1 kJ mol-1 [27]. From a calculation of

DAm(Aq) without applying SHAKE on the solute, a value

of -21.8 kJ mol-1 is obtained (-19.5 kJ mol-1 with

SHAKE), explaining the difference of 2.4 kJ mol-1 for the

ligand-in-solvent state. Note, however, that the differences

in TDSls largely cancel in the relative entropy changes

TDDSls (Table 2). This suggests that both approaches II

and III (Eqs. 11, 12) are suitable to estimate TDDSls con-

sistently which in turn is interesting for computational DD.

However, the full TDDS term does not seem to be directly

comparable to the reduced TDDSls term.

Table 1 Thermodynamic cycle closures for DA, TDS and TDSls in kJ mol-1 (see Fig. 2 for explanations of abbreviations; x is a placeholder for

q, n, dr or d)

Cycle DA (280 K) DA (300 K) DA (320 K) TDS (300 K) Eq. (5) TDSls (300 K) Eq. (11)

AxMx (neutral)b Xa -0.4 ± 0.4 Xa 2.7 ± 10,063 0.8 ± 11.3

AxMx (dummy)c 1.9 ± 0.9 -1.5 ± 0.8 1.1 ± 0.8 -11.1 ± 18,111 2.1 ± 11.7

A:AxMx (neutral)d Xa 0.4 ± 0.5 Xa 0.5 ± 17,646 0.4 ± 10.8

A:AxMx (dummy)e 2.5 ± 0.7 -2.6 ± 0.7 -2.5 ± 0.9 -4.6 ± 22,732 4.3 ± 6.7

H:AxMx (neutral)f Xa 0.2 ± 0.8 Xa -9.6 ± 27,358 0.9 ± 18.6

H:AxMx (dummy)g -1.9 ± 1.2 -1.7 ± 1.1 -1.8 ± 1.4 -4.5 ± 37,344 3.9 ± 16.4

AxMx—A:AxMx (overall)h 4.5 ± 1.2 1.1 ± 1.1 1.3 ± 1.2 -6.5 ± 29,064 -2.2 ± 13.4

AxMx—H:AxMx (overall)i 3.8 ± 1.5 0.2 ± 1.4 0.7 ± 1.6 -6.6 ± 41,504 -1.8 ± 20.2

a Value not computed
b An ? Aq ? Mq ? Mn ? An-cycle
c Ad ? An ? Aq ? Mq ? Mn ? Md ? Ad-cycle
d A:An ? A:Aq ? A:Mq ? A:Mn ? A:An-cycle
e A:Ad ? A:Adr ? A:An ? A:Aq ? A:Mq ? A:Mn ? A:Mdr ? A:Md ? A:Ad-cycle
f H:An ? H:Aq ? H:Mq ? H:Mn ? H:An-cycle
g H:Ad ? H:Adr ? H:An ? H:Aq ? H:Mq ? H:Mn ? H:Mdr ? H:Md ? H:Ad-cycle
h A:Ad ? A:Adr ? A:An ? A:Aq ? A:Mq ? A:Mn ? A:Mdr ? A:Md ? Md ? Mn ? Mq ? Aq ? An ? Ad ? A:Ad-cycle
i H:Ad ? H:Adr ? H:An ? H:Aq ? H:Mq ? H:Mn ? H:Mdr ? H:Md ? Md ? Mn ? Mq ? Aq ? An ? Ad ? H:Ad-cycle

Table 2 DA, DE, TDS and TDSls in kJ mol-1 from different approaches for the mutation of acetone to methanol

DAm DE TDS [approach I; Eq. (2)] TDS [approach II; Eq. (4)] TDS [approach III; Eq. (5)]

Simulation timed 510 ns 200 ns 710 ns 1,009.8 ns 510 ns

1: Aq ? Mq -19.5 ± 0.2 -6.3 ± 0.6 13.2 ± 0.6 14.0 ± 11.2 2.2 ± 4,230

2: A:Aq ? A:Mq 11.7 ± 0.1 29.7 ± 0.8 18.0 ± 0.8 11.6 ± 7.0 1.3 ± 4,444

3: H:Aq ? H:Mq -15.1 ± 0.2 -4.5 ± 0.8 10.7 ± 0.8 12.3 ± 11.7 2.1 ± 7,857

Relative 2-1a 31.2 ± 0.2 36.0 ± 1.0 4.8 ± 1.0 -2.4 ± 13.2 -1.0 ± 6,135

Relative 3-1a 4.4 ± 0.3 1.8 ± 1.0 -2.5 ± 1.0 -1.8 ± 16.2 -0.2 ± 8,923

DEls TDSls [approach I; Eq. (12)] TDSls [approach III; Eq. (11)]

Reduced terms

4: Aq ? Mq Xc -21.6 ± 0.0 -2.1 ± 0.2 Xb -4.5 ± 5.03

5: A:Aq ? A:Mq Xc 22.2 ± 0.1 10.5 ± 0.1 Xb 6.3 ± 2.5

6: H:Aq ? H:Mq Xc -1.1 ± 0.2 14.1 ± 0.1 Xb 10.6 ± 5.6

Relative 5-4a Xb 43.8 ± 0.4 12.6 ± 0.2 Xb 10.8 ± 5.6

Relative 6-4a Xb 20.5 ± 0.5 16.1 ± 0.1 Xb 15.1 ± 7.5

a DDA (DDE, TDDS) is calculated from two DA (DE, TDS) values of which one is from ligand-in-solvent, and the other is from either ligand-in-

CAPO or ligand-in-CHB, indicated by the numbers of the previous lines. This also applies to the reduced properties
b Value not computed
c No reduced term exists; full term is used
d The total amount of simulation time used to calculate the values in the corresponding column. Relative entropy terms require twice the amount

of total simulation time
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The setup for calculating the values in Table 2 for each

approach is quite inefficient, and different amounts of

simulation time were used in the various approaches,

possibly obscuring a fair comparison of their efficiencies.

Therefore, the question arises whether the same is

achievable using 100 ns overall simulation time per cal-

culated TDS or TDSls. This allows for a fair comparison of

the precision to be reached by the various approaches. The

results from a careful reduction of simulation data are

presented in Table 3 and show that similar trends are

still observed. The error estimates increase slightly and

the values vary somewhat, but remain very similar with the

exception of DE from ligand-in-CAPO. A reduction of the

simulation time seems to affect the full terms more than

the reduced terms, and a 100 ns overall simulation time

still seems adequate. Do keep in mind that this is not

automated and biases may have been introduced during the

manual data reduction process.

Reducing the overall simulation time further to 10 ns

per TDS or TDSls, results in the values presented in Table 4.

Again, the full terms seem most affected while the reduced

terms are less susceptible. The best convergence seems to

be obtained for DA, closely followed by the reduced DEls

and TDSls terms, while the full DE and TDS terms deviate

more, due to insufficient sampling of the solvent–solvent

degrees of freedom.

5 Discussion

The mutation of acetone to methanol was simulated in

different surrounding environments: pure solvent, bound to

CAPO in water and bound to CHB in water. The cavity in the

first host model represents a relatively large hydrophobic

cavity, while the cavity in the second host model has a

more hydrophilic character and is smaller in size. In the

current force field (parameter set 54A7, see supplementary

Fig. 5 Simulations were performed at 220, 250, 280, 290, 300, 310,

320, 350 and 380 K for DAm(H:Lq) (open square; left y-axis),

DAm(A:Lq) (open circle; right y-axis) and DAm(Lq) (open triangle;

left y-axis). The maximum simulation time spent is 10 ns per k-value

at 300 K and 1.2 ns per k-value at the other temperatures. A strong

correlation is observed (r2 = 0.99) for all three systems at maximum

simulation time with a slight deterioration when the summed up

simulation time for all temperatures is reduced to 100 ns

(r2 = 0.98–0.99). Differences between the systems H:Lq, A:Lq and

Lq become noticeable upon further reduction of the net simulation

time to 10 ns yielding r2 = 0.93, r2 = 0.97 and r2 = 0.90,

respectively

Fig. 6 Convergence of DAm, DE and TDS as function of simulation

time in the ligand-in-solvent simulation. DAm and TDS are calculated

using Eqs. (3) and (5)/(11) over 51 k-values, respectively. DE is

calculated using Eq. (7) over the simulations at k = 1 and k = 0.

These plots with error bars at each value clearly show a substantially

better convergence of the reduced terms DEls and TDSls (black) in

comparison with the normal full terms DE and TDS (grey). Data were

collected at every 100 ps for the first ns and subsequently at every

1 ns
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material), methanol is more hydrophilic than acetone [50].

This is reflected by the negative value of DAm(Aq) =

-19.5 kJ mol-1 in Table 2, which is the result of an

energetic contribution of -6.3 kJ mol-1 and an entropic

contribution of 13.2 kJ mol-1. Note that the intermolecular

interaction energies amount to zero, such that no gas-phase

corrections are needed. Comparing the values of DE and

DEls or TDS and TDSls from approach I (Eq. 11) allows us

to quantify the surrounding–surrounding contribution to the

energy and entropy of the acetone to methanol mutation.

DE is built up from -21.6 kJ mol-1 (DEls) as a result of

stronger interactions between methanol and the water

molecules and a loss of 15.3 kJ mol-1 (DEss) due to

reduced solvent–solvent interactions between these water

molecules. The favourable entropic contribution of

13.2 kJ mol-1 predominantly stems from the solvent–

Table 3 DA, DE, TDS and TDSls in kJ mol-1 calculated at 300 K using different methods when restricted to an overall simulation time of 100 ns

DAm
d DEd TDS [approach I; Eq. (2)] TDS [approach II; Eq. (4)] TDS [approach III; Eq. (5)]

1: Aq ? Mq -20.0 ± 0.3 -5.3 ± 1.02 14.7 ± 1.2 13.7 ± 12.2 7.8 ± 4,418

2: A:Aq ? A:Mq 11.6 ± 0.2 25.5 ± 1.7 13.9 ± 1.7 11.6 ± 7.6 2.7 ± 4,562

3: H:Aq ? H:Mq -15.2 ± 0.4 -3.4 ± 1.5 11.8 ± 1.6 12.6 ± 12.7 1.0 ± 8,259

Relative 2-1a 31.6 ± 0.4 30.8 ± 2.0 -0.8 ± 2.1 -2.2 ± 14.4 -5.0 ± 6,351

Relative 3-1a 4.8 ± 0.5 1.9 ± 1.8 -3.0 ± 2.0 -1.1 ± 17.6 -6.8 ± 9,366

DEls TDSls [approach I; Eq. (12)] TDSls [approach III; Eq. (11)]

Reduced terms

4: Aq ? Mq Xc -21.6 ± 0.1 -1.6 ± 0.3 Xb -4.9 ± 5.2

5: A:Aq ? A:Mq Xc 22.4 ± 0.1 10.8 ± 0.2 Xb 6.1 ± 2.5

6: H:Aq ? H:Mq Xc -1.0 ± 0.1 14.2 ± 0.4 Xb 11.5 ± 6.0

Relative 5-4a Xb 44.0 ± 0.1 12.4 ± 0.4 Xb 11.0 ± 5.8

Relative 6-4a Xb 20.6 ± 0.1 15.8 ± 0.5 Xb 16.4 ± 8.0

a DDA (DDE, TDDS) is calculated from two DA (DE, TDS) values of which one is from ligand-in-solvent, and the other is from either ligand-in-

CAPO or ligand-in-CHB, indicated by the numbers of the previous lines. This also applies to the reduced properties
b Value not computed
c No reduced term exists; full term is used
d The amount of simulation time and choice of the k-points contributing to the final DA or DE value is different per TDDS and TDS term

Table 4 DA, DE, TDS and TDSls in kJ mol-1 calculated at 300 K using different methods when restricted to an overall simulation time of 10 ns

DAm
d DEd TDS [approach I; Eq. (2)] TDS [approach II; Eq. (4)] TDS [approach III; Eq. (5)]

1: Aq ? Mq -19.8 ± 0.7 -1.9 ± 4.1 17.9 ± 4.1 12.8 ± 33.8 3.3 ± 13,495

2: A:Aq ? A:Mq 11.5 ± 0.5 31.9 ± 6.1 20.3 ± 6.1 12.1 ± 20.6 12.7 ± 14,619

3: H:Aq ? H:Mq -15.0 ± 0.9 -10.2 ± 4.2 4.8 ± 4.3 12.7 ± 32.8 -3.1 ± 22,608

Relative 2-1a 31.3 ± 0.9 33.8 ± 7.3 2.5 ± 7.4 -0.7 ± 39.5 9.4 ± 19,895

Relative 3-1a 4.8 ± 1.1 -8.3 ± 5.9 -13.1 ± 6.0 -0.1 ± 47.1 -6.4 ± 26,329

DEls TDSls [approach I; Eq. (12)] TDSls [approach III; Eq. (11)]

Reduced terms

4: Aq ? Mq Xc -22.0 ± 0.2 -3.2 ± 0.8 Xb -5.7 ± 15.6

5: A:Aq ? A:Mq Xc 22.5 ± 0.4 10.9 ± 0.6 Xb 6.3 ± 8.3

6: H:Aq ? H:Mq Xc -1.0 ± 0.2 14.0 ± 0.9 Xb 6.8 ± 21.2

Relative 5-4a Xb 44.5 ± 0.4 14.1 ± 1.0 Xb 12.0 ± 17.7

Relative 6-4a Xb 21.0 ± 0.3 17.1 ± 1.2 Xb 12.5 ± 26.4

a DDA (DDE, TDDS) is calculated from two DA (DE, TDS) values of which one is from ligand-in-solvent, and the other is from either ligand-in-

CAPO or ligand-in-CHB, indicated by the numbers of the previous lines. This also applies to the reduced properties
b Value not computed
c No reduced term exists; full term is used
d The amount of simulation time and choice of the k-points contributing to the final DA or DE value is different per TDDS and TDS term
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solvent reorganisation of TDSss = 15.3 kJ mol-1 exactly

cancelling the unfavourable energy contribution of DEss.

What remains is a slightly unfavourable contribution of

the ligand-surrounding entropy, TDSls = -2.1 kJ mol-1,

probably due to the smaller, more spherical size of the solute.

In the hydrophobic CAPO cavity, the free energy asso-

ciated with the same mutation is unfavourable by 11.7 kJ

mol-1, due to an unfavourable DEls = 22.2 kJ mol-1

resulting from incomplete ‘solvation’ in a cavity that is too

large for the methanol molecule, partly compensated by an

increased ligand entropy. In the CHB cavity with a smaller

volume, the energy change is small DEls = -1.1 kJ

mol-1, while the increase in ligand-surrounding entropy

TDSls is of comparable size (11–14 kJ mol-1), indicating

that more relevant configurations are accessible for meth-

anol than for acetone in both cavities.

Considering in more detail the relative binding free

energy, DDAb of acetone and methanol in CHB, we obtain a

moderate value of 4.4 kJ mol-1, which is built up from

a small unfavourable energetic contribution DDE = 1.8

kJ mol-1 and a small unfavourable entropic contribution

TDDS = -2.5 kJ mol-1. It may be tempting to conclude

from these numbers that the binding of the two compounds

is governed by the same principles. However, the values

of DDE and TDDS are obscured by a large, exactly com-

pensating value of DDEss = TDDSss = -18.6 kJ mol-1.

Considering the reduced terms, which leave out the sur-

rounding–surrounding energies and entropies, we see that

DDAb is built up from a large DDEls = 20.5 kJ mol-1 (as

the result of a significantly larger desolvation energy of

methanol than of acetone) and a considerable TDDSls =

16.1 kJ mol-1 (as the results of methanol having more

space to move around the small cavity than acetone). So

the small value of DDAb is the result of two distinct

molecular features in which the two molecules differ. The

above example nicely demonstrates how the surrounding–

surrounding energy and entropy, which do not contribute to

DDAb, may obscure a molecular interpretation of basic

thermodynamic properties. Similar considerations may

very well explain the observation of Biela et al. [25] where

very similar thermodynamic profiles were obtained for two

ligands with distinct binding poses.

The values for DEss and TDSss range from -3.4 to

15.3 kJ mol-1 and the corresponding relative surrounding–

surrounding binding energies (DDEss) and entropies (TDDSss)

amount to -7.8 (CAPO) and -18.6 kJ mol-1 (CHB), respec-

tively. Not unexpected for the host model molecules

completely shielding the ligand from direct interactions with

the solvent, the surrounding–surrounding energy entropy

compensation is smaller in the CAPO and CHB systems than

free in solution, leading to negative values for DDEss. This

suggests that the more readily converging reduced terms

cannot straightforwardly be used as a replacement for the full

energetic and entropic terms and that the surrounding–sur-

rounding contributions do depend strongly on the actual sur-

rounding of the ligand and cannot be expected to cancel in the

relative values. The fact that DDEss and TDDSss are so dif-

ferent in the two host systems also shows that they should

really be excluded from the interpretation of free energy dif-

ferences in which they cancel. Inclusion of the surrounding–

surrounding terms will obscure differences between the hosts

while the reduced terms offer physical interpretations more

relevant for drug design.

The reduced terms do not correspond to experimentally

observable quantities and as such cannot be validated by

experimental means. The decomposition of the energetic

and entropic contributions in terms of a ligand and its

surroundings is intuitive, but different choices can be made

including fewer or more terms that are compensated in

DE and TDS. The observation that DE and TDS contain

exactly compensating terms allows one to argue that, even

though not corresponding to experimental observations, the

reduced DEls and TDSls terms may be of more use in

computational drug design than their full counterparts.

After all, what use is an optimisation in terms of energy if a

significant portion of it is compensated by a loss in entropy

and the overall affinity is not improved?

More importantly, many of the optimisations either try

to rigidify the ligand or address an additional ligand–sur-

rounding interaction, which will be more easily quantified

in terms of the well-converging reduced terms. Therefore,

it may be advisable and also feasible to first characterise a

lead compound and its affinity in terms of DEls and TDSls

and to rationally optimise these terms in silico in order to

design a new compound with a higher affinity. Whether

part of the full energy is subsequently compensated by the

full entropy is irrelevant for the binding affinity.

6 Conclusion

The free energy difference between acetone and methanol

in solution and when bound to two model host systems was

calculated. Three approaches were taken to quantify the

energetic and entropic contributions to the free energies.

Moreover, these were described in terms of ligand-sur-

rounding energies and entropies, effectively also quanti-

fying the (exactly compensating) surrounding–surrounding

energies and entropies. Internal consistency of the calcu-

lations was ensured by investigating multiple cycle clo-

sures for the state functions. The convergence of all

thermodynamic properties was monitored.

The first approach, calculating the entropy as a differ-

ence between the free energy and the energy leads to the

smallest statistical uncertainties for this highly simplified

host model system. Quantifying the entropy from the
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temperature dependence of the free energy in the second

approach leads to comparable values, but a proper propa-

gation of the error estimates increases the statistical

uncertainty significantly. The third approach, in which the

entropy is directly estimated from thermodynamic inte-

gration, does not lead to converged results on the time-

scales investigated here. This does not hold for the reduced

thermodynamic terms (DEls and TDSls), for which the first

and third approaches yield comparable estimates, except

for a contribution due to modified bond-length constraints.

Although not corresponding to experimentally accessi-

ble quantities, the reduced terms can be readily calculated

from molecular simulations and may prove very powerful

in the thermodynamic optimisation of lead compounds in

computational drug design, as the intrinsic energy–entropy

compensation due to the surrounding is not included. We

have described examples of how the surrounding–sur-

rounding energy–entropy compensation obscures a proper

molecular interpretation of the thermodynamic terms.

Rather, we propose to use the reduced terms, opening the

way to new design strategies.
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