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Abstract

Introduction Batch effects in large untargeted metabo-

lomics experiments are almost unavoidable, especially

when sensitive detection techniques like mass spectrometry

(MS) are employed. In order to obtain peak intensities that

are comparable across all batches, corrections need to be

performed. Since non-detects, i.e., signals with an intensity

too low to be detected with certainty, are common in

metabolomics studies, the batch correction methods need to

take these into account.

Objectives This paper aims to compare several batch

correction methods, and investigates the effect of different

strategies for handling non-detects.

Methods Batch correction methods usually consist of

regression models, possibly also accounting for trends

within batches. To fit these models quality control samples

(QCs), injected at regular intervals, can be used. Also study

samples can be used, provided that the injection order is

properly randomized. Normalization methods, not using

information on batch labels or injection order, can correct

for batch effects as well. Introducing two easy-to-use

quality criteria, we assess the merits of these batch cor-

rection strategies using three large LC–MS and GC–MS

data sets of samples from Arabidopsis thaliana.

Results The three data sets have very different charac-

teristics, leading to clearly distinct behaviour of the batch

correction strategies studied. Explicit inclusion of infor-

mation on batch and injection order in general leads to very

good corrections; when enough QCs are available, also

general normalization approaches perform well. Several

approaches are shown to be able to handle non-detects—

replacing them with very small numbers such as zero

seems the worst of the approaches considered.

Conclusion The use of quality control samples for batch

correction leads to good results when enough QCs are

available. If an experiment is properly set up, batch cor-

rection using the study samples usually leads to a similar

high-quality correction, but has the advantage that more

metabolites are corrected. The strategy for handling non-

detects is important: choosing small values like zero can

lead to suboptimal batch corrections.

Keywords Batch correction � Untargeted metabolomics �
Non-detects � Mass spectrometry � Arabidopsis thaliana

1 Introduction

Mass spectrometry (MS) is the dominant detection tech-

nique in untargeted metabolomics experiments due to its

sensitivity and information content. In many cases it also

allows tentative annotations of metabolites on the basis of
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their observed accurate masses and mass spectra (de Vos

et al. 2007; Patti et al. 2012; Dunn et al. 2013; Franceschi

et al. 2014). Samples in metabolomics studies typically

consist of complex matrices containing a large number of

metabolites. Therefore, MS instruments are coupled to

advanced chromatographic separation techniques including

gas or liquid chromatography, or capillary electrophoresis.

However, MS instruments need specialized operators, and

chromatography and/or ionization of compounds are sen-

sitive to external influences. As a result, it is virtually

impossible to obtain exactly the same results in experi-

ments repeated in different labs, on different machines, or

even on the same machine during large series of samples

taking several days for analysis. In particular batch-to-

batch variation is commonly seen, where a batch is defined

as a set of samples that have been extracted as well as

measured in one uninterrupted sequence.

The goal of batch correction, then, is to remove these

between-batch and within-batch effects, so that measure-

ments across all batches are directly comparable. Batch

variation can be dealt with in different ways, e.g., by using

internal standards as controls, or by injecting reference or

quality control samples (QCs) at regular intervals (Dunn

et al. 2011; Hendriks et al. 2011). Spiking with internal

standards has the disadvantage of potentially changing the

physical sample, and since with untargeted experiments it

is usually unknown in advance what compounds are going

to be detected, there is the risk of using internal standards

that coelute with metabolites of interest. Moreover, the

added standards may not be representative for the specific

chemical characteristics of the unknowns, and response

factors may differ. As a result, this spiking approach is

usually avoided in untargeted metabolomics. In contrast,

including QCs for the entire technical procedure is com-

mon practice. Usually, a pooled sample comprising all or

most study samples is used, so that the matrix character-

istics of the QCs are similar to these real samples.

Choosing the optimal number of QCs is not straightfor-

ward, as it depends on the type of material to be analyzed,

the extraction procedure, the stability of the compounds in

the extract, and finally the stability of the analytical system:

injecting too many QCs leads to even longer sample series,

and possibly more batches; injecting too few could make

post-hoc corrections unfeasible. Applications ranging from

injecting a QC every 4 up to 15 samples have been sug-

gested (de Vos et al. 2007; Dunn et al. 2011; Kamleh et al.

2012).

A phenomenon that is often observed in metabolomics is

the non-detect: a chemical feature found in some samples

but completely absent in others, or (equivalently) perhaps

present but at levels too low to be measured reliably. Non-

detects will occur both at the level of the individual mass

peaks and at the levels of metabolites. Another potential

cause for non-detects is given by problems in data pro-

cessing, e.g., leading to misalignments. We have taken

utmost care to avoid this, and therefore we assume that this

constitutes only a small minority of cases: non-detects

therefore are assumed to correspond to low-intensity sig-

nals. Most data processing packages for MS-based meta-

bolomics data use a threshold value (based on intensity,

local signal-to-noise ratio or another characteristic) to

define whether a feature is present in one particular sample

or not. The resulting data table may contain many of these

non-detects, sometimes simply represented by zeros,

sometimes with a non-detect code.

For statistical analysis, it must be decided how to handle

these non-detects. The data are left-censored: the intensity

of non-detects is below a certain threshold, maybe even

zero, but the exact value is unknown. Such information can

be used, and several strategies to handle these non-detects

exist. In most cases, one simply replaces these non-detects

by a single value, e.g., zero, the limit of detection (LOD),

or a number in between these two possibilities (Hughes

et al. 2014; Xia et al. 2015). A more elaborate approach is

to use multiple imputation (Little and Rubin 1987; Schafer

1996), basically a repeated replacement of non-detects with

random numbers from a predefined distribution. Although

the analysis then becomes more complicated and com-

puter-intensive, results have been shown to be quite

good (Uh et al. 2008). The objective of this paper is to

obtain adequately corrected values for the data that have

been measured rather than to obtain a completed data table,

and therefore we are not considering multiple-imputation

approaches here. Finally, a baseline-type of approach for

handling non-detects is simply to ignore them, and to base

the correction only on those values that are detected. The

disadvantage is that potentially valuable information (non-

detects representing small numbers below a threshold) is

lost.

This paper describes a systematic analysis of different

strategies to perform batch correction in the presence of

non-detects. Both strategies requiring the presence of QCs

and more generally applicable strategies are investigated,

as are the benefits of explicitly including batch and injec-

tion sequence information. The concepts are illustrated

using three data sets from different untargeted metabo-

lomics platforms for measuring Arabidopsis samples, i.e.,

GC–MS for detecting volatiles, GC-ToF-MS for deriva-

tized polar extracts, and accurate-mass UPLC–MS for

semi-polar compounds. For the evaluation of the different

strategies, we propose two quality criteria: one is based on

principal component analysis [PCA, (Jackson 1991; Jol-

liffe 1986)], and the other on the variation within biological

replicates.
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2 Batch correction

Several different algorithms are available to perform batch

correction [see, e.g., Fernández-Albert et al. (2014)].

Rather than do an exhaustive comparison of different

approaches, we focus on the amount of information pro-

vided to the methods, and we consider two generic cases:

– explicitly taking into account batch information and,

possibly, injection sequence information. For this

approach QCs can be used but are not required;

– correction without explicit batch or injection sequence

information. QCs are mandatory in this case.

2.1 Batch correction using all available information

When both batch and injection sequence information are

used, batch correction is usually done metabolite-wise in an

Analysis of Covariance (ANCOVA) framework (Hendriks

et al. 2011; Kirwan et al. 2013):

xc;i ¼ xu;i � x̂i þ �x

where xc;i and xu;i are the corrected and uncorrected

intensities for metabolite x in injection i, respectively, and

�x is the average intensity of this metabolite across all

batches. The predicted intensities x̂i in this example can be

obtained by linear regression. If injection order information

Si is available, this can be used next to the information on

batch labels Bi:

x̂i ¼ aSi þ bBi þ �

where a and b are coefficients to be determined. If no order

information is available, this reduces to

x̂i ¼ bBi þ �:

The safest option is to fit these ‘‘correction models’’ using

the QCs: there, one can be sure that the true underlying

value is constant, and that one should measure the same

intensity in all batches and for all parts of the injection

sequence within a batch. When too few QCs are available

to do this reliably (which can easily happen for less

abundant metabolites, even when the number of QCs itself

is large enough) these predictions can also be based on the

study samples, provided that these are properly random-

ized. The assumption then is that there is no relation

between injection order within a batch and intensity, and

between batches (Dunn et al. 2011). In the following,

correction strategies based on QCs will be referred to with

the letter Q; strategies based on the study samples with the

letter S.

Non-detects can severely disturb the estimation of the

correction terms. Here, we compare several approaches to

estimate the batch and injection order effects. For strategies

based on the QCs (Q), this leads to the following variants:

Q Simply ignore the non-detects, and use linear

regression to fit the correction lines using only the

detected values.

Q0 Impute the non-detects by a value of zero. Although

this is an often-used approach, a possible danger is

that this value is too extreme and may lead to poor

corrections.

Q1 Impute the non-detects by a value that is half the

detection limit; one could argue that the real value is

somewhere between zero and the detection limit, and

in the absence of any other information, half of the

detection limit would be the most logical esti-

mate (Xia et al. 2015).

Q2 Impute by the detection limit itself. Usually, no

detection limit is known, but often the smallest value

present in the data set is taken as a reasonable

estimate.

Qc Use censored regression rather than least-squares

regression without imputation. In censored regres-

sion, information is used that the non-detects are

below a certain limit, without knowing their exact

value. The choice of this limit is important: knowing

that a certain value is below, e.g., 10,000 gives

different information than knowing that it is below

10. In this paper, tobit regression (Greene 2003;

Tobin 1958) was used with left-censoring at the

smallest value found in the data set (taken as LOD).

Thus, five different ways of handling non-detects in both Q

and S strategies are considered, ten methods overall. Note

that these strategies are all univariate: the corrections are

done for every metabolite separately.

2.2 Normalization approaches

Normalization approaches do not explicitly correct for

batch and injection order effects but rather utilize the fact

that QCs are technical replicates: their intensities should be

independent of batch label or injection number (Draisma

et al. 2010; Veselkov et al. 2011; Hughes et al. 2014). An

interesting example of such a strategy is the identification

and subsequent removal of unknown structured variation

on the basis of control samples in an RNASeq con-

text (Risso et al. 2014), an extension of earlier work on

microarray experiments (Gagnon-Bartsch and Speed

2012). Recently, this ‘‘Removal of Unwanted Variation’’

(RUV) strategy has also been applied to metabolomics

data (Livera et al. 2015). The method is based on modeling

the subspace of the unwanted variation, by performing a

PCA on the data of the QCs. The projection of all study

samples in this subspace gives an estimate of the unwanted

Improved batch correction in untargeted MS-based metabolomics Page 3 of 12 88

123



variation for these samples, which can subsequently be

removed. In contrast to the approaches mentioned above,

RUV is a multivariate method. It has one control parameter

k, the number of principal components (PCs) defining the

subspace of unwanted variation. In this paper, we use a

value of k ¼ 3; very similar results are obtained for values

in the range of 3–10 (data not shown). Missing values are

not allowed in this method, so we again impute non-detects

by the same three levels used in the Q and S strategies,

leading to methods R0, R1 and R2.

The total set of evaluated methods is summarized in

Table 1.

2.3 Evaluation of batch corrections

Two quality criteria have been designed and tested to

assess the success of a particular batch correction:

1. The first approach is based on PCA. Score plots often

provide a simple and easily interpretable visual check of

thepresenceof batcheffects.Asaquantitative criterion,we

proposes to use the average distance between batches,

based on their scores. As a distance measure between two

batches we use the Bhattacharyya distance, basically the

distance between two normally distributed point clouds:

DB ¼ 1

8
ðl1 � l2ÞTR�1ðl1 � l2Þ þ

1

2

detR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detR1 detR2

p
� �

where l1, l2, R1 and R2 are the means and covariance

matrices of the two distributions, in this case the PCA

scores of the two batches, and

R ¼ R1 þ R2

2
:

The smaller this average Bhattacharyya distance, the

larger the overlap between the batches and the smaller

the batch effects. In this paper have used two PCs for

calculating the PCA criterion (also because of the

visualization possibilities) but, in our experience, the

conclusions do not critically depend on this choice.

Again, for calculating the PCA scores no non-detects

are allowed: to avoid any influence of different num-

bers of non-detects in the individual correction strate-

gies, in this quality criterion non-detects are imputed

by column (metabolite) averages, so that they will be

zero after scaling and do not influence the results of the

criterion. To avoid highly abundant metabolites to

dominate the criterion, the columns of the data matrix

(metabolites) are standardized to mean zero and unit

variance before calculating the QC value.

2. The second approach is based on the presence of

biological replicates. The variation within one group

(here: a genotype) consists of biological variation and

technical variation. Batch correction should decrease

the latter, so after correction the within-genotype

variation is expected to be smaller than before

correction. This can be measured by calculating, for

each individual metabolite, the fraction of variance

accounted for by the biological variation, also known

as the repeatability:

repeatability ¼ r̂2
between

r̂2
between

þ r̂2
within

� r̂2
biol

r̂2
total

:

The within-group variance r̂2
within

is given by the

pooled variance over all groups (genotypes); the

between-group variance r̂2
between

is the variance between

the group means. This formulation by definition leads

to a number between zero and one, independent of the

measurement scale. Averaging over all metabolites

gives an overall repeatability estimate. Similar mea-

sures have been used in literature before [(see, e.g.,

Trutschel et al. (2015)].

In both cases the quality criteria are based on the study

samples only: QCs are not considered.

3 Materials and methods

3.1 Data

The performance of all correction methods in the previous

section was assessed by applying them to three different

data sets of Arabidopsis samples. These differ in sample

analysis characteristics such as batch length, number of

Table 1 Overview of batch correction methods considered in this

paper

Method Based on Non-detects Methodology

Q QCs NA LS regression

Qc QCs NA Censored regression

Q0 QCs 0 LS regression

Q1 QCs LOD/2 LS regression

Q2 QCs LOD LS regression

S Study NA LS regression

Sc Study NA Censored regression

S0 Study 0 LS regression

S1 Study LOD/2 LS regression

S2 Study LOD LS regression

R0 QCs 0 PCA

R1 QCs LOD/2 PCA

R2 QCs LOD PCA

Methods ‘‘Q’’ are based on different forms of regression using the

QCs, methods ‘‘S’’ on regressions using the study samples, and ‘‘R’’

on the RUV method, a PCA of the QCs. Non-detects are handled as

missing values (NA) or imputed with a single value (0, LOD/2, or

LOD), column ‘‘non-detects’’
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QCs per batch, and the number of biological replicates,

allowing for a thorough evaluation of the strong and weak

points of the correction methods. It should be noted that in

each of these cases utmost care has been taken to avoid

batch effects. Nevertheless, as also has been noted befor-

e (Dunn et al. 2011; Hendriks et al. 2011), they cannot

always be avoided, and have to be dealt with.

Each of the three experiments described below was

performed with one single column, with no other types of

samples measured in between, in one consecutive time

block. Given that a single MS analysis would take between

30 and 60 min, the measurement time was � 1 week for

data set III, and more than 2 weeks for data sets I and II.

In all cases, variables are relative intensities associated

with reconstructed metabolites, defined as a group of mass

features most likely originating from the same metabolite.

The values given for each reconstructed metabolite corre-

sponds to the total ion count of a chromatographic peak and

therefore does not represent a single mass feature only.

3.1.1 Set I: LC–MS data of a large Arabidopsis hapmap

population

Seeds from 357 natural accessions of Arabidopsis, col-

lected worldwide (Li et al. 2010; Horton et al. 2012), were

sown on filter paper with demi water and stratified at 4 �C
in dark conditions for 5 days. Subsequently, seeds were

transferred to a culture room (16 h LD, 24 �C) to induce

seed germination for 42 h. Six replicates per accession

were transplanted to wet Rockwool blocks of 4 � 4 cm2 in

a climate chamber (16 h LD, 125 l mol =m2s, 70 % RH,

20/18 �C day/night cycle). All plants were watered daily

for 5 min with 1/1000 Hyponex solution (Hyponex, Osaka,

Japan). Plants were harvested 29 days after germination

and leaves of three plants were pooled in two replicate

samples each. Samples were ground in liquid nitrogen and

an aliquot of all samples was mixed to generate the large

pool needed for preparing the QCs. These were indepen-

dently and simultaneously weighed and extracted with the

study samples (5–6 times per batch) and injected at regular

intervals within the analysis series. In total, 51 QCs were

injected. Batch sizes ranged from 78 to 80 samples, with

the exception of the last batch, batch 10, containing 48

samples.

For the LC–MS analysis, aqueous-methanol extracts

were prepared from 50 mg frozen ground material to which

200 ll of 94 % MeOH containing 0.125 % formic acid was

added (de Vos et al. 2007). After sonication and filtering,

the crude extracts were analyzed as described previ-

ously (van Duynhoven et al. 2014) using UPLC (Waters

Aquity) coupled to a high-resolution Orbitrap FTMS

(Thermo). A 20 min gradient of 5–35 % acetonitril,

acidified with 0.1 % formic acid, at a flow rate of 400 ll/
min was used to separate compounds on a 2.1 x 150 mm2

C18-BEH column (1.7 lm particle size) at 40 �C.
Metabolites were detected using a LTQ-Orbitrap hybrid

MS system operating in negative electrospray ionization

mode heated at 300 �C with a source voltage of 4.5 kV

[more details are described in van Duynhoven et al.

(2014)]. The transfer tube in the ion source was replaced

and the FTMS recalibrated after each sample batch, with-

out stopping the UPLC system.

After preprocessing, metabolites occurring in fewer than

20 different genotypes were removed, leading to a data

matrix containing relative intensities of 567 reconstructed

metabolites in 761 samples (including the QCs). The per-

centage of non-detects in this matrix is 48 %. For indi-

vidual metabolites, the fraction of non-detects can be much

larger, and in this data set is up to 97 %.

3.1.2 Set II: GC–MS of volatiles of the Arabidopsis

hapmap population

This dataset is based on aliquots of the same Arabidopsis

material as described for data set I. The aim here was to

analyse volatile organic compounds (VOCs) present in the

leaf material using solid phase microextraction (SPME) of

the headspace. Extracts of 50 mg from frozen ground

material treated as described by Verhoeven et al. (2012)

and Mumm et al. (2015) were analysed on a GC–MS

system (Agilent GC7890A with a quadrupole MSD Agilent

5978C) as described by Cordovez et al. (2015). In contrast

to the aforementioned study, the temperature program of

the GC oven started at 45 �C (2 min hold) and rose first

with 8–190 �C min�1, followed by 25–280 �C (2 min hold).

This data set contains information on 753 injections (in-

cluding QCs) with, in total, 40 % non-detects, similar to

what was found in the LC–MS data. For individual

metabolites, the percentage of non-detects goes up to 97 %.

Again, only those metabolites were retained that were

present in at least 20 different genotypes, in this case 603

metabolites. Fifteen batches of 34–99 samples were used,

with on average 15 study samples per QC; the total number

of QCs is 50.

3.1.3 Set III: GC-ToF-MS polar metabolite data

of an Arabidopsis nucleotype-plasmotype diallel

study

This dataset is based on the analysis of polar extracts from

a nucleotype-plasmotype combination study of Arabidopsis

for 58 different genotypes. For details of the used plant

material we refer to Flood (2015). Analysis of the polar,

derivatized metabolites by GC-ToF-MS (Agilent 6890 GC
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coupled to a Leco Pegasus III MS) and processing of the

data were done as described in Villafort Carvalho et al.

(2015). Here, the number of metabolites (75) is much lower

than in the other two data sets, partly because the focus was

on the primary rather than the secondary metabolites. The

number of samples was 240, with a percentage of non-

detects of 16 %; the maximum fraction of non-detects in

individual metabolites is 92 %. All metabolites were

retained in the analysis. Four batches of 31–89 samples

were employed, containing 2–6 QCs per batch, 14 in total.

Four biological replicates were present for each accession,

but unlike the previous two data sets these biological

replicates are not spread evenly over the batches.

3.2 Software

Processing of the data was performed using the Metal-

ign (Lommen 2009) (for extracting and aligning mass fea-

tures) and MSClust (Tikunov et al. 2012) (for clustering mass

features on the basis of their similarities in both retention time

and abundance patterns across samples) according to a

pipeline described in more detail elsewhere (Lopez-Sanchez

et al. 2015; Roldan et al. 2014). All further calculations were

performed in R (R Core Team 2015), version 3.2.3, using

packages AER for tobit regression (Kleiber and Zeileis

2008), fpc for the Bhattacharyya distance (Hennig 2014),

ChemometricsWithR for PCA (Wehrens 2011), and

RUVSeq for the RUV method (Risso et al. 2014). The latter

is available from the Bioconductor repository1; all others are

available from CRAN.2 Further functions for batch correction

and evaluation of batch effect sizes were written in-house.

These functions, as well as anonymized versions of the data

sets, are available in the form of an R package, so that all

results in this paper can be reproduced exactly. It can be

installed directly from https://github.com/rwehrens/BatchCo

rrMetabolomics.

4 Results and discussion

Below, the results of the different forms of batch correction

are compared for the three data sets, addressing issues such

as the handling of non-detects. In particular, it has been

investigated how much the explicit inclusion of batch

labels and injection order improves the correction, and how

important the presence of QC information is in this respect.

When a correction is not possible for a particular

metabolite in a sample, the original uncorrected value is

retained in the corrected matrix, so that the evaluation of

the results is always done on the basis of an equal number

of data points. We will come back to this in the last part of

the results section.

4.1 Set I: LC–MS data of the Arabidopsis hapmap

population

Partly due to a particularly unfortunate series of events

including a broken oil pump and multiple power cuts, data

set I shows substantial batch effects. Fig. 1a, b depicts data

from one particular metabolite in the first two batches of

the LC–MS data. Clearly, apart from the global intensity

differences between the batches, a trend within each batch

can be observed. The correction lines estimated using the

QCs are indicated; these lines are basically subtracted from

the measurements, so that the corrected intensities shown

in the right panel are directly comparable across batches.

Since in this set the number of QCs is large enough and

injection order clearly is important, for this data set only

forms of strategies Q and S taking into account also the

injection order were used.

In Fig. 2a, the PCA scores for the individual, uncor-

rected, samples are shown with different symbols and

colours to indicate the batch labels. The average inter-batch

distance in this PCA space is 2.286. As an example of what

can be achieved, Fig. 2b shows the PCA scores after cor-

rection using strategy Q (based on the QCs, not using

imputed values for the non-detects). No obvious batch

effects are visible anymore. Also the much lower value of

the PCA criterion shows that the differences between the

corrected batches have all but disappeared. Similarly,

Fig. 3 shows that the repeatabilities for virtually all

metabolites improve upon correction by strategy Q, leading

to an increase in the average repeatability from 0.559 to

0.62. A certain number of metabolites cannot be corrected

because not enough information is present in the QCs:

these are lying on the diagonal of the plot.

The comparison between the different batch correction

strategies for this data set is shown in Fig. 4. The best

methods are those with a small value for the interbatch

distance and a high repeatability, i.e., points in the top left

corner of the figures. Clearly, virtually all correction

methods considered lead to substantial improvements in

both quality criteria in comparison to the uncorrected data.

The best results are obtained when the LOD value is used

to replace non-detects; imputing with zero or half the LOD

value leads to clearly inferior results. This data set in a way

provides the ideal case for batch correction: it has rela-

tively large batches of more or less equal size, and a suf-

ficiently high number of QCs. Indeed, zooming in on the

optimal region (the right plot in Fig. 4) shows that all three

strategies (Q, R and S) have representatives in this area,

indicating that whatever the strategy chosen it is possible to

obtain a good result. Still, the Q strategies are dominated

1 http://www.bioconductor.org
2 http://cran.r-project.org
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by the S and R strategies. The performance of the R2

method is especially impressive, since it is not provided

with batch and injection order information that is available

to the other methods. Of course, the fact that it is a mul-

tivariate method does allow to borrow strength across

metabolites, and in addition the method in principle is able

to correct for any unknown structured variation.

4.2 Set II: GC–MS data of the hapmap population

The Arabidopsis hapmap population was also analysed

using GC–MS. Here, batch effects were to be expected

because of airconditioning breakdown during the

measurements. Shorter batches were used, resulting in

fewer QCs per batch. Therefore, it is impossible to use

strategy Q for correcting both batch effects and injection

order effects: the correction lines cannot be estimated

reliably. For Q strategies, only a correction using batch

information has been performed. Since the number of study

samples is much larger than the number of QCs, it is

possible to use strategy S compensating only for batch

effects and for within-batch drift.

The results are shown in Fig. 5. The left panel contains

the results of the different batch corrections where no

within-batch drift is taken into account. All methods lead to

considerable improvements in the interbatch distance (the
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Fig. 1 Data for a single metabolite measured in two batches of � 80

samples each. a Showing uncorrected data, there is a clear overall

intensity difference between the batches, and a gradual intensity

decrease within both batches. QCs are indicated by red dots, study

samples with circles. Correction lines fitted through the QCs in the

individual batches are indicated by the red lines. The intensities after

correction are shown in b
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x-axis) over the uncorrected data. Again, imputation with

zero or half the LOD is suboptimal. The best results here

are obtained with strategy S, simply ignoring the non-de-

tects. In particular, this clearly beats the Q strategies. In

Fig. 5b injection order within batches is taken into account

for the S strategies. As discussed before, Q strategies are

not applicable because of a lack of QCs. The results for the

S strategies are virtually the same in both panels: for this

data set, injection order does not seem to be an important

factor.

4.3 Set III: GC-ToF-MS data for the diallel study

The third data set is characterized by a relatively low

number of metabolites and a smaller fraction of non-de-

tects, compared to the other two sets. Fig. 6a shows the

results of batch correction when within-batch drift is not

taken into account. Clearly, the batch effects to begin with

are much smaller than in the other data sets (compare the

value of the PCA criterion for the uncorrected data with the

values in Figs. 4 and 5). The influence of the non-detects is

also much smaller: the three strategies lead to clearly dis-

tinguished clusters, and only in the R strategies any effect

of different imputations is visible.

Figure 6b shows the results when injection order is

taken into account in the correction. The improvement in

the repeatability results for strategy S is striking: here, the

S correction models clearly outperform the other correction

methods. In contrast, the Q strategies perform worse than

in the situation where injection order is ignored. The reason

for this behaviour lies the small number of metabolites for

which such a correction is possible: a large part remains

uncorrected, and therefore the results are close to the

original data. The next section quantifies this in more

detail. Overall, this data set shows an example where

including batch and injection order information is essential

for arriving at an optimal correction, and where it is better

to rely on the study samples rather than the QCs. Probably

because of the low number of QCs, also RUV is not able to

arrive at the same quality level.

4.4 Extent of the corrections

Regression-based batch correction such as strategies Q and

S are univariate methods, appliccable when for a particular

metabolite sufficient information is present to estimate the

correction lines. This is not always the case. In pooled

samples, for example, metabolites that are present in only a

minority of the samples may be present in such low

amounts that they cannot be detected, and as a consequence

batch correction based on the QCs is unreliable. Also when

using the study samples it may happen that a metabolite is
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detected in too few cases. For a particular metabolite these

issues may show up in some batches only, allowing a

correction of the batches for which enough information is

available and leaving the other batches uncorrected. When

batch correction is performed without taking into account

injection order, this effect is less pronounced since aver-

ages can be calculated with fewer samples than correction

lines can.

In Table 2 an overview is given for the three data sets of

the number of metabolite/batch combinations for which a

correction has proved impossible. The differences between

strategies Q and S are clear: the number of uncorrected

cases in Q strategies (depending on QCs) is much higher

than in S strategies (depending on study samples). Simi-

larly, using injection order in strategies Q and S leads to a

drastic decrease in the number of cases for which a cor-

rection is possible. In particular for the correction of data

set III with Q strategies there are many cases for which

such a correction is impossible, due to the fact that in only

two out of four batches at least four QCs were present. If,

instead of replacing values in the original matrix with

corrected values, we would evaluate only the corrections,

then we would see that the corrections themselves would

lead to very good values for the two quality criteria.

However, plots like Fig. 6 would be very hard to interpret,

0 2 4 6 8 10 12 14

0.
41

0.
42

0.
43

0.
44

0.
45

0.
46

Data set II − only batch correction

Interbatch distance

R
ep

ea
ta

bi
lit

y

No correction

Q

Q0

Q1

Q2

S

S0

S1

S2

R0

R1

R2

0 2 4 6 8 10 12 14

0.
41

0.
42

0.
43

0.
44

0.
45

0.
46

Data set II − batch and order correction

Interbatch distance

R
ep

ea
ta

bi
lit

y

No correction

S

S0

S1

S2

Sc

R0

R1

R2

Fig. 5 Results of the
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correction with the S strategies.
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Table 2 The percentage of cases (metabolite/batch combinations) for

which correction is impossible for the three data sets and the cor-

rection strategies considered

Data set I (%) Data set II (%) Data set III (%)

Q (ave) – 29.2 14.3

Q (lin) 37.1 – 58.0

S (ave) – 5.6 1.3

S (lin) 9.0 11.3 2.3

R 0.0 0.0 0.0

Injection order is not taken into account in the lines denoted ‘‘ave’’; it

is in the lines denoted ‘‘lin’’
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since for each class of correction methods different num-

bers of metabolites would be taken into account.

The one big advantage of the RUV normalization

approach, not relying on batch-wise correction estimates, is

that all detected metabolites will be corrected. That is not

to say that all metabolites play a part in determining the

correction: if a particular metabolite is not present in the

QCs it will not contribute to the definition of the PC space

covering the unwanted variation.

5 Conclusion

This paper addresses the important topic of batch correc-

tion in untargeted MS-based metabolomics experiments.

Using three large data sets, measured on different instru-

ments, and containing repeated measurements of one

pooled QC sample as well as measurements of biological

replicates, it was possible to investigate the performance of

several commonly used batch correction methods. A clear

picture has emerged. If many QCs are present within bat-

ches, they can be used to good effect for correcting both

between-batch and within-batch effects. Especially for

longer batches the injection order within a batch can have a

large influence on the results as well, and can be corrected

for by explicitly including this information in the correc-

tion method. Corrections can not only be based on the QCs,

but also on the study samples themselves – in the optimal

situation with a reasonably large number of QCs, the

results are mostly comparable. When the number of QCs is

not very large, however, correction on the basis of the

study samples may be the preferred option.

The corrections using the study samples have the

advantage that they can be calculated for a larger number

of metabolites. Corrections based on the QCs can only be

done for those metabolites that are actually present in the

QCs. The normalization method investigated in this paper,

RUV, did not use batch or injection order information at

all. This led to results that were comparable in quality to

the other two strategies for the hapmap samples (both LC

and GC), but led to inferior results in the last data set. The

main advantage of the RUV method is that all measured

values are corrected, whereas for the other correction

methods the number of corrected metabolites was always

smaller than the total number, sometimes quite substan-

tially so. RUV is the only method of the ones considered

here that is able to decrease the effects of other sources of

technical variation like MS detector sensitivity and perhaps

even ion suppression.

The situation of non-detects warrants careful investiga-

tion. For batch correction, at least, we have seen detri-

mental effects of replacing non-detects with small values

like zero, or half the LOD. Using the smallest value in the

data set (LOD) is better. Instead of imputing values, cen-

sored regression methods can be used to good effect, and

one can even ignore the non-detects and base the correc-

tions only on detected features. Also in that case the results

are quite good, especially for the S strategies where the

number of points is larger. We have also considered robust

regression methods that are less sensitive to outliers, to see

if the effect of a particularly unlucky choice of imputed

value can be remedied. Indeed, when using, e.g., Huber’s

M-estimators (Huber 1981) to calculate the correction

lines, the results for strategies like S0 and Q0 improved

quite significantly, but still they did not reach the same

levels as the other strategies (data not shown). A disad-

vantage, especially for the Q0 and Q1 strategies is also the

relatively low number of QCs: robust regression is not very

useful when only four or five points are available for

estimating the parameters of the correction line.

The two quality criteria introduced in this paper give an

easy and quantifiable way to assess the success of batch

correction. The PCA-based criterion using the Bhat-

tacharyya distances between batches is generic and allows

visual identification of samples, or groups of samples, that

do not conform to the general trend. Here, we have

restricted ourselves to a criterion based on the first two

PCs, also because of our aim to visualize the results. In

principle, one could also take higher-order PCs into

account, but this in our experience did not lead to different

conclusions. The second quality criterion is based on the

presence of biological replicates, ideally measured in dif-

ferent batches. The definition, a fraction of variance

explained, leads to numbers on a scale from zero to one,

which can easily be interpreted. As with the PCA-based

criterion, individual outliers can be investigated, leading to

potentially valuable information.

The batch correction strategies described in this paper

have been applied to relative metabolite intensities, but in

principle they can also be used for correcting non-aggre-

gated individual mass peaks. Since the correction itself is

quite simple, the added computational complexity is not a

major concern. However, we would still advise against this

practice as any errors at the peak level that would be less

influential on the level of the metabolite as a whole (e.g.,

misalignment of a single mass trace) can severely disturb

the batch correction, thereby hampering subsequent data

interpretation.

Batch correction based on the study samples assumes

that the sample injection sequence has been properly ran-

domized. It is shown that results can be very good. This

finding could lead to a reassessment of the number of QCs

required in long injection sequences: QCs serve other

purposes, such as checking the efficiency of extraction, too,

but in some cases their number could be decreased when

they are no longer needed for batch correction.
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