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1 Introduction

The hot, dense state of the early universe and its subsequent evolution offer a unique

testing ground for theories of high-energy physics; if string theory is the correct theory of

the earliest universe, it should be possible to embed all the known results from cosmology

in a consistent string theory description. Our best observational data of the early universe,

from the cosmic microwave background (CMB) [1–6], and late time acceleration [7], point

to a universe that is very close to spatially flat, in which large-scale structure was generated

from an almost scale-invariant spectrum of primordial density perturbations with a nearly

Gaussian distribution. This is consistent with a large class of inflationary models [5], which

we will have in mind here, as well as a variety of alternatives to inflation [8–10].

However, the dynamics of the early universe is necessarily studied via an effective field

theory (EFT) approach. Although one might expect a decoupling of energy scales, leading
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to suppression of higher-order terms in the Lagrangian by increasing powers of the cut-

off, the predictions of inflation can be highly sensitive to corrections of both the potential

or inflaton mass [11] and the kinetic terms [12, 13]. This forces one to consider the UV

sensitivity of inflation, which has been addressed from many perspectives: see [11, 14] for

reviews, [15] for a recent take, and [16] for a completely different approach. The dependence

of cosmological observables on the detailed embedding of inflation into string theory offers a

unique window into the high-energy physics of the early universe, and may provide evidence

that string theory could be the correct description of physics at these scales.

A consistent string compactification with a de Sitter (or quasi de Sitter) vacuum in

the 3+1 non-compact directions is crucial to such an embedding. Achieving such a com-

pactification has proved to be an extremely difficult endeavour. No-go theorems exist

for supergravity [17, 18] and for string theory (without time-dependent fields or higher-

curvature corrections), the well-known Maldacena-Nunez result [19]. This was extended

to the heterotic case with higher-order corrections (but without non-perturbative effects)

included [20, 21].

In Type II string theory, dS solutions have been studied in many works, for exam-

ple [22–32]. In addition, many models of inflation in string theory have been proposed

(see the reviews by [11, 14]), together with ‘uplift’ mechanisms for obtaining dS [33–35] by

lifting an AdS minimum of the scalar potential to a metastable dS minimum.

In this paper, we revisit the question from the full ten-dimensional setup of Type IIB

string theory, generalizing the analysis of Maldacena-Nunez [19] by including extended

localized sources in the gravity action. In particular we consider the traced-over Einstein

equations, identifying the conditions for achieving de Sitter space in the non-compact

dimensions for the cases of fluxes, scalar fields and different localized sources, e.g. D-

branes, anti D-branes and orientifold planes, in Type IIB with two-derivative gravity. We

find that none of these ingredients satisfy the required condition, suggesting that one must

consider additional terms in the gravity action.

One example of such additional terms is the set of higher-order curvature corrections.

We perform an explicit calculation using an M-theory uplift, so as to simplify the form

of the available fluxes. To study the effect of curvature corrections, we are forced to take

an indirect route and instead consider a generalized correction to the action. We make

an ansatz for the stress-energy tensor of the perturbative corrections, noting that the

correction terms are built from curvatures. We explicitly find that positive curvature in

the non-compact directions is only possible if curvature corrections are present and satisfy

a certain inequality.

We further find that the fluxes in any dS solution must be non self-dual, as is consistent

with broken supersymmetry. These fluxes, combined with D-brane instantons, are enough

to fix both the complex structure and Kahler moduli, including the volume modulus. In

addition to this, the instantons are one possible source for the curvature correction terms

required to give positive curvature to the non-compact space. We do not propose a specific

form for these corrections, and as the complete set of supported corrections is not yet

known, further conclusions cannot be made at this point.

The structure of this paper is as follows: sections 2 and 3 rederive the Gibbons-

Maldacena-Nunez No-Go theorem, and apply it to bulk fields (fluxes and scalar fields) and
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localized sources. In section 4, we set up our M-theory calculation, which we perform in

section 5. We then examine the resulting equations of motion in section 6 and 7, and

discuss the origin of higher order curvature corrections in section 8. We conclude our work

with a short discussion of our results in section 9.

2 Einstein gravity in D dimensions

Consider the following Einstein-Hilbert action coupled to matter in D spacetime dimen-

sions:

Stotal =
1

KD

∫
dDx

√
−GDRD +

∫
dDxLint, (2.1)

where KD is the D-dimensional Newton constant, RD is the Ricci scalar in D dimensions,

GD is the determinant of the D-dimensional metric gMN ,M,N = 0, . . . , D− 1, and Lint is

the Lagrangian for the local or global fields that couple to gravity. It can contain global

fluxes, scalar fields, local sources and terms that describe graviton self coupling. In the

Einstein equations, Lint enters through the stress-energy tensor

TMN = − 2√
−GD

δLint

δgMN
. (2.2)

Variation of (2.1) with respect to gMN gives the following Einstein equation:

RMN =
KD
2

(
TMN −

1

D − 2
gMNT

)
, (2.3)

where T is defined in the usual way, i.e.

T = gMNTMN . (2.4)

Now we will split the geometry into two manifolds: M4, spanned by coordinates xµ, µ =

0, . . . , 3 and a transverse space MD−4, spanned by coordinates xm,m = 4, . . . , D − 1.

We want M4 to describe our four dimensional non-compact space-time geometry and thus

choose (x0, x1, x2, x3) = (t, x, y, z), where t is timelike. MD−4 can be either a compact or

non-compact D − 4 dimensional manifold, described by spacelike coordinates xm. We will

often refer to xm and xµ as describing internal and external directions respectively. The

line element is

ds2
D = ds2

4 + ds2
D−4 ≡ gµνdxµdxν + gmndx

mdxn. (2.5)

Now if the D-dimensional manifold has a direct product topology M4 ×MD−4, then the

Ricci scalar for M4 is:

R4 ≡ gµνRµν . (2.6)

If R4 > 0 we obtain a positive curvature spacetime, of which de Sitter space is one example,

as is consistent with our universe. Alternatively, if R4 < 0, we have Anti-de Sitter type

geometry, which is not consistent with the current universe.

– 3 –



J
H
E
P
0
7
(
2
0
1
4
)
0
5
4

Taking the trace of (2.3) in the µ, ν directions, we get

R4 = − KD
2(D − 2)

[
Tµµ (6−D) + 4Tmm

]
. (2.7)

Thus for a positively curved spacetime, i.e. R4 > 0, we must satisfy the condition:

(D − 6)Tµµ > 4Tmm . (2.8)

Whatever the content of the Lagrangian, we must satisfy (2.8) if we are to obtain a posi-

tively curved four-dimensional universe. If we do not have a direct product space, but rather

a warped product space, then the manifold cannot be nicely separated: MD 6= M4×MD−4.

However, we can still try to obtain an effective four-dimensional space at low energies. In

this case, the transverse dimensions are not accessible, which is possible if the size ofMD−4

is small compared to the typical distance scale of interactions in M4. We will separately

address the case of a warped product space in the context of type IIB string theory in

section 3.2, where we will again see that the condition (2.8) plays a crucial role.

We can now proceed to analyse different choices for the Lagrangian.

2.1 Fluxes and scalar fields coupled to gravity

We can reproduce the No-Go theorem of Gibbons [17, 18] and Maldacena-Nunez [19] by

including fluxes in the Lagrangian. We consider the flux Lagrangian

LFint = −
√
−GDFa1...aqF

a1...aq , (2.9)

where F is a q-form. The above Lagrangian leads to the following stress-energy tensor:

TFMN = −gMNF
2 + 2qFMa2...aqF

a2...aq
N . (2.10)

One can readily check that with the above form of the tensor, condition (2.8) will be

satisfied if

4(1− q)F 2 > −Fµa2...aqF
µa2...aqq (D − 2) . (2.11)

We will consider two types of fluxes: the first type with legs only along the internal di-

rections and the second type with legs in M4. Also note that the overall minus sign in

the Lagrangian is chosen to give positive energy, i.e. T00 > 0. For the first type of flux

ai = m,n for all i and F 2 ≥ 0 with Fµa2...aqF
µa2...aq = 0. Thus we find that condition (2.8)

is not satisfied for q > 1.

If q < 4 then all the legs will be along MD−4 since otherwise the isometries of d = 4

Minkowski or de Sitter like space will be broken. Thus when we consider the second type

of flux which has legs in M4, we will restrict to the case q ≥ 4. For q ≥ 4 we will consider 4

out of q legs along M4 i.e. flux with legs in all the directions of M4 and the rest of its legs

along the internal directions. With this condition on the fluxes, one obtains the following

identities:

F 2 = Fa1a2...aqF
a1a2...aq = C(q, 4)Fµ1...µ4a5...aqF

µ1...µ4a5...aq

Fµa2...aqF
µa2...aq = C(q − 1, 3)Fµ1...µ4a5...aqF

µ1...µ4a5...aq , (2.12)
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where the coefficient C(q, k) is defined by

C(q, k) ≡ q!

(q − k)!k!
. (2.13)

This in turn gives us

Fµa2...aqF
µa2...aq =

4

q
F 2. (2.14)

Using the above relation and the fact that F 2 < 0, condition (2.8) will be satisfied if and

only if

D < q + 1. (2.15)

Thus for D > q+1, we find that a q-form flux with legs in M4 does not give rise to positive

curvature for M4. Any flux that preserves the desired isometries of M4 can be written as

a combination of the two types of fluxes described above. Thus, whatever the form of the

flux, q-form flux for D > q + 1 does not give rise to positive curvature for M4, as was first

demonstrated by Maldacena and Nunez [19].

Next we consider scalar fields. The most general interaction Lagrangian for a scalar

field interacting with gravity is given by

Lφint = −
√
−GD

(
∂Mφ∂

Mφ+ V (φ)
)
. (2.16)

Note that the overall minus sign is chosen so that when V (φ) = 0 (for example massless

fields with only kinetic energy), we get positive energy, i.e. T00 > 0. The stress-energy

tensor is given by

T φMN = −gMN

(
∂Kφ∂

Kφ+ V (φ)
)

+ 2∂Mφ∂Nφ. (2.17)

Then with the stress-energy tensor given above, the only way (2.8) is satisfied is if and

only if

∂µφ∂
µφ+ V (φ) > 0. (2.18)

Now if we demand that the M4 is isotropic in space but dependent on time, we readily

find ∂µφ∂
µ = gtt∂tφ∂tφ < 0 since gtt < 0. Thus if V (φ) < 0, M4 will not have positive

curvature. In type IIB string theory, which will be the focus of our study, the scalar axio-

dilaton field τ has no potential and thus will not aid in constructing positive curvature.

2.2 Localized matter coupled to gravity

Another possibility for the interaction Lagrangian is that of localized matter. For a p-

dimensional object embedded in D-dimensional geometry, the most general Lagrangian

that couples to the metric is the worldvolume Born-Infeld Lagrangian:

LBI
int = −Tp

√
−f̃√gD−p−1δ

D−p−1(x− x̄), (2.19)
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where f̃ is the determinant of the metric f̃ab, defined in the following way:

f̃ab = fab + F̃ab, fab = gMN
∂XM

∂σa
∂XN

∂σb
and F̃ab = Fab +Bab. (2.20)

Here Tp is the tension, Fab is the worldvolume flux, Bab is the pullback of the background

magnetic flux, a, b = 1, . . . , p+ 1, and F̃ab is raised or lowered with the pullback metric fab.

Also note that δD−p−1(x − x̄) is the (D − p − 1)-dimensional delta function, x = x̄ is the

location of the p-dimensional object, and gD−p−1 is the determinant of the (D − p − 1)-

dimensional metric such that we have the normalization∫
dD−p−1x

√
gD−p−1δ

D−p−1(x− x̄) = 1. (2.21)

We have picked worldsheet parameters σa = xa, a = 0, . . . , p− 1. Tp can be considered as

mass per unit length and thus it is typically positive.

If the Lagrangian is of the form (2.19) with positive mass term, i.e. Tp > 0, one obtains:

T µ (BI)
µ = −Tp

1√
−GD

√
−f̃√gD−p−1f̃abg

µ′ν′ δf̃
ab

δgµ′ν′
δD−p−1(x− x̄) < 0

T m (BI)
m = −Tp

1√
−GD

√
−f̃√gD−p−1f̃abg

m′n′ δf̃
ab

δgm′n′
δD−p−1(x− x̄) < 0. (2.22)

Using (2.22) in (2.7) one readily sees that (2.8) is satisfied if D < 6. For D > 6 (2.8) is not

automatically satisfied. In particular string theory gives D = 10 or 11 and thus we must

have Tmm non-vanishing to obtain our four-dimensional positive curvature universe.

String theory also allows negative tension objects, i.e. Tp < 0, and higher-derivative

terms in the low-energy effective action for gravity. Then, using the form of the localized

stress-energy tensor (2.22) and adding the contributions from the fluxes, scalar fields and

higher derivative terms, it may be possible to satisfy the condition (2.8). We will discuss

this possibility in sections 4 to 8.

3 dS in type IIB string theory with branes and planes

With a general understanding of gravitational coupling to fluxes and localized matter fields

in D dimensions, we will now consider the specific case of low-energy type IIB superstring

theory with the following action in Einstein frame:

Stotal = SSUGRA + Sloc, (3.1)

where

SSUGRA =
1

2κ2
10

∫
d10x

√
−G10

(
R− ∂Mτ∂

M τ̄

2|Imτ |2
− |F̂5|2

4 · 5!
− G3 · Ḡ3

12Imτ

)

+
1

8iκ2
10

∫
C4 ∧G3 ∧ Ḡ3

Imτ
. (3.2)
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Here τ = C0 + ie−φ; G10 = det gMN ,M,N = 0, . . . , 9; gMN is the metric in Einstein frame;

G3 = F3 − τH3; F3 is the three-form RR flux, H3 is the three-form NS-NS flux, and F̂5 is

defined by

F̂5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3. (3.3)

For the localized action we will consider Dp-branes and orientifold planes in various

dimensions. The action for a Dp-brane is given by

SDp = −
∫
dp+1σ Tp e

φ(p+1)
4

√
−f̃ + µp

∫ (
C ∧ eF̂

)
p+1

. (3.4)

Here f̃ is the same as in (2.19) and Cp+1 is the RR flux. As above, F̃ab is raised or lowered

with the pullback metric fab. Note that the sign of µp determines whether we have a brane

or an anti-brane. However both branes and anti-branes have positive tension Tp > 0.

On the other hand, for an orientifold, we have the action

SOp = −
∫
dp+1σ TOpe

φ(p+1)
4

√
−f + µOp

∫
Cp+1, (3.5)

where the orientifold has negative tension, i.e. TOp < 0. Here µp is the charge of the Op-

plane and we have the relation |TOp| = e−φ|µOp|. Also note that since the Op plane has

negative charge, we have µp = eφTOp = −eφ|TOp|.
With the above localized action and the bulk supergravity action, we can write (3.1)

in the form (2.1) with the interaction Lagrangian being1

Lint = Lbulk + LDp + LOp

Lbulk =
√
−G10

(
−∂Mτ∂

M τ̄

2|Imτ |2
− |F̂5|2

4 · 5!
− G3 · Ḡ3

12Imτ

)

LDp = −Tpe
φ(p+1)

4

√
−f̃√gD−p−1δ

10−p−1(x− x̄)

LOp = |TOp|e
φ(p+1)

4

√
−f√gD−p−1δ

10−p−1(x− x̄). (3.6)

In the above K10 has been replaced by 2κ2
10. Using the above form of the Lagrangian we

can readily obtain the stress-energy tensor (2.2) and check whether the constraint (2.8) is

satisfied or not.

To evaluate the trace of the stress-energy tensor, we will restrict the form of the fields

to ensure Poincaré invariance in the non-compact spacetime. This way even without solving

for the on-shell values of the fluxes and metric, we can check whether the inequality (2.8)

is satisfied. These conditions are the following:

• The fluxes H3 and F3 only have legs along M6, and τ depends only on xm, the

coordinates of M6.

1The topological term cannot enter the stress-energy tensor since δSCS

δgMN = 0 where SCS =

µp
∫ (

C ∧ eF̃
)
p+1

is the Chern-Simons action. Therefore we omit it in the Lagrangians here. For Dp-

branes F̂ is not generally zero but Op-planes do not carry gauge fields, and have F̂=0.
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• F̂5 will have legs in the xµ directions. Then by imposing self duality and Poincaré

invariance, one obtains the general form

F̂5 = (1 + ∗10) dα ∧ dt ∧ dx ∧ dy ∧ dz, (3.7)

where α(xM ) is a scalar field which is a function of all coordinates xM ,M = 0, . . . , 9.

Having laid down the required conditions, we will now analyze the individual cases

with branes, anti-branes and orientifold planes.

3.1 Direct product space with branes and planes

We will first consider product spaces M10 = M4 ×M6 with branes and planes, where the

transverse space M6 can be either compact or non-compact. For p = 3, we have D3 or

anti-D3 branes which fill up M4. Thus the induced metric is

fab = gab, for a, b = µ, ν

fab = 0 for a, b 6= µ, ν. (3.8)

Then we find2

Tµ
µ (D3/D̄3)

= −T3e
φ

√
−f̃√g6
√
−G10

(
4 + F̂µµ

)
δ6(x− x̄)

Tmm (D3/D̄3) = 0. (3.9)

However, since the flux F̂ is anti-symmetric while the metric is symmetric, F̂µµ = 0. Thus

neither the D3 nor the anti-D3 brane tensor satisfies the constraint (2.8).

The results for D3 and anti-D3 branes can easily be generalized to Dp and anti-Dp

branes with p = 5, 7. For Poincaré invariance in the noncompact dimensions, we will fill up

M4 with the Dp or anti-Dp branes and the remaining worldvolume will fill up some Sp−3

cycle inside the transverse spaceMD−p−1. If xm, xn denote coordinates of the cycle Sp−3,

then we have

fab = gab, for a, b = µ, ν,m, n

fab = 0 for a, b 6= µ, ν,m, n. (3.10)

And we obtain

Tµ
µ (Dp/D̄p)

= −Tpe
φ(p+1)

4

√
−f̃√gD−p−1
√
−G10

(
4 + F̂µµ

)
δD−p−1(x− x̄)

Tmm (Dp/D̄p) = −Tpe
φ(p+1)

4

√
−f̃√gD−p−1
√
−G10

(
p− 3 + F̂ uu

)
δD−p−1(x− x̄). (3.11)

2Note that the upper indices here and elsewhere in this section have been raised with the metric gMN ,

which is free of any warping in the case of a direct product space . For the warped compactifications studied

in later sections, we will make the distinction between the warped metric and unwarped metric, where we

introduce ‘tilded’ quantities, Ãm, that are defined with respect to the unwarped metric.
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Again, the worldvolume flux F̂ is anti-symmetric while the metric is symmetric. Hence

F̂µµ = 0. Using the form above, we can readily see that neither the Dp nor anti Dp-brane

stress-energy tensor satisfies the constraint (2.8) for p = 5, 7.

Now for the five-form flux: using self-duality, i.e. |F̂5|2 = 0, one finds that the con-

straint (2.8) for the stress-energy tensor of the F̂5 will be satisfied if and only if

F̂µabcdF̂
µabcd > 0. (3.12)

However, using the form of the flux (3.7), it is straightforward to see that F̂µabcdF̂
µabcd < 0

and thus the constraint (2.8) is not satisfied by the five-form flux. Alternatively, F̂5 can be

written as a sum of two types of fluxes as described in section (2.1), and again we arrive

at the same conclusion.

Finally, using the condition that G3 has legs alongM6 and τ only depends on xm, one

finds that the stress-energy tensors for G3 and τ do not satisfy the constraint (2.8). Since

stress-energy tensors arising from fluxes, scalar fields or localized Dp or anti-Dp branes

individually do not satisfy the constraint (2.8), the total stress-energy tensor for the entire

system consisting of all these ingredients will also not satisfy the constraint.

We can generalize the case for the localized Dp or anti-Dp branes to include smeared

Dp or anti-Dp branes along the compact directions.3 The only difference in the smeared

case is that the delta function in the stress-energy tensor (2.22) will be replaced by some

distribution i.e. δ(x− x̄)→ Γ(xm) > 0. Smearing the branes in this fashion will allow one

to compute the Ricci curvature on the brane, which will be a finite quantity. Again, since

Γ(xm) > 0, the stress-energy tensors will not obey the constraint (2.8). In summary, we

conclude that local or non-local branes or anti-branes in the presence of global fields do

not satisfy the condition (2.8) .

The only remaining case is the Op-planes. Orientifold planes are the loci of fixed

points of some discrete symmetry group, arising from a Z2 quotient of the theory combin-

ing worldsheet orientation reversal with an involution on the spacetime manifold [36]. The

number of fixed points of this orientifolding then gives the number of orientifold planes,

which fill all the noncompact dimensions. They have no gauge fields on their worldvolume,

and have negative fractional charge and tension. As the planes are fixed points of a sym-

metry group, their location in the internal space is fixed and cannot be arbitrarily chosen.

Thus the planes are essentially localized and cannot be thought of as smeared objects.

To construct an explicit gravity solution, we consider the localized action for the plane

coupled with the bulk action. The tension of O3-planes taken to lie in M4 is given by

Tµµ (O3) = 4|TO3|eφ
√
−f√g6√
−G10

δ6(x− x̄)

Tmm (O3) = 0, (3.13)

3A discussion of smeared sources can be found in [38, 39] and [37] where localized solutions are con-

structed from smeared source solutions. Smearing is a way to incorporate the global nature of charge

cancellation into the 10d equations of motion, which are inherently local. Not all smeared solutions corre-

spond to solutions of the full 10d equations.
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while for Op-planes with p = 5, 7, assuming as above that the spacetime directions M4 are

filled, we find

Tµµ (Op) = 4|TOp|e
φ(p+1)

4

√
−f√gD−p−1√
−G10

δD−p−1(x− x̄)

Tmm (Op) = |TOp|e
φ(p+1)

4

√
−f√gD−p−1√
−G10

(p− 3) δD−p−1(x− x̄). (3.14)

Orientifolds have negative tension, Tµµ (Op) > 0, so there is a possibility that the con-

straint (2.8) might be satisfied when O-planes are included. However we will see that

this does not lead to positive curvature in four dimensions. To see this first consider the

Einstein equations arising from variation of the action (3.1) with respect to the metric:

Rµν = −gµν

[
G3 · Ḡ3

48 Imτ
+

F̂ 2
5

8 · 5!

]
+
F̂µabcdF̂

abcd
ν

4 · 4!
+ κ2

10Nf

(
T loc
µν −

1

8
gµνT

loc

)
,

Rmn = −gmn

[
G3 · Ḡ3

48 Imτ
+

F̂ 2
5

8 · 5!

]
+
F̂mabcdF̂

abcd
n

4 · 4!
+
G bc
m Ḡnbc
4 Imτ

+
∂mτ∂nτ

2 |Imτ |2

+κ2
10Nf

(
T loc
mn −

1

8
gmnT

loc

)
, (3.15)

where Nf is the number of localized objects contributing to Sloc. Since we are considering

manifolds which have the product form M10 = M4 ×M6, we have the following form for

the metric:

ds2 = gµν(xµ)dxµdxν + gmn(xm)dxmdxn. (3.16)

With this metric ansatz, taking the trace of the first equation in (3.15) gives

R4(xµ) = −G3 · Ḡ3

12 Imτ
+
F̂µabcdF̂

µabcd

4 · 4!
+
κ2

10Nf

2

(
Tµ loc
µ − Tm loc

m

)
. (3.17)

The left-hand side is independent of xm, and hence the right-hand side should be as well.

It follows that we can evaluate the right-hand side at any value of xm, and so we are free

to consider xm away from the localized Op-planes, where the local O-plane stress-energy

tensor gives zero. As we have already studied, the flux and local or smeared Dp or anti-Dp

brane contributions to R4 are negative definite. Thus we obtain

R4 ≤ 0. (3.18)

Since we have a product space M10 = M4 ×M6, R4 is the Ricci scalar of M4. Thus we

conclude that neither Dp-branes, anti-Dp branes, nor Op-planes, in the presence of type

IIB fluxes and scalar fields, give rise to positive curvature for M4.

3.2 Warped product manifold with branes and planes

Now we consider the more general case where the ten-dimensional manifold is not a direct

product space, but rather a warped product. We look for solutions to (3.15) which take
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the following warped form:

ds2 = gµνdx
µdxν + gmndx

mdxn

= e2Ag̃µνdx
µdxν + e−2Ag̃mndx

mdxn, (3.19)

where A(xm) is a scalar function, g̃µν(xµ) is independent of internal coordinates xm while

g̃mn(xm) depends on xm . Now, using the ansatz (3.19) for the metric, we get

Rµν = R̃µν − g̃µνe4AÕ2A, (3.20)

where the Laplacian is defined as

Õ2 = g̃mn∂m∂n + ∂mg̃
mn∂n +

1

2
g̃mng̃pq∂ng̃pq∂m, (3.21)

and R̃µν is the Ricci tensor for the metric g̃µν . Since the geometry is not a direct product,

there is no notion of a separate four-dimensional space at all energies. If the internal

space is compact and small, then at low energies we effectively have a four-dimensional

non-compact space M̃4 with metric g̃µν . Then the condition R̃4 = g̃µνR̃µν > 0 states

that M̃4 has positive curvature. Thus, for a warped product geometry with metric of the

form (3.19), we will restrict to the case whereM6 is compact and look for local and global

fields in ten-dimensional type IIB theory that can give rise to M̃4 with positive curvature.

We take the trace of the first equation in (3.15) and use the relation (3.20) to get

Õ2e4A = R̃4 +
e2AG3 · Ḡ3

12 Imτ
−
e2AF̂µabcdF̂

µabcd

4 · 4!
+ e−6A∂me

4A∂me4A

+
κ2

10

2
e2A
(∑

i

[
Tmm (Op/Ōp)i − T

µ
µ (Op/Ōp)i

]
+
∑
j

[
Tmm (Dp/D̄p)j − T

µ
µ (Dp/D̄p)j

] )
.

(3.22)

Here T a
a (Op/Ōp)i

denotes the trace of the stress-energy tensor of the Op or anti-Op planes

localized at x̄i, and similarly T a
a (Dp/D̄p)j

denotes the trace of the stress-energy tensor of the

Dp or anti-Dp branes at ȳj . The fluxes, branes, and planes, are related globally by charge

cancellation, although we will not discuss the precise details here. We can integrate (3.22)

over the compact internal manifold M̃6 (which has the metric g̃mn) to get

C = Ṽ6R̃4 +

∫
d6x

√
g̃6Iglobal +

∫
d6x

√
g̃6

[
κ2

10

2
e2A
(∑

i

[
Tmm (Op/Ōp)i − T

µ
µ (Op/Ōp)i

]
+
∑
j

[
Tmm (Dp/D̄p)j − T

µ
µ (Dp/D̄p)j

] )]
, (3.23)

where C =
∫
d6x
√
g̃6Õ2e4A is a constant and we have defined Iglobal and Ṽ6 as

Iglobal ≡
e2AG3 · Ḡ3

12 Imτ
−
e2AF̂µabcdF̂

µabcd

4 · 4!
+ e−6A∂me

4A∂me4A ≥ 0,

Ṽ6 ≡
∫
d6x
√
g̃6 > 0. (3.24)
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IfM6 has no singularities or the warp factor e4A is globally defined, then C = 0. However,

in the presence of local sources classical gravity breaks down near the sources and this

leads to physical singularities in the manifold. To resolve these singularities, we can smear

the Dp-anti-Dp branes while Op and anti-Op planes are by definition localized objects. If

we remove the O planes entirely and only keep smeared branes, then M6 will be regular

and C = 0. However as discussed in the previous section, Tm
m (Dp/D̄p)

− Tµ
µ (Dp/D̄p)

≥ 0,

and thus we get

R̃4 ≤ 0. (3.25)

If we keep O planes, then there will be regions in the manifold with no classical gravity

description. One can remove the singular points from the manifold leaving holes, but

then C 6= 04. To obtain the exact value of C, one needs to know the metric near the

singularity, but since classical gravity breaks down, we are unable to evaluate C. Thus,

classical gravity is an incomplete description for a system containing O planes and we

expect quantum corrections to resolve the classical singularity associated with the planes.

In summary, neither Dp nor anti-Dp branes with arbitrary worldvolume fluxes in the

presence of type IIB fluxes and scalar fields result in positive curvature in four dimensions.

For direct product geometries, inclusion of Op or anti Op planes also do not give rise to

positive curvature. For warped product geometries arising in the presence of Op or anti-

Op planes, classical two derivative gravity is insufficient and we must look for quantum

corrections via higher-derivative gravity terms arising in string theory.

4 Curvature corrections and background solutions from M-theory

In the above sections we have argued that it is impossible to get a four-dimensional de

Sitter spacetime in a ten-dimensional two-derivative gravity coupled to fluxes, scalar fields,

D-branes and anti D-branes. With Orientifold-planes sourcing warped product manifolds,

the classical gravity description is not sufficient to make a verdict one way or another. We

need quantum corrections in the form of higher-curvature corrections to study the case

with the Orientifold-planes. In fact string theory can have these corrections which, as we

show below, could indeed help us to overcome the no-go theorem.

The analysis thus far has been done solely in the context of Type IIB string theory.

However, the full set of quantum corrections in IIB is not known, and in addition there are

many fields present which can complicate the analysis. To make the computations easier,

we work in M-theory, where the bosonic field content is just the metric, gMN , and the

three-form, CMNP , and make an ansatz for the form of the stress-energy tensor arising

from any curvature corrections, given in (5.2). A T 2 reduction of M-theory in the limit

when the torus size goes to zero, will reproduce the answer for Type IIB theory.5

4We thank Juan Maldacena for pointing this out. After the removal of points, C becomes a boundary

term. Additionally, removing the points means Tmm (Op/Ōp)i − T
µ

µ (Op/Ōp)i
= 0 but the effect of O planes is

captured by the fluxes.
5Earlier studies using EOMs but without invoking quantum corrections may be found in [41–44].
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We begin by setting up the M-theory uplift of the IIB system we are interested in.

The action for M-theory is given by

S = Sbulk + Sbrane + Scorr, (4.1)

where Sbulk is the standard supergravity action for M-theory with a 3-form flux C and

corresponding field strength G4, Sbrane is the contribution from M2-branes, and Scorr is a

curvature correction to the action. The supergravity and brane actions are given by

Sbulk =
1

2κ2

∫
d11x

√
−g
[
R− 1

48
G2

]
− 1

12κ2

∫
C ∧G ∧G, (4.2)

Sbrane = −T2

2

∫
d3σ
√
−γ
[
γµν∂µX

M∂νX
NgMN − 1 +

1

3!
ε̃µνρ∂µX

M∂νX
N∂ρX

PCMNP

]
,

(4.3)

where T2 is the tension of the M2-brane, XM denotes the worldsheet coordinates of the

brane, γµν is the induced metric on the brane, and we have assumed a minimal coupling

of the brane to the fluxes.

The corrections to the action are of the form Rn or Gn (or a combination thereof)6

and can come from several sources: instanton corrections, tree level α′ corrections, and

loop corrections. We delay a proper discussion of the Rn terms to section 8. To study the

effect of these corrections, we first assume that Scorr has two types of contributions: those

that depend on the metric and are therefore non-topological, which we denote Ŝntop, and

those that are topological and do not depend explicitly on the metric, Ŝtop. In other words

we have

Scorr = Ŝntop + Ŝtop, (4.4)

where Ŝtop can depend on the topological classes constructed out of the curvature form R.

Both sets of corrections depend on the curvatures RMNPQ and GMNPQ of the metric

gMN and the three-form field CMNP respectively, and we brand them curvature corrections.

The contributions to Ŝntop and Ŝtop at lowest order in α′ are known (see [49] for example,

as well as section 8) and using these we can express Ŝntop and Ŝtop as

Ŝtop = − T2

∫
C ∧X8 + Stop(R,G)

Ŝntop =
T2

9.213 · (2π)4

∫
d11x
√
−g
(
J0 −

1

2
E8

)
+ Sntop(R,G), (4.5)

where X8 is the curvature correction eight-form built completely with curvature two-form,

such that C∧X8 is a gravitational Chern-Simons term required to cancel the anomaly on the

fivebrane worldvolume [51]; and J0 and E8 are given in [49]. The additional contributions

Sntop and Stop are functions of both the curvatures (R,G). Some details of Sntop and Stop

have been worked out and they are given in [45–47] and [48] respectively. We will give a

more complete discussion in section 8.

6See for example [45–47] for more detail, up to four-point amplitudes, on this.
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In section 5 we will make an ansatz for the variation of the correction terms with

respect to the metric, which acts as an effective stress-energy tensor TMN
corr , rather than

deal with the action of the correction terms directly. In other words, we will make an

ansatz for

TMN
corr ≡ −

2√
−g

δScorr

δgMN

∣∣∣
g,C

= − 2√
−g

δŜntop

δgMN

∣∣∣
g,C

, (4.6)

where the subscript denotes a given choice of the metric and the three-form flux.

From the action (4.1), we obtain three key equations which govern the evolution of the

system. The first is the Einstein equation,7

RMN − 1

2
gMNR = TMN , (4.7)

where TMN is the total stress-energy tensor coming from fluxes, brane sources and quantum

or curvature corrections, and which we compute in section 5. The second is the flux

equation [49],

d ∗11 G =
1

2
G ∧G+ 2κ2 (T2X8 + ∗11J) + SG, (4.8)

where J is the source term coming from n3 M2-branes, ∗11 is the Hodge star with respect

to the warped metric unless mentioned otherwise, and SG is the contribution from Sntop

and Stop in (4.5) that we will discuss later.

The third equation is the M2-brane equation,

�XP + γµν∂µX
M∂νX

NΓPMN =
1

3!
εµνρ∂µX

M∂νX
N∂ρX

QGPMNQ, (4.9)

where εµνρ =
√
−γε̃µνρ. The source term at a spacetime position x is related to the

spacetime position X of the brane, and is given by

JPQR(x) =
2κ2n3T2√
−g

∫
d3σ
√
−γε̃µνρ∂µXP∂νX

Q∂ρX
Rδ11(x−X). (4.10)

We would like to find a solution to these equations that is conformally de Sitter when

brought to IIB, such that the IIB metric can schematically be written as

ds2 =
1

t2c
ηµνdx

µdxν + ds2
internal, (4.11)

where the time coordinate tc is conformal time, usually denoted τ or η, which in the de

Sitter space is related to physical time by

tc ∼ e−tphys . (4.12)

It follows that the infinite future (tphys → ∞) is given by the limit tc → 0, as is the case

during inflation. From this point onward we will drop the subscript c, and denote conformal

time as t.
7We are assuming that the volume of the internal fourfold is large so that an equation like (5.14) can

be used to describe the metric there. This brings us to the issue of moduli stabilization, which will be

discussed towards the end of section 7.
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We make the following ansatz for the metric in M theory:

ds2 =
1

(Λ(t)
√
h)4/3

(−dt2 + ηijdzidzj) + h1/3

[
g̃mndy

mdyn

(Λ(t))1/3
+ (Λ(t))2/3|dz|2

]
≡ e2A(y,t)(−dt2 + ηijdzidzj) + e2B(y,t)g̃mndy

mdyn + e2C(y,t)|dz|2, (4.13)

where i, j = 1, 2, g̃mn is the unwarped metric, A,B and C are warp factors that can be

written in terms of Λ(t) and h(ym), which we leave unspecified for the moment, and

dz ≡ dx3 + idx11, (4.14)

so that the only time dependence in the system comes from Λ(t). Specifically, the internal

eight-dimensional manifold only depends on time via the warp factor Λ(t) as we saw earlier,

i.e.

ds2
8 =

g̃mndy
mdyn

Λ1/3(t)
+ Λ2/3(t)|dz|2. (4.15)

This ansatz is chosen as the M-theory uplift for the solution we want to obtain in Type IIB,

i.e. by shrinking the torus specified by coordinates (z, z̄) or (x3, x11) to zero size one may

recover type IIB theory. It is a generalization of the ansatz considered in [49], and describes

a system of M2-branes moving towards orbifold singularities of the torus fibration of the

fourfold (where the D7 fluxes are localized). This was developed as a first step towards an

M theory uplift of D3/D7 [50].

The IIB metric that follows from dimensional reduction of the M theory metric (4.13)

is given by

ds2 =
1

Λ(t)
√
h

(−dt2 + ηijdzidzj + dx2
3) +

√
hg̃mndy

mdyn, (4.16)

so that, taking Λ(t) = Λ|t|2 (taking the absolute value to avoid any imaginary warping in

the M-theory metric), we obtain

ds2 =
1

Λt2
√
h

(−dt2 + ηijdzidzj + dx2
3) +

√
hg̃mndy

mdyn. (4.17)

For this to be a dS solution, we demand that Λ be strictly positive. We also require a

suitably well-behaved functional form for h(y), to avoid any pathology. However, for our

purposes, we will leave its functional form to be completely general.

Turning now to the flux equations, the equation for the G-fluxes can be rewritten as:

DM

(
GMPQR

)
=

1√
−g

ε̃PQRM1...M8

[
1

2 · (4!)2
GM1...M4GM5...M8 +

2κ2T2

8!
(X8)M1...M8

]
+

2κ2T2n3√
−g

∫
d3σε̃µνρ∂µX

P∂νX
Q∂ρX

Rδ11(x−X) +
1√
−g

(
δSntop

δCPQR
+

δStop

δCPQR

)
.

(4.18)

The above equation is in general hard to deal with because of the quantum corrections etc.

However the the G-fluxes are related to the membrane motion via the membrane EOM. In
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the limit where the membrane motion is very slow, γµν , which is the pull-back metric, is

simply equal to the spacetime metric given in (4.13). This implies

Gmµνρ = ∂m

(
ε̃µνρ
hΛ(t)2

)
, (4.19)

which shows that the spacetime part of the three-form field Cµνρ should be time-dependent

to maintain a metric of the form (4.13) with a membrane fixed at a point on the eight-

dimensional internal space. However to solve all the background equations we need more

flux components. Let us then switch on the following three additional G-fluxes:

Gmnpq ≡ 4∂[mCnpq], Gmnpa ≡ 3∂[mCnpa], Gmnab ≡ 2∂[mCnab]. (4.20)

To add some flexibility to the equations we seek to solve, and since we generically expect

a mix of time-dependent and time-independent fluxes, we assume that the components

Gmnpa are time independent, whereas all other fluxes depend on the internal coordinates

ym, as well as on (a, b) — i.e. on (x3, x11) — and the time t.

5 The Einstein equations

In what follows we solve the Einstein equations (5.14) by including the general form of the

stress-energy tensor TMN in section 5. This way we will be able to tabulate all the equations

for the metric components satisfying (4.13), in section 6. Subsequently, in section 7, we

study the flux equations (4.8) and resulting consistency conditions.

5.1 General form of the stress-energy tensor

Like the action, the stress-energy tensor has 3 contributions:

TMN = TMN
G + TMN

corr + TMN
B , (5.1)

where G is for G-flux, corr is for correction, and B is for brane. As discussed in section 4,

we will study the effect of higher-order curvature corrections to the action by making an

ansatz for the resulting T corr
MN . Since our goal is to study solutions that are de Sitter in the

non-compact dimensions, we are primarily concerned with tracking the time dependence of

each component of the action and resulting Einstein equation. In line with this, we choose

an ansatz for T corr
MN that allows us to keep track of the time dependence. The stress-energy

contributions are then given by

TMN
G =

1

12

[
GMPQRGNPQR −

1

8
gMNGPQRSGPQRS

]
(5.2)

TMN
B (x) = −κ

2T2n3√
−g

∫
d3σ
√
−γγµν∂µXM∂νX

Nδ11(x− xb) (5.3)

TMN
corr =

−2√
−g

δŜntop

δgMN

∣∣∣
g,C
≡
∑
i

[Λ(t)]αi+1/3CMN, i, (5.4)
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where again xb is the spacetime position of the brane (which is generically time dependent),

and we have defined

CiMN = gMN C̃i − 2
δC̃i
δgMN

. (5.5)

In the following sections we will attempt to search for solutions, by separately examining

the mn, ab, and µν components of the Einstein equation. Note that the scalars C̃i are

defined in terms of the unwarped metric, such that the only dependence on warp factors in

CMN comes from the explicit factors of the warped metric gMN .

5.2 Internal (m,n) components

We will start with the internal (m,n) components along the six-dimensional base. Two set

of equations need to be solved now: the Einstein equation and the flux equation. For the

Einstein equation we need the Einstein tensor from the M-theory metric (4.13). The Ricci

tensor Rmn is given by

Rmn = R̃mn + 3
[
2∂(mA∂n)B − ∂mA∂nA− g̃mn∂kA∂kB

]
+ 4

[
∂mB∂nB − g̃mn∂kB∂kB

]
−3D(m∂n)A− 2D(m∂n)C + 2

[
2∂(mC∂n)B − ∂mC∂nC − g̃mn∂kC∂kB

]
−4D(m∂n)B − g̃mn�B + e2(B−A)

[
B̈ + ȦḂ + 6Ḃ2 + 2ĊḂ

]
g̃mn, (5.6)

and the warped curvature scalar R is given by

R = −e−2B [10�B + 6�A+ 4�C + 20∂mB∂
mB]− 3e−2B [4∂mA∂

mA+ 8∂mA∂
mB]

−2e−2B [3∂mC∂
mC + 8∂mB∂

mC + 6∂mA∂
mC] + e−2B R̃

+2e−2A
[
6B̈ + 2Ä+ 2C̈ + 21Ḃ2 + 6ȦḂ + 12ĊḂ + 2ȦĊ + Ȧ2 + 3Ċ2

]
, (5.7)

where remaining raising and lowering operations are done by the unwarped internal metric

g̃mn. The Einstein tensor Gmn is found to be

Gmn = G̃mn −
∂mh∂nh

2h2
+ g̃mn

[
∂kh∂

kh

4h2
− 6Λh

]
, (5.8)

where Λ is the coefficient of t2 in Λ(t), and hence the above expression is independent of

time.

To study the stress-energy tensor from the G-fluxes we have to first express the various

components of the G-fluxes GMNPQ in terms of their unwarped components G̃MNPQ as:

G012m = G̃012m[Λ(t)]13/3h5/3, G012a = G̃012a[Λ(t)]10/3h5/3

G0mna = G̃0mna[Λ(t)]4/3h−1/3, G0mab = G̃0mab[Λ(t)]1/3h−1/3

Gmnpa = G̃mnpa[Λ(t)]1/3h−4/3, Gmnab = G̃mnab[Λ(t)]−2/3h−4/3

G0mnp = G̃0mnp[Λ(t)]7/3h−1/3, Gmnpq = G̃mnpq[Λ(t)]4/3h−4/3 (5.9)

where what we have done here is to simply isolate the warp factor dependences of GMNPQ

and express its components in terms of G̃MNPQ. This also means that GMNPQ ≡ G̃MNPQ

– 17 –



J
H
E
P
0
7
(
2
0
1
4
)
0
5
4

by definition. We can also isolate the warp factor from the metric and write the determi-

nant as

det g = −[Λ(t)]−14/3h2/3det g̃. (5.10)

The stress-energy tensor is easily expressed in the language of the unwarped G-fluxes (5.9)

and the determinant (5.10):

T (G)
mn = g̃mn

∂kh∂
kh

4h2
− ∂mh∂nh

2h2
+

1

4h

[
G̃mlkaG̃

lka
n − 1

6
g̃mnG̃pklaG̃

pkla

]
(5.11)

+
Λ(t)

12h

[
G̃mlkrG̃

lkr
n − 1

8
g̃mnG̃pklrG̃

pklr

]
+

1

4hΛ(t)

[
G̃mlabG̃

lab
n − 1

4
g̃mnG̃pkabG̃

pkab

]
.

The stress-energy tensor from the membrane (M2 brane) will not contribute however. This

is because the stress-energy tensor, given by [49],

T (B)
mn = −κ2T2n3g̃pmg̃qn

h1/3[Λ(t)]5/3√
g̃

∫
d3σ
√
−γγµν∂µXp∂νX

qδ11(x−X), (5.12)

where g̃ is the determinant of the metric in the m,n directions, vanishes in the limit where

the membrane motion is very slow. The only other contribution will be from the correction

terms, which, using gmn = e2B g̃mn, gives

T corr
mn = h1/3

∑
i

[Λ(t)]αi C̃imn. (5.13)

The equation that we need to solve now is

Gmn = T (G)
mn + T corr

mn . (5.14)

This can be split into a time-independent piece,

G̃mn − g̃mn6Λh =
1

4h

[
G̃mlkaG̃

lka
n − 1

6
g̃mnG̃pklaG̃

pkla

]
+ h1/3

∑
αi=0

C̃imn, (5.15)

where we made use of our assumption that the Gmnpa are time independent, and a time-

dependent piece given by

Λ(t)

12h

[
G̃mpqrG̃

pqr
n − 1

8
g̃mnG̃pqrsG̃

pqrs

]
+

1

4hΛ(t)

[
G̃mpabG̃

pab
n − 1

4
g̃mnG̃pqabG̃

pqab

]
+h1/3

∑
αi 6=0

[Λ(t)]αi C̃imn = 0. (5.16)

Note that at this stage the only possible wayGmnpr andGmnab can also be time independent

and yet still satisfy (6.15) is if the αi are allowed to take the values

αi = (1,−1, 0, 0, . . . 0). (5.17)

It is not clear we can have this condition for our case, and so we will assume that the only

time-independent components of the G-fluxes are Gmnpa.
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5.3 Internal (a, b) components

The Ricci tensor for the (a, b), i.e. the x3 and x11 components, is given by

Rab = −δabe2(C−B) [�C + 3∂mC∂
mA+ 4∂mC∂

mB + 2∂mC∂
mC]

+δabe
2(C−A)

[
C̈ + ȦĊ + 6ĊḂ + 2Ċ2

]
, (5.18)

which can be used to compute the Einstein tensor Gab. For the M-theory metric (4.13),

Gab is given by

Gab = δabΛ(t)

[
−R̃

2
− 9hΛ +

g̃pk∂ph∂kh

4h2

]
, (5.19)

where we note that there is an overall time dependence given by Λ(t). The stress-energy

tensor due to the fluxes is given by

T (G)
ab =

Λ(t)

12h

[
G̃amnpG̃

mnp
b − δab

G̃mnpcG̃
mnpc

2
+ δab

3g̃mp∂mh∂ph

h

]

+
1

4h

[
G̃acmnG̃

cmn
b − 1

4
δabG̃mncdG̃

mncd

]
− δab

[Λ(t)]2

4 · 4!h
G̃mnpqG̃

mnpq. (5.20)

The interesting thing about the above formula is that the time dependence of the first term

(involving G̃mnpa) is exactly the same as the time dependence of the Gab. This means that

the G̃mnpa components can remain time independent, as we had earlier. The correction

term contribution to the stress-energy tensor for the (a, b) directions is

T corr
ab = h1/3

∑
i

[Λ(t)]αi+1C̃iab. (5.21)

As before, we can write the resulting Einstein equation as a time-independent expression

(where we collect the terms linear in Λ(t)):(
R̃

2
+ 9hΛ

)
δab +

1

12h

[
G̃amnpG̃

mnp
b − δab

G̃mnpcG̃
mnpc

2

]
+ h1/3

∑
αi=0

C̃iab = 0, (5.22)

and a time-dependent expression:

1

4h

[
G̃acmnG̃

cmn
b − 1

4
δabG̃mncdG̃

mncd

]
− δab

[Λ(t)]2

4 · 4!h
G̃mnpqG̃

mnpq

+h1/3
∑
αi 6=0

[Λ(t)]αi+1 C̃iab = 0. (5.23)

Once again, we must assume Gmnpq and Gmnab are time dependent in such a way as to

solve (5.23). Thus the conclusion of this section is perfectly consistent with the conclusions

of the previous section.
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5.4 Spacetime (t, z1, z2) components

We now study the spacetime components. The curvature tensors R00 and Rij are given by

Rij = −ηije2A−2B [�A+ 3∂mA∂
mA+ 4∂mA∂

mB + 2∂mA∂
mC] (5.24)

+
(
Ä+ 6ȦḂ + Ȧ2 + 2ȦĊ

)
ηij

R00 = e2A−2B [�A+ 3∂mA∂
mA+ 4∂mA∂

mB + 2∂mA∂
mC] (5.25)

−
[
2Ä+ 6(B̈ + Ḃ2 − ȦḂ) + 2(C̈ + Ċ2 − ȦĊ)

]
, (5.26)

using which the Einstein tensor Gµν is found to be

Gµν = − ηµν
Λ(t)

[
R̃

2h
+
g̃mk∂kh∂mh

4h3
− �h

2h2
+ 3Λ

]
, (5.27)

where we see that the overall time dependence is provided by 1/Λ(t). The above equation

should be balanced by the stress-energy tensor from the G-flux and corrections, as well as

from the membrane. The latter term is there because the almost static membrane does

contribute to the stress-energy tensor along the spacetime directions.

The stress-energy tensor from the G-flux is given by

T (G)
µν = −ηµν

[
(∂h)2

4Λ(t)h3
+
G̃mnpaG̃

mnpa

4!Λ(t)h2
+
G̃mnpqG̃

mnpq

4 · 4!h2
+
G̃mnabG̃

mnab

16h2[Λ(t)]2

]
. (5.28)

As expected, T (G)
µν has a piece that scales as 1/Λ(t), so we should be able to maintain the

time independence of the Gmnpa components.

The stress-energy tensor coming from the correction terms can be found to be

T corr
µν = h−2/3

∑
i

[Λ(t)]αi−1C̃iµν . (5.29)

Finally we will need the stress-energy tensor for the static membrane. The EOM of the

worldvolume metric gives us, in the case where the brane is moving very slowly,

γµν = ∂µX
M∂νX

NgMN ≈ gµν =
ηµν

[Λ(t)
√
h]4/3

. (5.30)

Using this we can show that the stress-energy tensor is given by

T (B)
µν = − κ2T2n3

h2Λ(t)
√
g̃
δ8(x−X)ηµν , (5.31)

which is again suppressed by 1/Λ(t), confirming the time independence of the components

Gmnpa.

Again, we can split the full Einstein equation into a time-independent part:(
R̃

2h
− �h

2h2
+ 3Λ

)
=
G̃mnpaG̃

mnpa

4!h2
+
κ2T2n3

h2
√
g̃
δ8(x−X)− 1

3h2/3

∑
{αi}=0

C̃µ,iµ (5.32)

where we have traced over the µ, ν components using ηµν , and a time-dependent part:

ηµν

[
G̃mnpqG̃

mnpq

4 · 4!h2
+
G̃mnabG̃

mnab

4!h2Λ(t)2

]
− 1

h2/3

∑
{αi}6=0

[Λ(t)]αi−1C̃iµν = 0. (5.33)
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6 Analysis of the EOMs and consistency conditions

We have now split the Einstein equations into 6 equations, 3 of which are time dependent,

and 3 of which are time independent. To deduce the properties of these equations, it suffices

to look at the traced over form of each. The traced-over time independent equation for the

spacetime (µ, ν) components is(
R̃

2h
− �h

2h2
+ 3Λ

)
=
G̃mnpaG̃

mnpa

4!h2
+
κ2n3T2δ

8(x−X)

h2
√
g̃

− 1

3h2/3

∑
{αi}=0

C̃µ, iµ , (6.1)

whereas for the internal (m,n) components, it is

36hΛ + h1/3
∑
{αi}=0

C̃m, im = G̃mm. (6.2)

Note that the flux contribution in (5.15) is traceless, so it doesn’t appear in the above

equation. Finally, for the internal (a, b) components the trace equation is

R̃

2
+ 9hΛ +

h1/3

2

∑
{αi}=0

C̃a, ia = 0, (6.3)

where again the flux contributions from (5.22) do not enter. The last two equations, (6.2)

and (6.3), are quite similar and can be rewritten as∑
{αi}=0

C̃m, im = − 2

h1/3
(R̃+ 18hΛ), (6.4)

∑
{αi}=0

C̃a, ia = − 1

h1/3
(R̃+ 18hΛ), (6.5)

from which we can read off that ∑
{αi}=0

C̃m, im = 2
∑
{αi}=0

C̃a, ia . (6.6)

Using (6.2) and (6.3) we can also write

R̃ = −18hΛ− h1/3

1

2

∑
{αi}=0

C̃a, ia +
1

4

∑
{αi}=0

C̃m, im

 , (6.7)

which allows us to rewrite the constraint (6.1) as

−�h =
G̃mnpaG̃

mnpa

12
+ 12h2Λ +

2κ2n3T2δ
8(x−X)√
g̃

+h4/3

1

2

∑
{αi}=0

C̃ a, i
a +

1

4

∑
{αi}=0

C̃ m, i
m − 2

3

∑
{αi}=0

C̃ µ, i
µ

 . (6.8)
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There are three further equations that arise from (5.22) in the limit when a 6= b, a = b = 3

and a = b = 11 respectively. These are

G̃amnpG̃
mnp
b + 12h4/3

∑
{αi}=0

C̃iab = 0,

G̃3mnpG̃
mnp
3 − G̃11,mnpG̃

mnp
11 = 24h4/3

∑
{αi}=0

(
1

2
C̃a, ia − C̃i33

)
,

G̃3mnpG̃
mnp
3 − G̃11,mnpG̃

mnp
11 = −24h4/3

∑
{αi}=0

(
1

2
C̃a, ia − C̃i11,11

)
. (6.9)

If we now consider integrating equation (6.8) over the compact eight-dimensional manifold,

we see that the l.h.s. integrates to zero as the warp factor h is a globally defined quantity,

and we get

1

12

∫
d8x
√
g̃ G̃mnpaG̃

mnpa + 12Λ

∫
d8x
√
g̃ h2 + 2κ2T2n3

+

∫
d8x
√
g̃h4/3

1

2

∑
{αi}=0

C̃a, ia +
1

4

∑
{αi}=0

C̃m, im − 2

3

∑
{αi}=0

C̃µ, iµ

 = 0. (6.10)

In the absence of fluxes and higher-curvature corrections the above equation implies that the

simplest solution will be Λ = 0, i.e. a four-dimensional Minkowski space. This conclusion

cannot be changed by the insertions of the type IIB Orientifold-planes precisely because

they become smooth geometries8 in M-theory and therefore cannot change the sign of Λ

in the absence of any corrections. In the presence of fluxes, and in the presence or absence

of the higher-curvature corrections, it is not difficult to see that the Λ < 0 solution is

favored. However to allow a Λ > 0 solution from (6.10), it is at least necessary to have the

higher curvature corrections, because the first three terms in (6.10) are positive definite.

Moreover, if all the curvature corrections in (6.10) add up to some positive value, a Λ > 0

solution will again be impossible.

This means that for a Λ > 0 solution to exist, the curvature terms in (6.10) should

integrate to a negative definite value. This conclusion should be valid for all possible choices

of the warp factor h and the internal metric g̃mn. In particular, for certain choices of the

fluxes the warp factor may be localized over a small patch on the internal manifold (for

example like a M2-brane solution). Then the integral condition on the higher-curvature

terms will have to be realized at every such patch on the internal manifold. On a small

patch, since there is no local transformation that can make the metric flat everywhere, C̃M, i
M

can be viewed as the expectation or the average value on the patch, or more explicitly:

〈C̃M, i
M 〉 ≡

∫
d8x
√
g̃ h4/3C̃M, i

M . (6.11)

8The “twisted sector” states appear precisely from smoothing the geometry in M-theory. The higher

curvature term C ∧ X8 provides the gravitational couplings on the corresponding type IIB Orientifold-

planes as will be briefly discussed above (7.5). The rest of the curvature terms from Stop and Ŝntop in (4.5)

contribute to the higher curvature terms on the Orientifold-planes beyond the Chern-Simons terms of (7.5)

and (7.4).
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In other words, for a solution to exist we must have the following condition

1

2

∑
{αi}=0

〈C̃a, ia 〉+
1

4

∑
{αi}=0

〈C̃m, im 〉 − 2

3

∑
{αi}=0

〈C̃µ, iµ 〉 < 0. (6.12)

Since T corr
mn ∼ C̃imn, this equation is almost analogous to (2.8) but expressed in the language

of curvature corrections.9 This makes sense because only these corrections will allow us

to overcome the Gibbons-Maldacena-Nunez [17–19] no-go theorem. Under this assump-

tion, (6.12) gives non-trivial constraints on the curvature corrections required to have a

four-dimensional de Sitter solution in Type IIB theory.

The curvature terms may be further constrained if we look at the time-dependent

equations. These equations are

G̃mnpqG̃
mnpq

4
+
G̃mnabG̃

mnab

Λ(t)2
= 8h4/3

∑
{αi}6=0

[Λ(t)]αi−1C̃µ, iµ , (6.13)

G̃acmnG̃
acmn − [Λ(t)]2

6
G̃mnpqG̃

mnpq = −8h4/3
∑
αi 6=0

[Λ(t)]αi+1 C̃a, ia , (6.14)

Λ(t)

6
G̃pqrsG̃

pqrs − 1

Λ(t)
G̃mpabG̃

mpab = −8h4/3
∑
αi 6=0

[Λ(t)]αi C̃m, im . (6.15)

From the first equation above, and noting that both the terms on the l.h.s. are positive

definite, we deduce one new condition on the corrections by integrating over the eight-

dimensional manifold: ∑
{αi}6=0

aαi〈C̃µ, iµ 〉 > 0, (6.16)

where a ≡ Λ(ta) for a fixed ta. In fact (6.16) will be an infinite set of constraints because,

due to its time dependence, aαi can take any (positive) values including arbitrary fractional

numbers. Note that

〈C̃µ, iµ 〉 > 0 (6.17)

will always solve (6.16) if the αi appearing in (6.16) are not equal to each other. However

a generic statement cannot be made unless we actually solve all the EOMs. In view of that

we will only demand (6.16) as our constraint equation. The other two equations involve

relative signs and therefore tell us nothing about the signs of
∑
{αi}6=0 C̃

a, i
a or

∑
{αi}6=0 C̃

m, i
m .

In total we have the following conditions on the form of the corrections:

1

2

∑
{αi}=0

〈C̃a, ia 〉+
1

4

∑
{αi}=0

〈C̃m, im 〉 < 2

3

∑
{αi}=0

〈C̃µ, iµ 〉, (6.18)

∑
{αi}6=0

aαi〈C̃µ, iµ 〉 > 0. (6.19)

9One subtlety however is that this constraint arises from the Einstein equations of an 11-dimensional

M theory, in which µ runs from 0 to 2, while in (2.8) it runs from 0 to 3, so the numerical factors are

not expected to be the same in both expressions. We would have to redo the calculation in IIB to get

the same expression. However in both cases the condition is that the four-dimensional curvature upon

compactification be positive.
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7 Analysis of the background fluxes and additional consistency checks

The above set of conclusions was derived by analyzing the Einstein’s equations alone. The

next question is whether any conclusions are altered when the equations of motion for the

G-fluxes are taken into account. Before moving ahead with the exact flux equations, we

will do a more careful analysis of the background fluxes to see how the type IIB fluxes

should be viewed from our choices of the M-theory fluxes. Imagine we rewrite the flux

components in M-theory as [50]:

G̃ = Gµνρmdx
µ ∧ dxν ∧ dxρ ∧ dxm + G̃mnqadxm ∧ dxn ∧ dxq ∧ dxa +

N∑
i=1

F i ∧ Ωi,

(7.1)

where we have taken the time-dependent components G̃mnpq and G̃mnab to be localized

around certain singular points on the eight-dimensional internal space and we have decom-

posed G̃mnpa into a delocalized and a localized piece as

G̃mnpa = G̃mnpa + G̃loc
mnpa. (7.2)

In (7.1), the localized pieces are contained in the last term, where the sum is over the

points at which the F-theory torus degenerates, the Ωi are the normalizable harmonic

forms located at these points, and the F i represent the gauge fields on the resulting D7-

branes at these points in IIB, such that only the F i are functions of time.10 Then it turns

out that the delocalized piece G̃mnpa gives rise to the type IIB three-forms in the following

way:

G̃mnpadxm ∧ dxn ∧ dxp ∧ dxa ≡ 2(H3)mnpdx
m ∧ dxn ∧ dxp ∧ dx3

+2(F3)mnpdx
m ∧ dxn ∧ dxp ∧ dx11, (7.3)

where H3 and F3 are the NS and RR three-forms of type IIB theory respectively, while the

localized fluxes should appear as gauge-fields on the type IIB seven-branes. A straightfor-

ward decomposition immediately gives us:∫
G ∧ ∗11G →

∫
d10x
√
g10

[
1

g2
B

(
|H3|2 + |F5|2

)
+ |F3|2

]
+

N∑
i=1

∫
d8σ F i ∧ ∗BF i,

∫
C ∧G ∧G →

∫
C4 ∧H3 ∧ F3 +

N∑
i=1

∫
d8σ C4 ∧ F i ∧ F i, (7.4)

where for the first relation, the first three terms appear in the type IIB bulk and the last

term collects the interactions on the D7-brane worldvolume. We have also assumed that

10A discussion of these issues is also given in [53] and [54]. Note that the existence of these points do not

mean that the eight-dimensional manifold is singular.
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the self-duality of F5 is imposed via the EOM, so that the action is explicitly non-selfdual.

The five-form piece comes from the spacetime part of the G-flux and the three-form fluxes

come from the components Gmnqa. For the second relation, the first term is the bulk term

and the second one is the seven-brane Chern-Simons term. The C ∧X8 term gives rise to

the couplings on the D7-branes and O7-planes and possibly some contributions to the bulk

interactions. For example we expect some parts of C ∧X8 to reproduce

a1

∫
D7
CRR ∧

√
Â(R) + a2

∫
O7
CRR ∧

√
H(R/4), (7.5)

where Â(R) and H(R) are the corresponding A-roof genus and Hirzebrusch polynomial

respectively. We have also used the orthogonality condition for the components of Ωi to

get the interactions of the seven-brane worldvolume gauge fields. Note that this analysis

only gives the abelian part of the gauge group (i.e the Cartan subalgebra), which could be

extended to include a non-abelian gauge group by including M2-branes wrapping vanishing

2-cycles of the fourfold.

Once the structure of the fluxes is laid out, the physics away from the singular points

will be captured by the delocalized fluxes only. The G-flux EOM (4.18) then gives us the

following equation for the warp factor h:11

−�h =
1

12
G̃mnpa(∗8G̃)mnpa +

2κ2T2

8!
√
g̃

(X8)M1...M8 ε̃
M1...M8 (7.6)

+
2κ2T2n3√

g̃
δ8(x−X)− 2κ2T2n̄3√

g̃
δ8(x− Y ) + α1

δSntop

δC̃012

+ α2
δStop

δC̃012

,

where ∗8 is the Hodge star with respect to the unwarped metric unless mentioned otherwise,

αi are coefficients that can be derived from (4.18), and we take only the delocalized flux

components. Equation (7.6) can be compared to the Einstein equation:

−�h =
G̃mnpaG̃mnpa

12
+ 12h2Λ +

2κ2n3T2δ
8(x−X)√
g̃

+
2κ2n̄3T2δ

8(x− Y )√
g̃

+h4/3

1

2

∑
{αi}=0

C̃a, ia +
1

4

∑
{αi}=0

C̃m, im − 2

3

∑
{αi}=0

C̃µ, iµ

 , (7.7)

where we have re-expressed (6.8) in terms of the delocalized fluxes instead of the total

fluxes. The factors (n3, n̄3) denote the number of M2 and anti-M2 branes located at

(X,Y ) respectively and X8 is defined in the usual way [55] such that∫
X8 = − 1

4!(2π)4
χ4, (7.8)

where the integral is over the eight-dimensional manifold with Euler characteristic χ4,

which could in general take any sign.

11We have defined the covariant derivative Dq in the following way: DqG
qmnp ≡ 1√

−g∂q (
√
−gGqmnp).
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Comparing (7.7) and (7.6) we get the following consistency relation which should be

compared with the consistency condition that we had from (6.10):

1

12
G̃mnpa

[
G̃mnpa − (∗8G̃)mnpa

]
+ 12Λh2 +

4κ2T2n̄3√
g̃

δ8(x− Y )− α1
δSntop

δC̃012

− α2
δStop

δC̃012

+h4/3

1

2

∑
{αi}=0

C̃a, ia +
1

4

∑
{αi}=0

C̃m, im − 2

3

∑
{αi}=0

C̃µ, iµ

− 2κ2T2

8!
√
g̃

(X8)M1...M8 ε̃
M1...M8 = 0.

(7.9)

Firstly note that in the presence of curvature corrections and positive cosmological constant

Λ it is in general not possible to maintain the self-duality of the G-fluxes. This may be

more obvious if we re-express (6.9) using (7.3) as

|H3|2 − |F3|2 =
h4/3

12

∑
{αi}=0

(
C̃i11 − C̃i33

)
, (7.10)

which may not be consistent with H3 = − ∗6 F3 and F3 = ∗6H3, where ∗6 is the six-

dimensional Hodge star measured with respect to the unwarped metric. In other words:

G̃mnpa − (∗8G̃)mnpa 6= 0, (7.11)

meaning that supersymmetry should be broken to allow for a positive cosmological con-

stant. One may also note that the contribution from the anti-M2 branes in (7.9) allows

the self-duality of the G-fluxes to be broken even for vanishing cosmological constant Λ

and vanishing higher-order corrections. This means supersymmetry can be broken in flat

space by the anti-M2 branes.

The above relation can in fact be extended to the full G-fluxes, i.e. including both the

localized and the delocalized pieces. To show this we make use of another component of

the G-flux equation, finding

Λ(t)DqG̃
qmnp +DaG̃

amnp =
∂qh

h

[
Λ(t)G̃qmnp − 1

12

(
∗8G̃

)qmnp]
(7.12)

+
∂ah

h

[
G̃amnp − 1

12

(
∗8G̃

)amnp]
+ β1

δSntop

δC̃mnp
+ β2

δStop

δC̃mnp
,

which is expressed in terms of the total fluxes and is again consistent with (7.11). In

deriving the above equation we have assumed

(X8)012M1...M5
≈ 0. (7.13)

Note that for the delocalized flux components G̃mnpa, away from the singular points, (7.12)

simplifies to

DaG̃amnp =
∂ah

h

[
G̃amnp − 1

12

(
∗8G̃

)amnp]
+

[
β1
δSntop

δC̃mnp
+ β2

δStop

δC̃mnp

]G̃mnpq=0

G̃loc
mnpa=0

(7.14)
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meaning that the delocalized flux components are not covariantly constant. Another con-

sequence of the above equation is that the G̃mnpa components will continue to remain time

independent provided

∂

∂t

[
β1
δSntop

δC̃mnp
+ β2

δStop

δC̃mnp

]G̃mnpq=0

G̃loc
mnpa=0

= 0, (7.15)

giving us another constraint on the curvature corrections in the theory, although solutions

should also exist for cases which violate this constraint and hence require a more general

analysis that includes a time dependence for G̃mnpa.
Now looking at (7.11) and (7.6) we conclude that a four-fold with negative Euler

characteristic χ4 may easily accommodate fluxes of the kind (7.11) and simultaneously

account for the supersymmetry breaking, although this is not a necessary condition for a

solution to exist. In other words, without loss of generality, we can demand

1

4

∫ √
g̃ G̃mnpa

(
∗8G̃

)mnpa
=

∫
H3 ∧ F3 < 0, (7.16)

which in turn can be made consistent with the first equation in (6.9), namely∫
d6x
√
g̃ (H3)mnp(F3)mnp = −3

∑
αi=0

〈Ci3,11〉, (7.17)

provided
∑

αi=0〈Ci3,11〉 > 0. This could be taken as another constraint on the curvature

corrections, which applies in the case that χ4 < 0. A similar constraint would apply for

the case χ4 > 0.

Yet another possible class of solutions are those with vanishing Euler characteristic

χ4 = 0. These solutions could correspond to an internal M-theory eight manifold that is

an elliptical fibration of a Calabi-Yau threefold, since the Euler characteristic of the eight

manifold is related to the Chern classes of the base by [94]:

χ4 = 12

∫
B
c1(c2 + 30c2

1). (7.18)

If the base manifold is Calabi-Yau, then c1 = 0, and hence χ4 vanishes. This, in conjunction

with the condition R̃ = 0, leads to its own set of solutions, with the modified conditions:∑
{αi}=0

〈C̃m, im 〉χ=0 < 0, (7.19)

∑
{αi}=0

〈C̃a, ia 〉χ=0 < 0. (7.20)

As an interesting corollary, in the absence of any curvature corrections and due to (6.2),

(6.3) or (6.4), it is impossible to get a four-dimensional de Sitter spacetime if the internal

six-dimensional base of the M-theory eight-fold is a Calabi-Yau manifold because

R̃ = −18hΛ. (7.21)
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We now make a few observations. Note that to stabilize all the complex structure moduli,

we will have to switch on G-fluxes in the internal manifold. The G̃mnqa components are the

ones that will do the required job for us. However due to the background constraint (7.11)

we cannot allow supersymmetric fluxes. In fact we can extend (7.11), by incorporating the

localized fluxes in (7.6) and (7.7), to full G-fluxes Gmnpa, Gmnpq and Gmnab. This means,

in addition to (7.11) we will have another relation

Gloc − ∗4Gloc 6= 0, (7.22)

where ∗4 is the Hodge star on a four-dimensional surface Σ4 inside the six-dimensional

base of our eight-manifold. Since the localized fluxes are related to the gauge fields on the

seven-branes wrapping Σ4 in type IIB theory, this immediately implies that the gauge fluxes

(both the abelian and the non-abelian pieces) will create a D-term potential satisfying the

background constraint relations (7.9) and (6.10).

In addition to that, the decomposition (7.2) switches on an FI term from the H3 = dB2

of G̃mnqa and from the F2 = dA of G̃loc
mnqa, proportional to∫

Σ4

F− ∧ F− (7.23)

where F− ≡ F − ∗4F and we have defined F ≡ F2 −B2.

Since the background supersymmetry is broken by the G-fluxes, the F-term is explicitly

non-zero allowing us to switch on a non-zero D-term in the presence of higher-curvature

quantum corrections. The fact that the F-term and D-term are related to each other can be

inferred from the decomposition (7.2) where both three-form and gauge fluxes in type IIB

are sourced by M-theory G-fluxes. This way we take care of the issues raised by [90, 91].12

Note that in the absence of the quantum corrections, this wouldn’t have been possible.

Finally, we need to switch on D-brane instantons that would help us stabilize all the

Kähler structure moduli, including the volume moduli. As mentioned earlier, we have to

make sure that the internal manifold is stabilized at large volume so that the dynamics can

be captured by the set of EOMs described above. In the presence of the D-brane instantons

higher-curvature terms are automatically generated (some aspect of this will be discussed

in section 8). These curvature terms are the last pieces of the link required to satisfy the

consistency relations (6.10) or (7.9).

Thus both the fluxes and the curvature corrections are therefore necessary conse-

quences of stabilized moduli in this set-up. As such they could lead to a positive cosmo-

logical constant solution, and a natural realization of D-term uplifting [34].

8 A discussion on the curvature corrections

In this section we discuss in more detail the possible origins for the higher-order curvature

corrections13 we have argued might allow for construction of de Sitter vacua in IIB com-

pactifications. While our calculations were done in M-theory, it is interesting to first look

12It will be interesting to compare our results with the ones in [92, 93] regarding D-term uplifting.
13We will restrict ourselves to Rn corrections as these have been studied in more detail than the Gn

corrections. For an analysis of Gn corrections, the readers may refer to [45–48].
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at the corrections that can appear in type IIB string theory. These terms can be sourced

by tree- and loop-level n-graviton scattering amplitudes, or equivalently loop corrections

to the underlying σ-model, and are also induced by D-instanton corrections. The general

form of these corrections is given by (adopting the notation of [95], combined with [84] but

with the substitution s = (m+ 6)/4):

(α′)n−m+1tm,nZ
(w,w′)
m D2mRn (8.1)

where tm,nD
2mRn is the contraction of 2m covariant derivatives and n Riemann tensors

with a tensor tm,n. The coefficient Zw,w
′

m is an eigenfunction of the Laplace operator on

the fundamental domain of SL(2,Z), with modular weight (w,w′). This coefficient can

be written as an Eisenstein series [84], and is necessary for SL(2,Z) invariance of the

corrections to the action.

The lowest-order correction can be calculated from 4-graviton scattering; see for exam-

ple [85] in type II and [86] in Heterotic, which induces a D0 R4 correction at both tree level

(at order (α′)3 ) and at the one-loop level. In the calculation by Gross and Witten [86], this

led to a gaussian path integral that can alternatively be written as a contraction of four

copies of the Riemann tensor with two copies of a rank-8 tensor denoted t8. This allows

one to write the correction as (equations 10 and 11 of Gross and Witten):∫
dψαLdψβR exp

[
ψ̄αLΓµναβψ

β
Lψ̄

α′
R Γστα′β′ψ

β′

RRµνστ

]
, (8.2)

or in terms of the t8 tensor:

tµ1µ2...µ8tν1ν2...ν8Rµ1µ2ν1ν2Rµ3µ4ν3ν4Rµ5µ6ν5ν6Rµ7µ8ν7ν8 , (8.3)

with the t8 tensor defined by√
detΓµνFµν = tµ1µ2...µ8Fµ1µ2Fµ3µ4 . . . Fµ7µ8 . (8.4)

The above correction is often written in the literature as simply t8t8R
4. Another

approach to calculating this correction is to consider loop corrections in the sigma model

(see for example [87]), where an n-loop effect will lead to an Rn correction that is order

(α′)n in the corresponding string theory. Collecting all the terms at order R4 yields a

correction of the form: (
1

8
ε10ε10 − t8t8

)
R4, (8.5)

where ε10 is the rank-10 totally anti-symmetric tensor .

One might also wonder if there are R2 or R3 terms. The sigma model analysis does

not produce these terms, which would indicate that type II theories are protected from α′2

and α3 corrections, as shown in the sigma model in [88]. This was also done in the context

of type I, II and heterotic string theory in [89], which confirmed the result that R2 and R3

corrections do not appear. One can also check that R5 terms do not arise, and in fact the

next corrections coming from the tree-level graviton scattering are D2R4, D2R5, and R6,

all at order (α′)5 (see table I of [95]). At the loop level, there has been recent work [96–98]
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showing that perhaps string loop corrections at order g2
s(α
′)2 can become important in a

certain class of compactifications (dubbed the Large Volume Scenario).

Another contribution comes from calculating the graviton scattering amplitude in a

D-instanton background, as was done by Green and Guterperle [99], which gives an extra

contribution to Z
(w,w′)
m that is neccessary for the correction to be SL(2,Z) invariant. The

coefficient for the D0R4 correction has modular weight (w,w′) = (0, 0), and is given by

(equation (1.15) of [84] with s = 3/2, or in our notation, m = 0):

Z0 = 2ζ(3)C(0)3/2
+ 8ζ(3)C(0)−1/2

(8.6)

+4π
∑
k 6=0

µ(k, 3/2) exp
[
−2π(|k|e−φ − ike−φ)

]√
|k|
(

1 +
3

16π|k|C(0)
+ . . .

)
,

where C(0) and φ are the axion and dilaton. The first term on the r.h.s. is the tree-level

correction, while the second term is the 1-loop correction. The set of terms on the second

line is an infinite set of D-instanton corrections, with the function µ(k, 3/2) defined as in

appendix A of [84].

The picture in M-theory is slightly simpler, as there is only one curvature superin-

variant. A review of the corrections to M-theory supergravity, as well as the supersym-

metrization, can be found in [100], while the detailed derivations can be found in [101]

and [102]. A feature of the M-theory picture that is fairly well understood is the necessity

of an additional Chern-Simons term to cancel the 5-brane anomaly, via anomaly inflow.

This term takes the form

C ∧X8, (8.7)

where X8 is built out of R4. As this term includes a factor of the M-theory 3-form flux, it

will contribute to the equation of motion of the fluxes.

A key feature of these corrections is that the form of the contraction conspires to choose

only the Weyl part of the Riemann tensor, such that the corrections vanish on manifolds

with vanishing Weyl tensor. This was shown explicitly by Banks and Green in [103], where

they considered AdS5 × S5. This is great news for AdS/CFT, since the correspondence is

protected from loop corrections. However, it makes the search for scenarios where correc-

tions may be important a non-trivial exercise. One possibility for finding non-negligible

corrections is to consider Calabi-Yau manifolds, and indeed this is the internal manifold

used in the 4D effective picture of these corrections in Kahler Uplifting [35, 40]. However,

this introduces a new difficulty: many Calabi-Yau manifolds can not be given an explicit

metric — for example the explicit realization of Kahler uplifting in [40] is done on CP11169.

9 Conclusion

This paper has been a close examination of de Sitter solutions in Type IIB string theory,

from the perspective of the 10-dimensional equations of motion (and the corresponding

11-dimensional M-theory equations). We have reached two key conclusions:

1. By applying the Gibbons-Maldacena-Nunez No-Go Theorem [17–19] to localized

static sources we have found that the inclusion in IIB supergravity of Dp- branes,
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anti Dp-branes, Op-planes, and by extension any linear combination thereof, does

not lead to positive curvature in the 3+1 non-compact directions.

2. The addition of curvature corrections, sourced by D-instantons as well as tree and

loop-level graviton scattering, may lead to a de Sitter solution in the 3+1 non-compact

directions, although an explicit construction of this would require specifying a metric

on the internal manifold as well as a subset of correction terms to consider. Further-

more, this solution naturally leads to compactification with broken supersymmetry,

all moduli stabilized, and the generation of a D-term in the scalar potential of the 4d

effective field theory.

The first result is a fairly simple extension of the analysis performed by Maldacena-

Nunez [19], and Giddings, Kachru, Polchinski [79], among others. Our assumptions in

deriving this were limited to demanding (i) maximal symmetry in the 3+1 dimensions,

as well as (ii) positive curvature in the 3+1 dimensions. Since we only consider time-

independent matter configurations, the 3+1 dimensional non-compact spacetime we are

looking for is ‘pure’ de Sitter, as opposed to quasi-de Sitter as is usually considered in

cosmology. However, to construct any 3+1 dimensional positive curvature geometry, the

stress-energy tensor must satisfy the condition (2.8) regardless of the symmetry, and in

particular regardless of time dependence.

Note that there are many existing proposals which we have not considered, for example

IIA on nilmanifolds [104], IIA on solvmanifolds [105], and non-geometric fluxes [106]. These

proposals should also be subject to condition (2.8).

The second result is a non-trivial check that curvature corrections do indeed evade

the No-Go theorems. In this calculation we have used an ansatz for the effective stress-

energy tensor induced by the curvature corrections, which we view as an appropriate way

to proceed given the freedom to set the internal manifold as well as the complicated (and

not completely known) form of the curvature corrections.

A worthy question at this point would be the sensitivity of our second result to the form

of the ansatz, as it is entirely possible that some choices of internal manifold do not lead to

curvature corrections that can be parametrized in this way. Thus a conservative restate-

ment of our second result would be as follows: given a class of internal manifolds that allow

the time dependence of the curvature correction to be isolated from other contributions,

there do exist de Sitter solutions provided a set of consistency conditions (6.18)–(6.19) is

satisfied. This hints at interesting further work, to clarify the consistency of our claims

with the work of Sethi et al. [20] which found that such corrections in Heterotic theory do

not lead to dS solutions.

Upon studying the dS solution obtained via curvature corrections, we uncovered a

number of interesting features. Solutions exist for any choice of the Euler characteristic

of the internal manifold, including an elliptic fibration of a Calabi-Yau threefold. Fur-

thermore, this setup generically leads to non self-dual fluxes, which break supersymmetry,

and induce a D-term in the scalar potential, suggesting that this construction may be a

realization of D-term uplifting [34]. The moduli of this setup can be fully stabilized: the

complex structure moduli are fixed by the fluxes, while the Kähler moduli are stabilized
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by the D-instantons, which in turn source the curvature corrections. Hence our analysis

indicates that curvature corrections can do the job at hand.

This work has opened up several directions for future research. One option, motivated

by the desire for a deeper understanding of string theory, is to continue the investigation of

de Sitter solutions, using dualities to relate the solutions in different string theories. This

has the potential to clarify subtleties of dualizing non-BPS states, and to allow one to ‘map

out’ the space of dS vacua in string theory.

An alternative way forward is to push this work closer to cosmology, and in par-

ticular, inflationary cosmology. While the full 10d equations do not lend themselves to

model building, this approach does provide a clear path to studying compactifications with

a time-dependent scalar curvature (‘quasi-dS’). The appeal of this option lies in build-

ing self-consistent embeddings of inflationary cosmology in string theory, with the (albeit

ambitious) goal of teasing out distinctive signatures of string theory in the sky. As has

happened before, it may be that effects from a full 10-dimensional construction result in

observational signatures which do not arise in the effective field theory approach.
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